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1 Introduction

Solving large sparse symmetric positive definite systems Az = b of linear equations
is a crucial and time-consuming step, arising in many scientific and engineering
applications. Consequently, many parallel techniques for sparse matrix factoriza-
tion have been studied and implemented; see [11] for a complete survey on high
performance sparse factorization.

In this paper, we focus on the block partitioning and scheduling problem for
high performance sparse LDLT or LLT factorization without pivoting on parallel
architectures; in fact, our strategy is suitable for general distributed heterogeneous
architectures whose computation and communication performances are predictable
in advance.

In order to achieve efficient parallel sparse factorization, we perform three
sequential pre-processing phases:

e The ordering phase, which computes a symmetric permutation of the initial
matrix A such that factorization process will exhibit as much concurrency as possible
while incurring low fill-in. In this work, we use a tight coupling of the Nested
Dissection and Approximate Minimum Degree algorithms [1, 27]. The partition of
the original graph into supernodes is achieved by merging the partition of separators
computed by the Nested Dissection algorithm and the supernodes amalgamated for
each subgraph ordered by Halo Approximate Minimum Degree.

e The block symbolic factorization phase, which determines the block data
structure of the factorized matrix L associated with the partition resulting from
the ordering phase. This structure consists of N column-blocks, each of them con-
taining a dense symmetric diagonal block and a set of dense rectangular off-diagonal
blocks. One can efficiently perform such a block symbolic factorization in quasi-
linear space and time [9]. From the block structure of L, we can deduce the weighted
elimination quotient graph that describes all dependencies between blocks, as well
as the supernodal elimination tree.

e The block repartitioning and scheduling phase, which refines the previous
partition by splitting large supernodes in order to exploit concurrency within dense
block computations, and which maps the resulting blocks onto the processors of the
target architecture (see section 2.2).

There are two main approaches for numerical factorization algorithms: the
multifrontal approach [2, 10, 12, 13, 15, 30], and the supernodal [16, 29, 31, 32]
approach with fan-in or fan-out variations [5, 6, 7, 8. Independently of these
different methods, a static or dynamic scheduling of block computations can be
used in a parallel framework. For homogeneous parallel architectures, it is useful to
find an efficient static scheduling [14, 18, 28]. In this context, this scheduling can
be induced by a fine cost computation/communication model.

The PSPASES solver [21] is based on a multifrontal approach without piv-
oting for symmetric positive definite systems. It uses MEIS [22] for computing
a fill-reducing ordering which is based on a multilevel nested dissection algorithm;
when the graph is separated into p parts, a multiple mininum degree (MMD [25])
is then used. A “subtree to subcube” algorithm is applied to build a static mapping
before the numerical factorization. In [4] the performances of MUMPS [3] and
SUPERLU [23, 24] are compared for nonsymmetric problems. MUMPS uses a mul-
tifrontal approach with dynamic pivoting for stability while SUPERLU is based on a
supernodal technique with static pivoting. The standard ordering used by MUMPS
is the approximate minimum degree (AMD [1]) ordering, while SUPERLU uses the



multiple minimum degree (MMD [25]) ordering. In both cases, a pivot order is
defined by the symbolic factorization stage, but numerical considerations might
prevent strict adherence to this order during numerical factorization. MUMPS can
choose pivots off of the diagonal: the modulus of the prospective pivot is compared
with the largest modulus of an entry in the column and the pivot is only accepted if
this modulus is greater than a threshold value. In the SUPERLU approach, a static
pivoting strategy is used and kept rigorously to the pivot sequence chosen in the
symbolic analysis.

In this paper, we focus on the block partitioning and scheduling problem
for high performance sparse supernodal factorization without pivoting for sym-
metric positive definite systems. Thus, our algorithmic framework is close to the
PSPASES one [21]. We presented in [18, 19, 20] a preliminary version of this work
describing a mapping and scheduling algorithm based on a combination of 1D and
2D block distributions. This algorithm computes an efficient static schedule of the
block computations for a parallel solver based on a supernodal approach with total
agregation of contribution blocks, such that the parallel solver is fully driven by
this scheduling. This can be done by very precisely taking into account the com-
putational costs of the BLAS 3 primitives, the communication cost and the cost
of local aggregations. Our study was suitable for homogeneous parallel /distributed
architectures whose performances are predictable.

To solve 3D problems with more than 10 millions of unkowns, which is now a
reachable challenge with new SMP supercomputers, we must keep a good scalability
and control memory overhead due to agregation. In this context, we present two
major improvements. The first one consists of taking into account heterogeneous
architectures and more particulary those based on SMP nodes like the IBM SP3.
Our communication model, used during the static scheduling and mapping step, is
extended to manage both data exchanges by shared memory (less costly) and data
exchanges by network (more costly). The second improvement is an adaptation
of our static computation and communication scheduling algorithm to anticipate
the sending of partially aggregated blocks in order to free memory dynamicaly. By
doing this, we are able to divide the aggregated memory overhead while keeping
good performance, and many experiments have shown that aggregated memory
reduction is acceptable, up to 50%, in term of time penalty [17]. Another natural
consequence of this improvement is that we can build accurately the memory access
scheme for blocks. So we can prefetch the block access during the computation
and communication scheduling with a compatible order. This allows an efficient
implementation of an “out-of-core” version of our PASTIX solver.

The paper is organized as follows. In section 2 we introduce the algorithmic
framework for our parallel sparse symmetric factorization before describing our
block repartitioning and scheduling algorithm. Section 3 provides many numerical
experiments on an IBM SP3 for a representative class of large sparse matrices
from industrial problems, including performance results and analysis, for the LLT
Cholesky factorization. In section 4, we present our solutions to control memory
overhead. Finally, we conclude with some prospects of our future work.



2 Description of algorithms
2.1 Parallel factorization algorithm

Let us consider the block data structure of the factorized matrix L computed by
the block symbolic factorization. Recall that each of the N column-blocks holds
one dense diagonal block and some dense off-diagonal blocks. Then we define the
two sets: BStruct(Lg«) is the set of column-blocks that update column-block k,
and BStruct(L.y) is the set of column-blocks updated by column-block & (see [17,
18, 19, 20] for details).

Let us now consider a parallel supernodal version of sparse factorization with
total local aggregation: all non-local block contributions are aggregated locally in
block structures. This scheme is close to the Fan-In algorithm [8] as processors com-
municate using only aggregated update blocks. These aggregated update blocks,
denoted in what follows by AUB, can be built from the block symbolic factoriza-
tion. These contributions are locally aggregated before being sent. The proposed
algorithm can yield 1D (column-block) or 2D (block) distributions [17, 19]. Block
computations can be classified in four types, and the associated tasks are defined
as follows: Vk,1 < k < N,Vi,j € BStruct(L.t),i > j,

- COMP1D(k) : factorize the column-block k and compute all the contributions for
the column-blocks in BStruct(L.k)

- FACTOR(X) : factorize the diagonal block k

- BDIV(j,k) : update the off-diagonal block j in column-block k

- BMOD (i, j,k) : compute the contribution of the block i in column-block k for block
1 1n column-block j.

2.2 Partitioning and mapping phase

Before running the general parallel algorithm reintroduce above, we must perform
a step consisting of partitioning and mapping the blocks of the symbolic matrix
onto the set of processors. The partitioning and mapping phase aims at computing
a static regulation that balances workload and enforces the precedence constraints
imposed by the factorization algorithm; the block elimination tree structure must
be used there.

Our main algorithm is based on a static regulation led by a time simulation
during the mapping phase. Thus, the partitioning and mapping step generates a
fully ordered schedule used in the parallel factorization. This schedule aims at stat-
ically regulating all of the issues that are classically managed at runtime. To make
our scheme very reliable, we estimate the workload and message passing latency
by using a BLAS and communication network time model, which is automatically
calibrated on the target architecture.

Unlike usual algorithms, our partitioning and distribution strategy is divided
in two distinct phases. The partition phase splits column-blocks associated with
large supernodes, builds, for each column-block, a set of candidate processors for
its mapping, and determines if it will be mapped using a 1D or 2D distribution.
Once the partitioning step is over, the task graph is built. In this graph, each task
is associated with the set of candidate processors of its column-block. The mapping
and scheduling phase then optimally maps each task onto one of these processors.

The partitioning algorithm is based on a recursive top-down strategy over the
block elimination tree provided by block symbolic factorization. Pothen and Sun
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presented such a strategy in [28]. Our algorithm starts by splitting the root and
assigning it to a set of candidate processors @) that is the set of all processors.
Given the number of candidate processors and the size of the supernodes, it chooses
the strategy (1D or 2D) that the mapping and scheduling phase will use to dis-
tribute this supernodes. Then each subtree is recursively assigned to a subset of @)
proportionally to its workload.

Once the partitioning phase has built a new partition and the set of candidate
processors for each task, the election of an owner processor for each task falls to the
mapping and scheduling phase. The idea behind this phase is to simulate parallel
factorization as each mapping comes along. Thus, for each processor, we define a
timer that will hold the current elapsed computation time, and a ready task heap.
At a given time, this task heap will contain all tasks that are not yet mapped, that
have received all of their contributions, and for which the processor is a candidate.
The algorithm starts by mapping the leaves of the elimination tree (those which
have only one candidate processor). After a task has been mapped, the next task
to be mapped is selected as follows: we take the first task of each ready task heap
and choose the one that comes from the lowest node in the elimination tree. The
communication pattern of all the contributions for a task depends on the already
mapped tasks and on the candidate processor for the ownership of this task. The
task is mapped onto the candidate processor that will be able to compute it the
soonest.

As a conclusion about the partitioning and mapping phase, we can say that
we obtain a strategy that allows us to take into account, in the mapping of task
computations, all the phenomena that occur during the parallel factorization. Thus
we achieve a block computation and communication scheme that drives the parallel
solver efficiently.

2.3 Modeling for clusters of SMP nodes

Another important point is that our strategy can take into account heterogenous
architecture. For example, in the case of an architecture based on SMP nodes, the
time to send an AUB from a processor p; to a processor ps is estimated using the
intra-node communication model if p; and py; belong to the same SMP node, or
using the extra-node communication model if p; and ps belong to different SMP
nodes.

However, it is important to take into account that the startup and the band-
width of a communication depend on the number of simultaneous sends performed
inside a same SMP node. Our algorithm does not allow us to know the number of
simultaneous communications performed inside a same SMP node, so we introduce
a communication model that define the startup and the bandwidth as a function of
the number of candidate processors assigned to a supernode of the elimination tree.
We consider that if m candidate processors are assigned to a supernode, there are
m/2 simultaneous communications in average.

3 Run-time performances

All of the algorithms described in this paper have been integrated in the PASTIX
software [18, 19], based on libraries that make use of version 3.4 of the SCOTCH
static mapping and sparse matrix ordering software package [26], both developed
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at LaBRI and in the ScAlApplix ! INRIA project.

The parallel experiments were run on an 28 NH2 nodes (16 Power3+/375Mhz,
1.5Gflops, 16Go) located at CINES (Montpellier, France) with a network based on
a Colony switch. All computations are performed in double precision and all time

results are given in seconds. In all the following tables, the symbo

1 “_”

the time measurments are not significant due to memory swapping.

is used when

NNZL

| Name | Columns | NNz, | NNZL | oPC | T2 | Description |

GRID1023 1046529 | 4179980 | 5.6157086+07 | 2.083481e+10 | 2.69e-3 | 2D Mesh
CUBE39 59319 730778 | 2.210534e+07 | 2.240674e+10 | 0.99e-3 | 3D Mesh
CUBEA47 103823 | 1290898 | 4.828456e+07 | 6.963850e+10 | 0.69¢-3 | 3D Mesh
BCSSTK32 14609 985046 | 5.230146e+06 | 1.1629006+09 | 4.50e-3 | Ruth-Boeing
BBMAT 38744 1274141 1.716094e+407 1.250040e+10 1.37e-3 Ruth-Boeing
TOOTH 78136 152501 | 1.031143e+07 | 6.267094e+09 | 1.6d6-3 | 3D Mesh
OCEAN 143437 409593 | 2.029997e+07 | 1.301477e+10 | 1.56e-3 | 3D Mesh
M14B 214765 | 1679018 | 6.236747e+07 | 6.112540e+10 | 1.02e-3 | 3D Mesh
OILPAN 73752 | 1761718 | 8.012337¢106 | 2.084044e+09 | 2.08¢-3 | PARASOL
QUER 50122 | 1403689 | 9.118592e+06 | 3.280680e+09 | 2.78e-3 | PARASOL
INVEXTR1 30412 906915 | 7.256566e+06 | 3.766788e+09 | 1.93¢-3 | PARASOL
SMDOOR 162610 | 3873534 | 2.541937e+07 | 1.530774e+10 | 1.66e-3 | PARASOL
SHIP001 34920 | 2304655 | 1.427916e+07 | 9.033767e+09 | 1.58e-3 | PARASOL
X104 108384 | 5029620 | 2.634047e+07 | 1.712902e+10 | 1.54e-3 | PARASOL
MT1 97578 | 4827996 | 3.114873e+07 | 2.109265e+10 | 1.48e-3 | PARASOL
BMW3_2 227362 | 5530634 | 4.420244e+07 | 3.007981e+10 | 1.47e-3 | PARASOL
MIXTANK 29957 982542 | 9.280247e+06 | 7.316933e+09 | 1.26e-3 | PARASOL
BMWCRA _1 148770 | 5247616 | 6.597301e+07 | 5.701988e+10 | 1.16e-3 | PARASOL
CRANKSG1 52804 | 5280703 | 3.142730e+07 | 3.007141le+10 | 1.05e-3 | PARASOL
SHIPSECS 114919 | 3269240 | 3.572761e+07 | 3.684269e+10 | 0.97e-3 | PARASOL
CRANKSG2 63838 | 7042510 | 4.190437e+07 | 4.602878e+10 | 0.91e-3 | PARASOL
SHIPSEC5 179860 | 4966618 | 5.649801e+07 | 6.952086e+10 | 0.81e-3 | PARASOL
SHIP003 121728 | 3982153 | 5.872012e+07 | 8.008089e+10 | 0.73e-3 | PARASOL
THREAD 20736 | 2220156 | 2.404333e+07 | 3.884020e+10 | 0.62e-3 | PARASOL
COLOGB30 30373 | 1394202 | 7.849464e106 | 4.350803¢+00 | 1.80e-3 | 3D Cologne
COLOGBT75 50208 | 3473292 | 2.248613e407 | 1.532035e+10 | 1.47e-3 | 3D Cologne
COUP1500T 994983 | 6.93e+07 5.22e-+08 3.80e+11 | 1.38¢-3 | 3D Coupole
COUP2000T 1326483 | 9.24e+07 6.89e-+08 5.0le+11 | 1.38¢-3 | 3D Coupole
COUP3000T 1989483 | 1.38e+08 1.04e+09 7.60e+11 | 1.37e-3 | 3D Coupole
COUP5000T 3315483 | 2.31e+08 1.73e+09 1.27e+12 | 1.36e-3 | 3D Coupole
COUPS000T 5304483 | 3.69e-+08 2.78e+09 2.03e+12 | 1.37e-3 | 3D Coupole
COUP40000T || 26520483 | 1.85¢+09 1.50e+10 10.8e+12 | 1.39e-3 | 3D Coupole

Table 1. Description of our test problems.

NNZy is the number of off-

diagonal terms in the triangular part of matriz A, NNZi, is the number of off-
diagonal terms in the factorized matrizx L and OPC' is the number of operations
required for the factorization. Matrices are sorted in decreasing order of Ag}’)ZCL
which is a measure of the potential data reuse [23].

Our experiments are performed on a collection of sparse matrices from the
Rutherford-Boeing Collection, from the PARASOL ESPRIT Project and from CEA
(3D Cologne, Coupole). The almost part of theses matrices are structural mechanics
and CFD matrices. The values of the associated measurements in Table 1 come from
scalar column symbolic factorization.

We can see that we obtain a rather good scalability for all the test problems.
In most large cases, the efficiency results are better than those obtained on IBM
SP2 [20] and this shows that our technics are well suited for SMP architectures.
Hence, the factorization of the COUP8000T matrix reached around 100 Gflops on
128 processors, so about 50% of the peak performance.

Lhttp://www.labri.fr/scalapplix



Name [ Number of processors |

| 6 [ 32 [ 64 [ 128 |
GRID1023 2.59 (8.03) | 1.72 (12.11) | 1.18 (17.58) 94 (21.93)
CUBE39 2.59 (8.62) | 1.87 (11.91) | 1.58 (14.15) | 1.58 (14.11)
CUBEA47 7.08 (9.83) | 4.94 (14.07) | 3.91 (17.80) | 3.34 (20.84)
BCSSTK32 -30 (3.76) 25 (4.54) 24 (4.71) 25 (4.58)
TOOTH 1.23 (5.06) 87 (7.18) 84 (7.45) .82 (7.59)
OCEAN 2.41 (5.38) 1.41 (9.19) | 1.04 (12.39) .97 (13.37)
M14B 7.00 (8.72) | 4.25 (14.37) | 3.03 (20.15) | 2.70 (22.57)
OILPAN 44 (6.66) 37 (8.05) 32 (9.28) 29 (10.29)
QUER .52 (6.27) .42 (7.76) .39 (8.21) .37 (8.66)
INVEXT .76 (4.89) .54 (6.88) .52 (7.18) .56 (6.61)
SHIP001 1.06 (8.50) .70 (12.74) .59 (15.28) .55 (16.19)
X104 1.83 (9.35) | 1.8 (12.33) | 1.16 (14.72) | 1.22 (14.03)
MT1 1.91 (11.03) | 1.24 (16.96) | 1.04 (20.14) .94 (22.42)
BMWS3 3.30 (9.11) | 2.23 (13.47) | 1.69 (17.70) | 1.46 (20.48)
MIXTANK 1.20 (6.07) 1.14 (6.38) 1.12 (6.49) 1.13 (6.42)
BMWCRA1 4.84 (11.76) | 2.90 (19.29) | 1.83 (29.72) | 1.48 (37.31)
CRANKSEG1 3.08 (9.73) | 1.91 (15.70) | 1.58 (19.02) | 1.29 (23.17)
SHIPSECS 4.56 (8.07) | 3.64 (10.10) | 2.73 (13.48) | 2.50 (14.71)
CRANKSEG2 3.97 (11.58) | 2.45 (18.73) | 1.93 (23.78) | 1.59 (28.93)
SHIPSEC5 6.26 (11.09) | 4.43 (15.68) | 3.33 (20.82) | 3.03 (22.87)
SHIP003 7.20 (10.28) | 4.82 (16.59) | 3.49 (22.89) | 2.84 (27.78)
THREAD 4.16 (9.33) | 3.12 (12.41) | 2.77 (13.98) | 2.40 (16.14)
COLOGB30 57 (7.54) ~45 (9.50) -39 (10.92) 38 (11.24)
COLOGBT75 1.72 (8.88) | 1.11 (13.73) .87 (17.50) .86 (17.79)
COUP1500T 28.71 (13.22) | 15.88 (23.91) | 7.94 (47.81) | 4.92 (77.15)
COUP2000T 40.52 (12.36) | 19.67 (25.46) | 9.93 (50.43) | 5.80 (86.32)
COUP3000T - 29.48 (26.06) | 16.36 (46.96) | 8.67 (88.59)
COUP5000T - - 26.49 (49.50) | 14.15 (92.57)
COUP8000T - - 42.65 (49.00) | 22.49 (92.93)

Table 2. Factorization performance results (time in seconds and Gi-
gaflops) on IBM SP3 in double precision.

Name Columns NNZa NNZ OPC [ Number of processors |
[ 356 [ 512 [ 768 |
[[COUP40000T || 26.56+06 | 1.856+09 | 1.50e+10 | 108e+12 | 34 | 27 | 20 |

Table 3. Factorization performance results in seconds on AlphaServer.

Other experiments were run on the parallel computer at CEA (France). This
supercomputer is an Compaq AlphaServer SC with 660 nodes ES45 (four EV7
at 1Ghz and 1Go per processor). The factorization times are closed from those
obtained on the IBM SP3. On our largest problem (see table 3), we reach 500
Gflops on 768 processors, so about 50% of the peak performance.

4 Memory Aspects

In the previous sections, we have presented a mapping and scheduling algorithm for
clusters of SMP nodes and we have shown the benefits on run-time performances
of such strategies. In addition to the problem of run-time performances, another
important aspect in the direct resolution of very large sparse systems is the great
memory requirements usually needed to factorize the matrix in parallel. These
memory requirements can be caused by either the structures needed for communi-
cation (the AUB structures in our case) or by the matrix ccefficients themselves.
To deal with those problems of memory management, our statically scheduled
factorization algorithm can take advantage of the determinist access (and allocation)
pattern to all data stored in memory. Indeed the data access pattern is determined
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by the computational task ordering that drives the access to the matrix coefficient
blocks, and by the communication priorities that drive the access to the AUB struc-
tures. In the next section, we present two ways of using this predictable data access
pattern:

e the first one consists in reducing the memory used to store the AUB by allow-
ing some AUB still uncompleted to be sent in order to temporaly free some
memory. In this case, according to a memory limit given by the user, the AUB
access pattern is used to determined which partially updated AUB should be
sent in advance to minimize the impact on the run-time performance;

e the second one is applied to an “out-of-core” version of the parallel factoriza-
tion algorithm. In this case, according to a memory limit given by the user,
we use the coefficient block access pattern to reduce the I/O volume and to
anticipate I/O calls.

4.1 Reducing the memory overcost by using partial agregate
technique

A critical point in industrial large-scaled applications can be the memory over-
cost caused by the structures related to the distributed data managment and the
communications.

In the case of the supernodal factorization with total agregation of the contri-
butions, this overcost is mainly due to the memory needed to store the AUB until
they are entirely updated and sent. Indeed, an agregated update block AUB is an
overlapping block of all the contributions from a processor to a block mapped on
another processor. Hence an AUB structure is present in memory since the first
contribution is added within, and is released when it has been updated by its last
contribution and actually sent. In some case, particulary for matrices issued from
3D problems, the amount of memory needed for the AUB still in memory can be-
come important compared to the memory needed to store the matrix ceefficients.
The table 4 shows the average percentage of memory needed to store the AUBs
compared to the local matrix ccefficients. As shown, this percentage is very high
and increases with the number of processors, particulary for the cases issued from
3D meshes (CUBE47, SHIP003, BMWCRA1).

[ I Number of processors |
I

[ Name 16 | 32 | 64 | 128 |
THREAD 264.0 | 325.5 | 366.0 | 172.2
SHIP003 95.0 | 129.5 | 205.9 | 330.9
CUBEA47 103.7 | 233.5 | 332.8 | 344.9
BMWCRAL || 9.1 23.2 | 414 | 55.0

Table 4. Percentage of memory needed for AUB storage compared to mem-
ory needed for the matriz cefficients in the factorized matrix.

A solution to address this problem is to reduce the number of AUBs simul-
taneously present in memory. Then, the technique consists in sending some AUBs
partially updated before their actual completion and then temporaly save some
memory until the next contribution to be added in such AUB. This method is
called partial agregation.
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The partial agregation induces a time penalty compared to the total agregation
due to more dynamic memory reallocations and to an increased volume of commu-
nications. Nevertheless, by using the knowledge of the AUB access pattern and the
priority set on the messages, one can minimize this overcost.

Indeed by using the static scheduling, we are able to know by following the
ordered task vector and the communication priorities, when an allocation or a deal-
location will occur in the numerical factorization. That is to say that we are able
to trace the memory consumption along the factorization tasks without actually
run it. Then, given a memory limit set by the user, the technique to minimize the
number of partially updated AUBs needed to enforce this limitation is to choose
some partially updated AUBs among the AUBs in “memory” that will be updated
again the later in the task vector. This is done whenever this limit is overtaken in
the logical traversal of the factorization task vector.

The figure 1 shows the time penalty observed for 4 test problems with different
levels of AUB memory constraint. That stresses the interest of the partial agregation
technique; there is a fine trade-off between run-time performances provided by the
total agregation strategy and the low memory overcost provided by an agregation-
free algorithm. These results show that the memory reduction is acceptable in
terms of time penalty up to 50% extra-memory reduction. As we can see, an extra-
memory reduction about 50% induces a factorization time overhead between 2.7%
and 28.4% compare to the time obtained with total agregation technique. In that
context, our extra-memory management leads to a good memory scalability.
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Figure 1. Percentage of time penalty / percentage of memory overhead reduction.



Futhermore, this technique allows us to factorize the AUDI matrix (3D prob-
lem from PARASOL collection with more than 5 Tflop which is a difficult problem
for direct methods in terms of memory overhead) in 188s on 64 Power3 processors
with a reduction of 50% of memory overhead (about 28 Gflops).

4.2 High performance “Out-Of-Core” technique

An “Out-of-Core” version consists in storing only the data needed for current com-
putations. This technique suits naturally to our algorithm: indeed, as mentioned
in the previous section, the data access pattern can be deduced from the computa-
tional task scheduling. It is commonly known that the time to read a block on disk
will be more expensive than the time to compute the task associated to this block.
So, the performance of the “Out-of-Core” factorization will strongly depend on the
I/0 volume. The aim of this study is to provide an efficient prefetch algorithm for
asychronous I/O as well as to reduce the volume of data exchanges between disk
and memory. We only consider an “Out-of-Core” version of the total agregation
strategy. Indeed, the reception of a partially updated AUB requires to load a block
from disk that is useless for the current computation.

During computation of the column-block &, the “Out-of-Core” algorithm needs
to take into account both access to:

- column-blocks of the local matrix in BStruct(Lqy),
- the AUB structure needed to add contributions from column-block & for column-
blocks mapped on other processors.

To reduce the swap of blocks between disk and memory, if we need to free
memory, we will choose to swap a block that will be re-accessed the later during
the factorization. Using our static scheduling and an algorithm similar to the one
used for the partial agregation, we apply this criteria to build the best scheme to
swap data.

5 Concluding remarks

In this paper, we have presented an efficient distribution scheme and the induced
static scheduling of the block computations for a parallel sparse supernodal direct
solver. We performed numerical experiments on various test problems with more
than 107 unknowns and we have explain how to use this static scheduling to control
the memory overhead inherent to direct methods.

We think that we have reached good performances for a generic MPI based
implementation on a shared nothing environnement. In order to fully take advan-
tage of clusters of SMP nodes, we plan to apply our algorithm to an MPI/thread
implementation. In this version, all processors in a same SMP node will share
the local part of the matrix distributed per node. This will allow to substitute all
communications within a node by direct memory copies and to perform agregation
of contributions per node. Communications inside a node will be suppressed and,
in the same time, the number of communication between nodes will be strongly
reduced.
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