A Parallel Direct Linear
Equation Solver for
Nonsymmetric
Tridiagonal Matrices *

Y. Yamamoto', M. Igai, and K. Naono®

1 Introduction

The problem of solving linear simultaneous equations with a tridiagonal coefficient
matrix arises in many areas of scientific computing. Typical applications include
computation of eigenvectors of a tridiagonal matrix by the inverse iteration method,
solution of a partial differential equation by the ADI method and interpolation by
spline functions. When the size of the matrix is large, it is appropriate to accelerate
the solution with the use of parallel computers. Many approaches for the parallel
solution of tridiagonal matrices have been proposed so far, including the dissection
method [4], the cyclic reduction method [6][8] and a method based on the QR
decomposition [10].

In the cyclic reduction method, the odd-numbered variables in the equations
are eliminated first and the number of equations is reduced by half. This proce-
dure is repeated until the number of equations is sufficiently small. This method
has a large degree of parallelism and has been successfully implemented on vector
processors [7]. Also, extensions to block tridiagonal matrices [8] and band matrices
[12] have been proposed. In this method, however, the order in which the variables
are eliminated is predetermined and pivoting for numerical stabilization cannot be
incorporated. This makes it difficult to apply this method to general nonsymmetric
tridiagonal matrices.

*The authors are grateful to Dr. Sigeo Ihara for providing us with the opportunity to start this
study and to Dr. Yasuhiro Inagami, Dr. Satoshi Itoh and Mr. Nobubhiro Ioki for kind support.

tCentral Research Laboratory, Hitachi Ltd.

tHitachi ULSI Systems Corp.

$Central Research Laboratory, Hitachi Ltd.

The dissection method is based on the Cholesky decomposition and extracts
the parallelism in the elimination operation by renumbering the variables and equa-
tions [4]. It can be extended to nonsymmetric tridiagonal matrices by using the LU
decomposition instead of the Cholesky decomposition. However, because the order
of variable elimination is fixed also in this method, the type of matrices to which it
is applicable is limited to symmetric positive definite matrices or diagonal dominant
matrices.

The approach based on the QR decomposition [10], on the other hand, can
be applied to general nonsymmetric tridiagonal matrices. However, it is known
that the QR decomposition also needs pivoting to produce accurate solution when
the matrix is nearly singular [11]. Hence, the applicability of this method without
pivoting is also limited.

In this paper, we propose a new parallel direct solver for nonsymmetric tridi-
agonal matrices. Our method is a variant of the dissection method that can in-
corporate partial pivoting and can solve linear simultaneous equations with general
nonsymmetric tridiagonal coefficient matrices on parallel machines efficiently and
accurately.

A parallel direct solver for nonsymmetric tridiagonal matrices with pivoting
has also been proposed in [9]. However, in this method, there is a tradeoff between
the ratio of the sequential part in the algorithm and the number of interprocessor
synchronizations. More specifically, if we denote the number of columns that have to
be eliminated sequentially by 2r and the number of interprocessor synchronizations
by ¢, pq is equal to the matrix size N. In contrast, our method has the advantage
that it needs only one interprocessor synchronization and the number of columns
that have to be eliminated sequentially is independent of N.

The paper is organized as follows: In section 2, we briefly review the conven-
tional dissection method applied to tridiagonal matrices along with the difficulty
arising in the case of nonsymmetric matrices. Our new parallel direct solver which
incorporates partial pivoting is introduced in section 3. Numerical results on the Hi-
tachi SR8000, a shared-memory parallel computer with 8 processors, can be found
in section 4. Concluding remarks are given in the final section.

2 The Dissection Method and Its Limitation

2.1 Tridiagonal solver based on the dissection method

We consider a problem of solving a linear simultaneous equation Tx = b, where
T is a nonsymmetric tridiagonal matrix of order N. In the dissection method, we
first transform T to T' = PT P! with a permutation matrix P and then solve a new
equation (PTP!)(Px) = Pb by Cholesky decomposition. P is determined so that
the parallelism in the decomposition phase is maximized.

As is well known [4], a matrix A with symmetric nonzero pattern can be
represented by a non-directed graph G4. G4 has N vertices that correspond to
rows of A and G4 has an edge between two vertices ¢ and j if and only if A;; # 0.
The graph Gr corresponding to 7' is a chain, as shown in Fig. 1(a). We can identify
the simultaneous permutation of rows and columns 7' = PT P! with renumbering

of GT.

To solve Tx = b on a parallel computer with p processors using the dissection
method, we divide G into p subregions and p — 1 boundary vertices. Then we
renumber the vertices so that the vertices in the first subregion are numbered first,
those in the second subregion are numbered second, and so on, and the p — 1
boundary vertices are given numbers from N —p + 2 to N. The graph G with
new vertex numbers is shown in Fig. 1(b) for the case of p = 3. Here, the boundary
vertices are represented by shaded circles.

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
(OO 00 00 000 00 0 0 0 0_0_0_0_0_0]

(a) natural ordering

1 2 3 45 619 7 8 9 10 11 12 20 13 14 15 16 17 18
OO OO O O O O O O O Q== O O O=O=O0=O

(b) reordering by the dissection method

Figure 1. A graph associated with a tridiagonal matriz.

By applying the corresponding permutation of rows and columns to 7', we
obtain a matrix shown in Fig. 2. It can be seen from the figure that the original
tridiagonal matrix 7' is transformed into a bordered block diagonal matrix with
three diagonal blocks. When pivoting is not used, the Cholesky decomposition
of each diagonal block can be performed independently. Thus we can solve the
tridiagonal equation Tx = b in parallel using p processors.

2.2 Problems in the case of nonsymmetric matrices

When solving linear simultaneous equations with nonsymmetric coefficient matrix
using direct methods, it is in general necessary to perform pivoting to ensure accu-
racy and numerical stability [5]. The most commonly used method for pivoting is
the partial pivoting, which chooses the element in the pivot column with the largest
modulus as the pivot element. In this subsection, we study how the parallelism in
the dissection method for Tx = b is affected when the partial pivoting is introduced.

Assume we apply Gaussian elimination with partial pivoting to a matrix shown
in Fig. 2. The nonzero pattern after the first 6 columns (which corresponds to the
vertices in the first subregion in the graph of Fig. 1(b)) have been eliminated is
shown in Fig. 3. The actual nonzero pattern depends on the sequence of the row
numbers of the pivot elements chosen; ¢ = (n1,ns,...,ng), where : < n; < N. The
nonzero pattern displayed in the figure is the union of nonzero patterns over all
possible ¢’s. In the figure, the elements modified by the elimination operation are
denoted by squares with oblique lines, while the elements generated by fill-ins are
denoted by black squares.

From the figure, we can see that the element in the 7th column and the
2nd row from the last has been modified due to the elimination. However, in the
elimination of the 7th column, this element is one of the candidates of the pivot
element, because we choose the pivot element from all the elements in the column
below the diagonal. This means that we cannot start the elimination of the 7th

1234567891011121314151617181920 1234567891011121314151617181920
T T T

==

5

EEHG GRRSSS SERRRE ¢2

nonzero modified W fill-in

elements elements
Figure 2. A tridiagonal ma- Figure 3. Nonzero structure
triz reordered by the dissection method. after elimination by the 6th column.

column until the value of this element has been determined, that is, until the first
six columns have been eliminated. Hence introduction of partial pivoting causes
dependence of the elimination operations in the second subregion on those in the
first subregion, thereby destroying the parallelism.

3 A Parallel Tridiagonal Solver with Partial Pivoting
3.1 The basic idea

In this section, we propose a new parallel direct solver for nonsymmetric tridiagonal
matrices that can incorporate partial pivoting. We achieve this by modifying the
reordering scheme in the conventional dissection method.

In the example shown in the previous subsection, the dependence of the elim-
ination operations was caused due to the existence of the nonzero element in the
7th column and the 2nd row from the last. This element is nonzero because the
rightmost vertex in the first subregion is connected with the leftmost vertex in the
second subregion through a boundary vertex (vertex 19 in Fig. 1(b)). In our al-
gorithm, we dissolve this dependence by renumbering the vertices again in each
subregion of Fig. 1(b). More specifically, in each subregion, the vertex numbers of
all the ”purely inner” vertices, which are not adjacent to any boundary vertices, are
decremented by one, and the leftmost vertex in the subregion is given the second
largest number in the subregion. By reordering all the subregions in this manner,
we obtain the numbering of the vertices shown in Fig. 4.

1 2 3 4 5 61911 7 8 9 10 12 20 18 13 14 15 16 17

Figure 4. Reordering of the nodes by the proposed method.

The new matrix corresponding this renumbering is shown in Fig. 5. Because

the leftmost vertex in each subregion is given the second largest number in the
subregion, the element that caused the dependence of elimination operation is moved
to the second last column in the subregion.

3.2 Parallelism in the elimination operation

In Fig. 7, we show the block structure of the nonzero pattern of the matrix shown
in Fig. 5. Here, the columns of the matrix are divided into sets that correspond to
purely inner vertices (A, B and C), inner vertices that are connected to boundary
vertices (the thin column sets right after the sets A, B and C) and the boundary
vertices (the last set). Likewise, the rows are divided into sets that correspond to
three subregions and the boundary vertices. Each block of the matrix is shaded if
there are at least one nonzero element in the block, and is white otherwise.

Now we focus on the column set B. Among the four blocks in B, only the
second one contains nonzero elements and the blocks left to this block contain no
nonzero elements. As a result, the columns in B are not modified by the elimination
of columns left to B, even if partial pivoting is introduced. This means that we can
start elimination of columns in B before elimination of columns in A has been
completed. Similarly, because the only nonzero block in C is the third one and
all the blocks left to this block is zero, the columns in C is not modified by the
elimination of columns left to C. So we can start eliminating columns in C without
waiting for the completion of the elimination of columns in A and B.

Fig. 6 illustrates the nonzero structure of the matrix shown in Fig. 5 after
elimination by the 6th column. As we have explained now, the columns in B (the
Tth to the 10th column) have not been modified by the elimination of the 1st to the
6th columns. By using this new renumbering, we can eliminate the columns in A,
B and C in parallel using 3 processors.

1234567891011121314151617181920 1234567891011121314151617181920
I

} } 1 @1:1':::: 38 } | } @ %z;: =2

element that causes dependence nonzero modified [fill in

in the elimination operation elements elements
Figure 5. A tridiagonal ma- Figure 6. Nonzero structure
trix reordered by the proposed method. after elimination by the 6th column.

In Fig. 8, we show the nonzero structure of the second block in B during
elimination. Here, we consider the situation where there are 12 columns in the set

B and the elimination by the 5th column in the set have been completed. When
we apply Gaussian elimination with partial pivoting to a tridiagonal matrix, it can
be easily seen that fill-ins appear at positions two elements above the diagonal. In
our method, in addition to these, we also have fill-ins in the second last rows and
columns in the block. As a result, the number of elements involved in the elimination
in each step increases from 6 to 12 and the number of pivot candidates increases
from two to three. This almost doubles the number of arithmetic operations and it
is the price we have to pay for parallelization.

So far, we have described our algorithm for the case of p = 3. However, it
can be easily generalized to use any number of processors. Our algorithm needs
only one interprocessor synchronization, which occurs when all the ”purely inner”
columns allocated to each processor have been eliminated. The remaining columns,
which correspond to the boundary vertices and vertices adjacent to them, needs
to be eliminated sequentially, but the number of such columns is 3(p — 1) and is
independent of the matrix size V.

1 567 1012 13 1718 20 123456789101112

7]

nonzero modified [fill in

A B C elements elements
Figure 7. Block structure of Figure 8. Nonzero structure
nonzero elements. of block B during elimination.

4 Numerical Results

We implemented our method on the Hitachi SR8000/F1, a shared memory parallel
machine with 8 processors, and compared its performance and numerical accuracy
with that of the conventional methods.

4.1 Parallel performance

To evaluate the parallel performance, we used random tridiagonal matrices whose
elements were extracted from uniform random numbers in [0,1] (matrices of type
(a)). The matrix size N was varied from 500 to 8,000 and the number of processors
p was varied from 1 to 8. We used a sequential tridiagonal solver based on Gaussian
elimination with partial pivoting when p = 1 and used our method when p > 2.

The execution times for the LU decomposition part are shown in Table 1 and
Fig. 9. As can be seen from the table, our method achieves speedup of 5.5 times
compared with the sequential method when N = 8000 and p = 8. It is also faster
than the sequential method when p = 2 or p = 4.

Fig. 10 shows the details of the execution time for the case of p = 8. The
white area and the shaded area denote the execution time for the parallel part
(elimination of the purely inner columns) and the sequential part (elimination of
the remaining columns), respectively. We can see from the graph that the execution
time for the latter is almost constant and its percentage decreases as NN increases.
This is in consistent with the observation we made at the end of subsection 3.2 and
means that the parallel efficiency of our method increases with V.

We also measured the execution times for matrices of type (b) and (c) which
we will define in the next subsection. But here we omit the results because they
were almost the same as those for matrices of type (a).

Table 1. Ezxecution time of the LU decomposition.

Matrix size | Sequential Ours Ours Ours Speedup
N (1PU) (2PU) (4PU) (8PU) (8PU)
500 3.26E-4 2.04E-4 1.85E-4 2.58E-4 1.26
1000 6.24E-4 3.49E-4 2.66E-4 3.05E-4 2.04
2000 1.21E-3 6.63E-4 4.32E-4 3.84E-4 3.15
4000 2.44E-3 1.32E-3 T7.42E-4 5.48E-4 4.45
8000 4.79E-3 2.59E-3 1.38E-3 8.75E-4 5.47
Execution time (sec.) Execution time (sec)
6X1078 1X1073
—a— Sequential method (1PU) 9x10™ —
5X1073 [.
—0— Our method (2PU) 8x10~* —{ [] Parallel part —
—A— Our method (4PU) / . .
- 7X107 | Sequential part -
4X107 [+ o Our method (8PU) [:] d P

6X107 ||
3X1073 5X 1074
/ /:' 4X 107 -
2x1073
///:/ 3X107* -
-4
o M a0

1X107
0 1 L 1 L 0
N=500 N=1000 N=2000 N=4000 N=8000 N=500 N=1000 N=2000 N=4000 N=8000
Matrix size N Matrix size N
Figure 9. FEzxecution time of Figure 10. Details of the exe-

the LU decomposition. cution time.

4.2 Numerical accuracy

Next we compared the accuracy of our method with that of the sequential tridiago-
nal solver with partial pivoting and that of the dissection method without pivoting.
The problems we used are (a) the random matrices which we used in the previous
subsection, (b) random matrices which are the same as (a), except that the diagonal
elements are multiplied by 10~%, and (c) matrices obtained by tridiagonalizing the
Frank matrices A;; = min(¢, j) and subtracting their smallest eigenvalue from the
diagonal elements. Matrices of type (c) arise in the computation of eigenvectors us-
ing the inverse iteration method. The matrix size N was varied from 500 to 8000 as
in the previous subsection, and the accuracy was measured in terms of the residual
I Tx—b .

The residual for the matrices (a), (b) and (c) are shown in Figs. 11, 12 and
13, respectively. It can be seen from the figures that our method achieves higher
accuracy than the dissection method in all cases except for one, which is the N =
2000 case for matrix (c¢). The accuracy of our method is up to two orders of
magnitude higher than the dissection method for matrices of type (b). This suggests
that pivoting is indispensable for matrices which do not have diagonal dominance.
When compared with the sequential Gaussian elimination with partial pivoting, our
method attains much the same accuracy. The results shown in figures 11 and 12
are for a specific seed of the random number generator, but the difference of the
accuracy of the three methods showed almost the same tendency for other values of
the seed. In Fig. 14, we show how the residual changes when the seed of the random
number generator is changed for the case of N = 2000 and matrix type (b). As can
be seen from the graph, the accuracy of our method is almost the same as that of
the sequential method and about two orders of magnitude better than that of the
dissection method. This agrees with the results shown in Fig. 12.

From these numerical results, we can say that our method is a good choice
when one wants to solve general nonsymmetric tridiagonal matrices on parallel
computers efficiently and accurately.

5 Conclusion

In this paper, we proposed a new parallel direct solver for nonsymmetric tridiagonal
matrices that can incorporate partial pivoting. We implemented our algorithm on
one node of the Hitachi SR8000/F1 and obtained speedup of 5.5 times compared
with the sequential tridiagonal solver with partial pivoting when the matrix size is
8000 and the number of processor is 8. The accuracy of our method is almost the
same as that of the sequential solver and is up to two orders of magnitude better than
that of the parallel solver based on the dissection method without pivoting. Our
future work will include implementation of this algorithm on distributed memory
parallel machines and incorporation of this algorithm into real applications such as
the inverse iteration method for eigenvalue computation.

Residual || Tx-b || »

1072
1074 H —&— Sequential method
—1— Our method
10_6 | . .
—a— Dissection method
108
10710
10712
10714
10_16 L L ! ! | E

N=500 N=1000 N=2000 N=4000 N=8000

Matrix size N

Figure 11. Residual of the
three methods for random matrices.

Residual || Tx-Db || »
102

—&— Sequential method

10*4 |
—1— Our method
10'6 |

—a&— Dissection method

108

10*10

10-12

1074

10716 1 1 1 1
N=500 N=1000 N=2000 N=4000 N=8000

Matrix size N

Figure 13. Residual of the
three methods for matrices obtained by
tridiagonalizing the Frank matrices.

Residual || Tx-b || »
1072

10 /\

S e
Vs

1012 / —4&— Sequential method | |
—1— Our method

1074 ||
—A— Dissection method

10—16] 1 1 1

N=500 N=1000 N=2000 N=4000 N=8000

Matrix size N

Figure 12. Residual of the
three methods for random matrices with
diagonal elements multiplied by 1074,

Residual || Tx-b ||

102
10 oA A A
A u]
10—6 A [u] o
a 8 A o A AU
_8 n

10 5 e

10710

10712 —&— Sequential method | |
—1— Our method

1074 ||
—A— Dissection method

10716

1 2 3 4 5 6 7 8 9 10

Series of random numbers

Figure 14. Residual of the
three methods when the seed of the ran-
dom number generator is changed.

[1]

2]
(3]

(4]

(5]

[6]

[7]

(8]

[9]

[10]

Bibliography

J. H. WILKINSON AND C. REINSCH (eds.), Linear Algebra, Springer Verlag
(1971).

R. S. VARGA, Matriz Iterative Analysis, Prentice-Hall (1962).

C. H. REINSCH, Smoothing by Spline Functions, Numerische Mathematik,
Vol. 10 (1967), pp. 177-183.

M. T. HEATH et al, Parallel Algorithms for Sparse Linear Systems, in Parallel
Algorithms for Matrix Computations, SIAM (1990).

G. H. GoLuB AND C. F. VAN LOAN, Matriz Computations, The Johns Hop-
kins University Press (1989).

H. S. STONE, An Efficient Parallel Algorithm for the Solution of a Tridiagonal
Linear System of Equations, J. Assoc. Comput. Mach., Vol. 20 (1973), pp. 27—
38.

K. SumivosHi AND T. EBISUZAKI, Performance of Parallel Solution of a Block
Tridiagonal Linear System on Fujitsu VPP 500, Parallel Computing, Vol. 24
(1998), pp. 287-304.

D. HELLER, Some Aspects of the Cyclic Reduction Algorithm for Block Tridi-
agonal Linear Systems, SIAM J. Numer. Anal., Vol. 13, No. 4 (1976), pp. 484—
496.

M. HEGLAND, On the Parallel Solution of Tridiagonal Systems by Wrap-
around Partitioning and Incomplete LU Factorization, Numerische Mathe-
matik, Vol. 59, No. 5 (1991), pp. 453-472.

P. AMopio AND L. BRUGNANO, The Parallel QR Factorization Algorithm
for Tridiagonal Linear Systems, Parallel Computing, Vol. 21 (1995), pp. 1097-
1110.

J. W. DEMMEL, Applied Numerical Linear Algebra, SITAM (1997).

P. DuBois AND G. RODRIGUE, An Analysis of the Recursive Doubling Al-
gorithm, In Kuck, D. J. and Sameh, A. H., eds., High Speed Computer and
Algorithm Organization, Academic Press, New York (1977).

