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Abstract. Using a mixture of two normal distributions, we estimate the false
positive and false negative errors in the diagnosis of hypertension. Parameters in
the mixture are estimated by the expectation-maximization (EM) algorithm. It is
shown that both errors depend on cutoff points. Repeated measurements reduce
both errors dramatically. The number of repeated measurements is recommended
through a simulation study.

1 Introduction

Hypertension is one of the most important risk factors for coronary heart disease
and stroke. Every year, millions of people take screening tests for early detection
of hypertension. However, the risk of classifying a truly normal subject as hy-
pertensive (false positive) or missing a truly hypertensive subject (false negative)
is quite high in hypertension diagnosis due to random errors of measurements in
blood pressure. This paper addresses both misclassification quantitatively.

A false positive (FP, hereafter) error occurs when measurements of patients’
blood pressures are above certain cutoff points while their true blood pressures
are under those thresholds. A false negative (FN, hereafter) error happens when
observations of patients’ blood pressures are below cutoff points but their true
blood pressure levels are above those thresholds. Subjects falsely classified as
hypertensive suffer psychologically, economically by paying and taking unnecessary
medication, and experience physically the side effects of various medicines etc.
Hypertensive subjects falsely classified as normotensive will not receive treatments
and thus run a much higher risk of heart attack, stroke, and death etc.

Many factors have influences on misclassification errors in hypertension diag-
nosis. It is the purpose of this paper to quantify false positive and false negative
errors due to measurement errors. A number of studies have been published in
the literature. Rosner (1977), El Lozy (1982), and Moskowitz et al. (1993) pro-
posed statistical frameworks to calculate FP and FN errors. However, all of their
calculations are based on the normality of blood pressure data.

In practice, skewed and non-normal distributions or even bimodal distributions
from blood pressure data are often observed. Bimodality in large sample is often
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(although not always) an indication of two sub-populations. Cicchinelli (1963)
first claimed that the skewness in the sample distributions of blood pressure is
evidence of the mixture of two sub-distributions. Although normal distribution is
still used in hypertension studies due to its simplicity (Marshall, 2008), mixture
normal distributions are more powerful in statistical modeling. In fact, Tarpey
et al. (2008) showed that a two- or three-normal mixture provides a very good
surrogate to some well-known nonnormal distributions. A two-normal mixture
distribution is proposed to model blood pressure data and quantify FP and FN
errors in this paper.

The paper is arranged as follows. Section 2 lays out the statistical frameworks
on normal mixture distributions. Parameter estimation is explained in Section 3.
The data from Framingham heart study is used as an example. Section 4 explores
the influence of repetition on both FP and FN errors through a simulation study.
Concluding remarks are given in Section 5.

2 Statistical Formulation

Let Y be the observed measurement and X is the true level of blood pressure for
a subject. The model considered in this paper is

Y = X + ǫ,

where ǫ ∼ N(0, σ2
ǫ ) (a normal distribution of mean zero and variance σ2

ǫ ) is the
random error of measurement and X is a random variable that is independent of
ǫ.

A random variable T follows a mixture two normal distributions, i.e.,

T ∼ pN(µ1, σ
2
1) + (1 − p)N(µ2, σ

2
2)

if it has a density function

p√
2πσ1

e
(t−µ1)2

2σ2
1 +

1 − p√
2πσ2

e
(t−µ2)2

2σ2
2 ,

where 0 < p < 1 is the proportion, µ1, µ2, are population means, and σ2
1 > 0,

σ2
2 > 0 are population variances.

Theorem 1. If X ∼ pN(µ1, σ
2
1) + (1 − p)N(µ2, σ

2
2), ǫ ∼ N(0, σ2

ǫ ), and X and ǫ
are independent,

Y = X + ǫ ∼ pN(µ1, σ
2
1 + σ2

ǫ ) + (1 − p)N(µ2, σ
2
2 + σ2

ǫ ).

Conversely, if Y ∼ pN(µ1, σ
2
1) + (1 − p)N(µ2, σ

2
2), Y = X + ǫ, and X and ǫ are

independent, then X ∼ pN(µ1, σ
2
1 − σ2

ǫ ) + (1 − p)N(µ2, σ
2
2 − σ2

ǫ ).
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Proof. Recall that a normal distribution N(µ, σ2) has a characteristic function of

eitµ− 1
2
σ2t2 . If X has a mixture of two normal distributions, its characteristic function

is,

fX(t) = E(eitX) =

∫ +∞

−∞

eitx[
p

σ1

√
2π

e
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2σ2
1 +
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2σ2
2 ]dx

=

∫ +∞
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√
2π

e
(x−µ1)2
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1 dx +
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σ2

√
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2σ2
2 dx

= peitµ1−
1
2
σ2
1t2 + (1 − p)eitµ2−

1
2
σ2
2t2 .

Since X and ǫ are independent, the characteristic function of Y is

fY (t) = E(eitY ) = E(eit(X+ǫ)) = E(eitX)E(eitǫ)

= peitµ1−
1
2
(σ2

1+σ2
ǫ )t2 + (1 − p)eitµ2−

1
2
(σ2

2+σ2
ǫ )t2 ,

which is a characteristic function of the mixture distribution pN(µ1, σ
2
1 +σ2

ǫ )+(1−
p)N(µ2, σ

2
2 + σ2

ǫ ).
The converse can be proved similarly.

The assumption that X has a mixture of two normal distributions has both
statistical and genetic rationales. First, blood pressure data are quite skewed in
practice (Carroll et al. 2006, page 289). Tarpey et al. (2008) showed that a
mixture normal distribution usually fits skewed data as well as a single nonnormal
distribution statistically.

Second, as is seen in Theorem 2 followed, estimating the density of X is critical
to the calculation of FP and FN errors and the mixture normal assumption on
X makes the estimation straightforward. Note that estimation of the density
function of X based on observed data of Y is a classic deconvolution problem
for which no general solution exists. In practice, the skewed data of Y could be
modeled directly with an asymmetric distribution with fewer parameters than the
normal mixture. However, the deconvolution process becomes much more difficult.
Some nonparametric methods have been proposed but the convergent rate of the
estimator to the density of X is very slow. More discussion and references on the
deconvolution problem can be found in Delaigle (2008).

On the other hand, a mixture model of two components works well from a
genetic point of view when there is a major gene dominating the mean quantitative
response with additional variability due to environmental and other genetic factors.
Blood pressure is one such trait. In fact, Levy et al. (2000) discovered a gene
influencing blood pressure on chromosome 17 using data from the Framingham
heart study.

Theorem 2 formulates the calculation FP and FN error rates. Considering that
the true numbers of hypertensive and normotensive patients are usually unknown
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while the total number of patients screened is often recorded, FP and FN errors
are calculated as joint probabilities rather than conditional probabilities.

Theorem 2. Let Φ(x) be the cumulative distribution function of the standard

normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞

e−
x2

2 dx,

and
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2π
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be the cumulative probability function of the standard bivariate normal distribution
with correlation coefficient ρ. If Y ∼ pN(µ1, σ

2
1) + (1 − p)N(µ2, σ

2
2), Y = X + ǫ,

ǫ ∼ N(0, σ2
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Proof. Let d(x, y) be the joint density of X and Y. Note that d(x, y) = dY |X=x(y)dX(x),
where dY |X=x(y) is the conditional density of Y given X = x and dX(x) is the den-
sity of X. Since Y = X + ǫ and X and ǫ are independent, Theorem 1 shows
that

dX(x) =
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It can be seen that
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It follows that
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Let g(x, y, ρ) be the density of the standard bivariate normal distribution, that is,

g(x, y, ρ) =
1
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It can be shown that
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which is the density of a bivariate normal distribution with means µ1, µ1, variances
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The formula of calculating FN can be obtained similarly.

Since there are no closed-form expressions in calculating the cumulative proba-
bilities from both univariate and bivariate normal distribution in Theorem 2, these
functions are calculated numerically in Sections 3 and 4 using functions PNORM
and PNORM2D in R package (R Development Core Team, 2008).

3 Parameter Estimation

According to Theorem 2, six parameters p, µ1, µ2, σ2
1, σ2

2, and σ2
ǫ in the two-normal

mixture have to be estimated from observed data in order to calculate the FP and
FN errors. Let Yij = Xi + ǫij where X1, X2, · · · , Xn is an independently and
identically distributed (i.i.d.) sample and ǫij’s are i.i.d measurement errors from
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N(0, σ2
ǫ ) for i = 1, 2, · · · , n, j = 1, 2, · · · ,m. Then, σ̂2

ǫ = 1
n(m−1)

n
∑

i=1

m
∑

j=1

(Yij − Ȳi)
2 is

an unbiased estimator of σ2
ǫ where Ȳi = 1

m

m
∑

j=1

Yij.

Since Ȳi = 1
m

m
∑

j=1

Yij = Xi+
1
m

m
∑

j=1

ǫij, Ȳ1, Ȳ2, · · · , and Ȳn are i.i.d. By Theorem 1,

if X1, X2, · · · , Xn is an i.i.d. sample from mixture population pN(µX1, σ
2
X1) +

(1 − p)N(µX2, σ
2
X2), Ȳ1, Ȳ2, · · · , and Ȳn is an i.i.d. sample from

pN(µX1, σ
2
X1 +

σ2
ǫ

m
) + (1 − p)N(µX2, σ

2
X2 +

σ2
ǫ

m
)

and vice versa. Therefore, if p̂, µ̂1, µ̂2, σ̂2
1, σ̂2

2 are estimates of p, µ1, µ2, σ2
1, σ2

2 based
on observed Ȳi’s, respectively, FP and FN errors in Theorem 2 can be estimated
by substituting p, µ1, µ2, σ2

1, σ2
2 with their corresponding estimates,and σ2

ǫ with
σ̂2

ǫ /m, respectively.
In order to estimate all five parameters p, µ1, µ2, σ2

1, and σ2
2 in the two-normal

mixture distribution, it is necessary that all of them are identifiable, i.e., distinct
values of five parameters determine different distributions. The lack of identifiabil-
ity of the five parameters due to the interchanging of two component labels can be
easily overcome in practice by the imposition of an appropriate constraint such as
p ≥ 0.5. The expectation-maximization (EM) algorithm (Dempster et al., 1977) is
used in this paper because the lack of identifiability is not of concern in its normal
course of fitting mixture models (McLachlan and Peel, 2000, page 27).

Given a sample of observations Ȳ1, Ȳ2, · · · , and Ȳn from pN(µ1, σ
2
1) + (1 −

p)N(µ2, σ
2
2), the following EM algorithm of fitting a two-normal mixture model is

from Everitt and Hand (1981, page 37). The maximum likelihood estimates of the
five parameters are calculated by maximizing the likelihood function, L, where

L(p, µ1, µ2, σ
2
1, σ

2
2) =

n
∏

i=1

[
p√

2πσ1

e
−

(x−µ1)2

2σ2
1 +

1 − p√
2πσ2

e
−

(x−µ2)2

2σ2
2 ].

For convenience, maximum likelihood estimates are usually obtained by maximiz-
ing the log-likelihood

L(p, µ1, µ2, σ
2
1, σ

2
2) =

n
∑

i=1

ln[
p√

2πσ1

e
−

(x−µ1)2

2σ2
1 +

1 − p√
2πσ2

e
−

(x−µ2)2

2σ2
2 ].

By differentiating L with respect to each of the five parameter and equating
the corresponding partial derivatives to zero, the maximum likelihood estimates
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can be obtained from the following five equations,

p̂ =
1

n

n
∑

i=1

P̂ (c1|Ȳi),

µ̂j =
1

np̂

n
∑

i=1

P̂ (cj|Ȳi)Ȳi, j = 1, 2,

σ̂2
j =

1

np̂

n
∑

i=1

P̂ (cj|Ȳi)(Ȳi − µ̂j)
2, j = 1, 2,

where

P̂ (c1|Ȳi) =
p̂σ̂2e

(Ȳi−µ̂2)2

2σ̂2
2

(1 − p̂)σ̂1e
(Ȳi−µ̂1)2

2σ̂2
1 + p̂σ̂2e

(Ȳi−µ̂2)2

2σ̂2
2

,

and P̂ (c2|Ȳi) = 1 − P̂ (c1|Ȳi).
There is no explicit solution to these five equations. The solution could be

obtained through an iterative procedure in which initial values of the five parame-
ters are used to estimate P̂ (cj|Ȳi) first and then uses the five equations to provide
new estimates of the five parameters. The process continues until the Euclidean
distance between two consecutive estimates of the five parameters is less than a
specified number, e.g., 0.0001.

There are many implementations of EM algorithm with different initializations.
The EM algorithm in R package MCLUST is used in this paper where initial values
are selected from hierarchical clustering and likelihood gain (Fraley and Raftery,
2000 and 2006).

Example 1. The Framingham heart study is a longitudinally prospective study
of cardiovascular disease among a population of free living subjects in the town of
Framingham, Massachusetts. The study began in 1948 with 5209 men and women
of various ages. The Framingham data used in this example are from Carroll et al.
(2006, page 112) and are available from http://www.stat.tamu.edu/ carroll/

eiv.SecondEdition/data.php. There were 1, 615 men between the ages of 31 to
65 in the data. Two exams of systolic blood pressure were taken two year apart for
each subject. In each exam, two repeated measurements were taken by different
examiners independently. Since two exams are two year apart and four measure-
ments are recorded by different examiners independently, four measurement errors
are independent replicates.

Table 1 lists the maximum likelihood estimates of the five parameters in a
mixture of two normal distributions from data of systolic blood pressure with two,
three, and four repeated measurements, where (1, 4) stands for data from the first
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and the fourth measurements and so on. It can be seen that σ̂ǫ’s are more stable
in three- and four-repeat cases than that in the two-repeat case.

Table 1: Maximum likelihood Estimates of Parameters
Repetition p µ1 σ2

1 µ2 σ2
2 σ2

ǫ

Two (1, 4) 0.7843 124.8951 132.8374 152.2067 594.1233 120.4467
Three (1, 3, 4) 0.7692 124.7380 127.7964 151.6087 579.6278 97.9631
Four 0.7689 124.7327 121.5739 150.8009 584.8963 96.4834

Figure 1 shows the false positive, false negative, and misclassification errors
(sum of false positive and false positive) in systolic blood pressures with two, three,
and four repeated measurements. As is observed, misclassification errors depend
on cutoff points. Higher cutoff levels in the range of 130 to 180 results lower errors.
High errors are observed in cases where either fewer repeated measurements are
taken or larger variances exist in measurement errors. Due to estimation variation,
the false positive error at 140 with two repeated measurements, 0.0269, is smaller
than that of 0.0308 with four repeated measurements.

Table 2 lists misclassification errors at selected cutoff points, 130, 140, 160, and
180. For example, the misclassification rate at systolic points 130 (high-normal)
and 140 (stage one hypertension) are 22.71% and 12.86%, respectively if two mea-
surements are recorded while they are 19.54% and 11.68% if four repeated mea-
surements are taken. The number of repeated measurements has larger effects on
misclassification errors at lower cutoff points than those at higher cutoff points.
The misclassification error at 180 is 1.62% when there are two repeated measure-
ments while it is 1.46% with four repeated measurements. The 9% reduction of
misclassification error at 180 is smaller than the 14% reduction at 130. It is also
observed that the reduction of misclassification errors in the case of three repeated
measurements is not very different from that of taking four repeated measurements.

Table 2: Misclassification Errors in Framingham Data
Two Repeats Three Repeats Four Repeats

Cutoff FP FN Miss. FP FN Miss. FP FN Miss.
130 0.1431 0.0840 0.2271 0.1185 0.0787 0.1972 0.1170 0.0784 0.1954
140 0.1017 0.0269 0.1286 0.0867 0.0306 0.1173 0.0859 0.0308 0.1168
160 0.0203 0.0132 0.0335 0.0193 0.0127 0.0320 0.0191 0.0123 0.0314
180 0.0107 0.0055 0.0162 0.0099 0.0054 0.0152 0.0095 0.0052 0.0146

4 Simulation Study

The analysis of Framingham data shows that more repeated measurements results
in lower misclassification errors. How many repeats do we need and how far are
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Figure 1: Misclassification Errors in Framingham Data

the estimated errors from the true errors? The simulation study in this section
tries to answer these two questions.

Assume that X ∼ 0.75N(120, 122) + 0.25N(150, 242) and ǫ ∼ N(0, 182). The
variance of measurement error is designed to be larger than that of the Framingham
data to see the influence of repeated measurements on estimated errors.

Figure 2 shows misclassification errors when two, four, six, and eight repeated
measurements are recorded. It can be seen that the estimated misclassification
errors are close to the true values. Repeated measurements improve the error
estimates. All errors in the four-repetition case are closer to true errors than those
in the two-repetition case. As the number of repeated measurements increases, the
gap between true error curves and estimated error curves narrows.

Table 3 provides true and estimate errors at cutoff points 130, 140, 150, 160,
170, and 180. In general, the large estimated errors with two repeated measure-
ments differ from corresponding true errors in the second decimal point (e.g.,
0.1684 − 0.1582 = 0.0102). The differences between estimated errors with four re-
peated measurements and true errors are in the third decimal points (e.g., 0.1632−
0.1582 = 0.005.) Given the variation scale of measurement errors, misclassification
errors are estimated well when four measurements are taken. If the measurement
error has a large variation, a large number of repeated measurements is needed.
Note that, if there are no repeated measurements, σ2

ǫ is not estimable and misclas-
sification errors cannot be calculated by the method proposed in this paper.
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Figure 2: Misclassification Errors and Repeated Measurements

Table 3: Misclassification Errors and Repeats
Cutoff points

Error 130 140 150 160 170 180
False Positive 0.1582 0.1317 0.0850 0.0519 0.0338 0.0230

True False Negative 0.0810 0.0420 0.0275 0.0203 0.0135 0.0077
Misclassification 0.2393 0.1737 0.1125 0.0721 0.0474 0.0308
False Positive 0.1684 0.1239 0.0798 0.0540 0.0380 0.0257

Two False Negative 0.0679 0.0431 0.0333 0.0231 0.0138 0.0071
Misclassification 0.2363 0.1671 0.1131 0.0771 0.0518 0.0328
False Positive 0.1632 0.1280 0.0821 0.0531 0.0362 0.0245

Four False Negative 0.0750 0.0425 0.0309 0.0219 0.0135 0.0071
Misclassification 0.2381 0.1705 0.1130 0.0750 0.0497 0.0316
False Positive 0.1599 0.1309 0.0849 0.0534 0.0355 0.0237

Six False Negative 0.0798 0.0431 0.0295 0.0210 0.0132 0.0072
Misclassification 0.2397 0.1741 0.1144 0.0744 0.0487 0.0309
False Positive 0.1616 0.1300 0.0834 0.0528 0.0354 0.0239

Eight False Negative 0.0777 0.0422 0.0296 0.0213 0.0134 0.0073
Misclassification 0.2393 0.1723 0.1131 0.0740 0.0488 0.0312
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5 Conclusion

A mixture of two normal distributions is used to model the distribution of blood
pressure data. The mixture model fits the blood pressure data better than a
normal distribution. Both FP and FN errors are estimated from the proposed
mixture model. It is observed that misclassification errors depend on cutoff points.
High cutoff points have low errors. Measurement errors with high variances re-
sult in high misclassification errors. Repeated measurements not only provide the
variance estimation of measurement errors but also reduce misclassification errors
significantly. Though most of our discussion is focusing on systolic blood pressure,
the method can also be applied to diastolic blood pressure. The systolic blood
pressure was chosen in this paper because numerous studies have found that the
determination of systolic blood pressure is more reliable than that of diastolic blood
pressure. Moreover, systolic hypertension has been widely accepted as a cause of
cardiovascular mortality.
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