LINEARIZING £-ORDER GENERALIZED SYSTEMS.
CONTROLLABILITY OF LINEARIZED SYSTEMS

M. I. GARCIiA-PLANAS*

Abstract. Given a (£ + 2)-ple of matrices (E, Ag_1,..., Ao, B) representing ¢-order generalized
time-invariant dynamical systems, Ez(©) = A,_;z¢~1 4+ ... + Aoz©® + Bu (z(*) denotes the i-th
derivative of x), we analyze conditions for which there exists a control u1 = u+ FpeO — . — Fpz(©
the new system can be linearized, and the linearized system has a stable solution.
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1. Introduction. We consider the space M of (£+2)-ples of matrices (E, A,_1),
.., Ao, B) where E, A(y_1),...,A¢ € Mp(C), and B € My, (C) corresponding to a
{-order generalized time-invariant linear systems

(1.1) Ez9 = 4, 12 + ..+ 402® + Bu,

(z(? denotes the i-th derivative).
When E = I, it is called standard -order linear system

(1.2) gt =Ap 1Y 4+ 402 + Bu

and we write simply as a (£ + 1)-ple of matrices (A¢_1,-- ., Ag, B).

It is well known that, standard £-order linear systems may be linearized See [5]
for example, in the sense that the system can be transformed to a linear system in
the form X = AX + Bu.

We say that a f-order generalized system is standardizable if the matrix F is
invertible because in this case, by pre-multiplication by E~!, the equation of the
system (1.1), is transformed to a standard one and consequently, it can be linearized.

We ask if it is possible by means of the introduction of a £-order derivative feedback
u=u — Fx® + ...+ Fyz® on the generalized time-invariant equation (1.1), to
transform the system to another (E + BF))z'® = (4,1 + BF,_)z"*Y + .. +
(Ag + BFy)z(® + Buy that it is standardizable and the linearized system has a stable
solution. In this case we say that the system (1.1) may be “standardized” by a “f-
order derivative feedback” or that the system (1.1) is “standardizable” by a f-order
derivative feedback.

As the case of standard f-order systems, the standardized system may be lin-
earized, and in this we can analyze the controllability of the linear system obtained.
In this paper we obtain conditions from the initial f-order systems to ensure the
controllability of the linearized standardized ¢-order system.

The study of generalized linear systems is being of a great deal of interest in
recent years. Derivative feedback is used by Rath [6] in order to regularize general-
ized systems with variable coefficients. Standardizable first order generalized linear
systems by means a derivative feedback has been recently studied [3], [4]. Concern-
ing second order generalized systems an algorithm to compute the transfer function
(s?E — sA; — Ap) B has been obtained by G. Antoniou [1].
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2. Linearizing standard /-order linear systems. Given a {-order standard
linear system (9 = A,_;2¢~Y 4., 44929+ By or simply write (4y_1, ..., A, B), it

2
JREY)
is well known that it can be linearized in the following manner. Calling x = | . ,

RSN

we have the following linear system

(2.1) XM = AX +Bu

where
o o 0 0

(2.2) A= : € My, (O), B=| € Minxm(C)
o WAL 5

() (¥)

We have also that, if ( ) is a solution of the linear system (2.1), then

(-1
To (t)
2 (t) is a solution of the f-order equation (1.2). And conversely, if ar(()o) (t) is a solution

(©
zg ()

of the f-order equation (2.1), then ( ) is a solution of the linear system (2.1)

x(l_l)(t)
If we can consider feedback equi\;)alent linear system in the form (2.2) we need
to restrict the feedback group to the subgroup formed by (¢ + 2)-ples of matrices
(P,Q, Fy,...,F;1) P eGl(n;C), Q € Gl(m;C), and F; € M,;,»»(C) acting over the
space of this kind of systems in the following manner
DEFINITION 2.1. Two systems (A% _|,..., A}, BY), i = 1,2, are equivalent, if and
only if, the exist matrices P € Gl(n;C), Q € Gl(m;C), and F; € M, x,(C) such that

0 I 0 0
0 0 0 0
0 0 ... I, 0
(2.3) A2 A2 ... A2, B?
1 0 I, ... 0 0 P 0 0
P 0 ) 0o 0 ... 0 0 ,
0 0 T 0 0 ' P 0
-1
0 F Ag AT ... A, B Fo ... Fi1 Q

That is to say, the transformations permitted over f-order standard systems are
basis change in the state space £ = Pz, in the input space u = Qu; and i-order
derivative feedback (i =0,...,0 —1) u = uy + Foz® + ...+ F,_,2¢ 1.

With this definition we ensure that equivalent systems to a linearized system are
linearized systems.

From about definition, we have the following proposition.

PROPOSITION 2.2. Let z(0) = Azilm“*l)—}—. . .—}—A(")x(o)—kBi i =1, 2 two equivalent
L-order standard linear systems. Then the linearized systems are feedback equivalent.

Notice that if (4)_,,..., Ay, B%) i = 1,2 are two equivalent systems, then each one
of the pairs of matrices (A;_,,B'), ..., (A3, B') is feedback equivalent to the pair
(42 |,B?), ..., (A2, B?) respectively. Then, and if necessary we can take systems

(A¢g—1,...,A0, B) where one of the pairs (A¢_1,B), ... or (A, B) is in a canonical
reduced form (Kronecker reduced form, for example).
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3. Controllability. We can apply controllability results about linear systems
and we obtain the following proposition.

PROPOSITION 3.1. Let 20 = A;_1z Y + ...+ Agz® + Bu be a L-order linear
system. The linearized systems X = AX + Bu is controllable, if and only if,

(3.1) rank ( 8L, — st 144 1 —...—sA1 — Ay B )=n, Vs € C

Proof. Tt is well known that, the system X = AX + Bu is controllable, if and
only if,

(3.2) rank ( sl;n—A B ) =/In, Vs e C

making row and column elementary transformations to the matrix ( sl;n — A B)
we have

sl —I, 0 0 0 0

0 sl I, ... 0 0 0
rank =

0 0 0 sl —I, 0

—Ao —A1 —A2 —Ag_g SIn - Ag_l B
(3.3) 0 I, 0 0 o
0 0 I, 0 0
rank :
0 0 0 ... I, 0
Slln—sl_lAg_l—...—sAl—Ao 0 0 0 B

a

It is not difficult to prove that for some particular cases we have the following
results for second-order linear systems
PROPOSITION 3.2.
1.- Case Ay = 0. The linearized system is controllable if and only if the pair of
matrices (Ao, B) is controllable.
2.- Case Ag = 0. It is not difficult to prove that the linearized system is control-
lable if and only if n > m and the matriz B has full rank
Let (0 = A1z 4. .+ Agz(® + Bu be a f-order system where the linearized
system X = AX + Bu being controllable, then it is well known that, there exists a
control uy = u—F;_12&Y 4. .+ Fy2(9, such that the linear equation X = AX +Bu,
26" (¢)

2E=1)0(®)

the Z-order equation, we have that the f-order equation has a stable solution.

has a stable solution ( ) Taking into account that :c(()o) (t) is a solution of

4. Standardizable systems. Now, we are interested in the kind of (£ + 2)-
ples (E, A¢_1,...,Aq, B) which there exist a matrix F in such a way E + BF being
invertible, that induce to consider the following equivalence relation generalizing 2.1

DEFINITION 4.1. Two (£+2)-ples (E*, A} _,,..., A}, BY), i = 1,2, are equivalent
if and only if there exist matrices P € Gl(n;C), Q € Gl(m;C) and F; € M, x,(C)
1=0,...,¢, such that

E? = P_IEIP-}-P_IBFg,
A} , =P 'A{P+ P 'B'Fp_,,
(4.1) :

A2 =Pl4lP+ P B'R,
B2 = P-1BL(Q.
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or in a matrix form

0 I, ... 0 0 0
0o 0 ... I, 0 0 -
s Az A2 .. A2 E? B?
2) b 0 0o I, ... 0 0 0 P ... 0 0
0 P 0 0 ... I, 0 0 0 ... P O
AL Al .. AL, E' B F, ... F, Q

Like as for (£ + 1)-ples we have that if (E?,A}_|,..., A, B') i = 1,2 are two
equivalent generalized linear systems, then each one of the pairs of matrices (E*, Bl),
(A}_1,B'), ... and (A}, B') are feedback equivalent to the pairs (E?, B?), (A7 ,, B?),
...and (A9, B?) respectively. Then, and if necessary we can take systems (E, Ay 1, ...,
A, B) where one of the pairs (E, B), (A¢_1,B), ... or (Ao, B) is in a canonical reduced
form (Kronecker reduced form, for example).

LEMMA 4.2. Let (E', A} |,...,A},B") be a (£+2)-ple with E invertible. Then,
for any (£+2)-ple (E*, A2 |,..., A3, B?) equivalent to it, there exists a matriz F such
that E? + B2F is invertible.

Proof. The equivalence relation ensures that £> = P"'E'P+P~'B'F, and B> =
P~'B'Q. Then E? — B2Q 'F, = P 'E'P is invertible. So, taking F = —Q 1 F} the
matrix E? 4+ B?F is invertible. O

LEMMA 4.3. Let (E', A} ,,..., A}, B') be a (£ + 2)-ple such that there ezists a
matriz Fy with E* + B Fy invertible. Then, for any ((+2)-ple (E®, A2 ,,..., A}, B?)
equivalent to it, there exists a matriz F such that E? + B2F is invertible.

Proof. Obviously the £ + 2-ple (E' + BFy, A}_,,..., A}, B*) is equivalent to
E' A}_,,..., A}, B!, so it is equivalent to E? A7 ,,..., A2, B?. Now it suffices to
apply the previous lemma. 0

THEOREM 4.4. A (-order generalized system Ez® = A, 12D 4. 4+ 4oz +
Bu may be standardized by a l-order derivative feedback if, and only if, the matriz
( E B) has full rank.

Proof. Lemma before permit us to consider an equivalent /-order generalized
system where the pair (E, B) is in its Kronecker reduced form. O

Ezample: Let (E,A¢_1,...,As,B) be a (£ + 2)-ple with £ = ( _11 _11 ) and

1
Then there exists Fy (we can take F; = ( 1 0 )) such that E + BFy is an invertible
matrix and the second-order generalized system can be standardized.
Remark We observe that to ensure standardization it suffices to consider £-derivative
feedback in the form u; = u + Fyzf. But it is not sufficed to ensure stable solution,
as we can see in the following example

Ezample: Let Ez(Y) = Az + Bu with E = ( 00 ), A= (

1
B = ( ) The pair (E, B) is in such a way that all its eigenvalues are non-zero.

2 0

01 1 3

) and B =
( (1) ) Taking F; = ( 1 0 ) we have that E + BF; = I. Then, the standardized

system is 1) = Az + Bu. The eigenvalues are A\; = 2, Ay = 3, so the matrix A is not
stable, but if we consider the control uy = u+Fiz() —Foz with Fy = ( =2 -4 ),
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the eigenvalues of the system z(!) = (E + BF,)"Y(A+ BFy)z + (E + BF,) ' Bu, are
%, 3 and the matrix (E 4+ BFy)"'(A 4+ BF) is stable.
Notice that the linearized standardized system is controllable.

5. Controllability of standardized /-systems. The last example in §4, in-
duce us to study the controllability of standardized ¢-order systems, and we ask if it is
possible to know something about controllability, directly from the ¢-order generalized
system. We have the following proposition.

PROPOSITION 5.1. Let Ez'Y = A;_12¢D + ...+ A1z() + Agz + Bu a stan-
dardizable (-order system. The standardized system is controllable if and only if

(5.1) rank ( s'E — s 1Ay —...—s41 -4 B )=n, Vs € C.

Proof. The standardized system
(5.2) ' = (E+ BF,) "Aq_12" Y + ...+ (E+ BF,) ‘A1z + (E+ BF,;) " "Ao + (E + BF,) " 'Bu

is controllable if and only if

(5.3) rank ( s'I, — s* Y (E+ BF,)"'A; — ... - (E+BF,)"'Ay (E+BF,)"'B )=n, VseC
But
( str, — 54*1(E +BF,)'4,—...— (E+ BF,)"'4, (E+BF,)"'B ) =
(5.4) _ _ I 0
(E—}—BF[) l(le—Se lAg_l_---_SAl_AO B) Sf%‘[ I,
ad

As a consequence we obtain the following theorem.
THEOREM 5.2. Let Fxt = A;_12Y + ...+ Az + Bu be a l-order linear
equation with

(5.5) rank ( E B )=n

rank ( s'E—s*"'4, 1 —...—sAi— Ay B )=nVseC
Then, there exists a control u; = u + Fpz'® — Fy_12%=1 — .. — Fyz°, such that the
equation Ex® = A, 121 4+ 4+ Az + Buy has a stable solution.
Remark: Theset S = {sg € C;rank ( s5E —s{ "Ap 1 —... — 8041 — Ay B )<

n} is invariant under equivalence relation considered.
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