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Abstract

Obesity is quickly becoming a pandemic. The low-grade chronic inflammation associated
with obesity leads to health risks such as cancer, heart disease, and type 2 diabetes mel-
litus. To better understand the progression of obesity-related chronic inflammation, mice
were fed either a high-fat or low-fat diet over 140 days. At Days 0, 35, 70, and 140, the
percentages of macrophage subsets, CD4+ T cells, and regulatory T cells infiltrating the
intra-abdominal white adipose tissue (WAT) were examined. Monocyte chemoattractant
protein-1 (MCP-1) mRNA expression in WAT was also quantified. Additionally, glucose-
normalizing ability was examined by administering peritoneal glucose tolerance tests. A
system of ordinary differential equations models this system. The model consists of 8
differential equations, has 25 parameters, and has 1 forcing function. Tools used to char-
acterize the model include parameter estimation, sensitivity analysis, and stability anal-
ysis. Based on the data provided, the system describes the growth of adipocyte size and
chronic inflammation over 105 days beginning at Day 35, which is approximately when
the adipose cells become hypertrophic, or too large to function normally. The model
shows that without intervention, chronic inflammation escalates and the related health
problems persist.
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1 Introduction

Obesity, which is defined as a body mass index over 30, continues to grow as a health
concern in the United States [5]. As recently as July 2008, the Centers for Disease Control
reported a phone survey that shows approximately 26 percent of Americans over the age
of 18 are obese [5]. Other research shows that the prevalence of obesity has increased by
70 percent over the past decade [10]. According to World Health Organization estimates,
over 300 million adults are obese [12]. As the severity of the problem continues to grow
worldwide, many scientific experts consider the obesity crisis a pandemic [11].

Low-grade chronic inflammation is currently believed to be the most probable link be-
tween obesity and its co-morbidities. Unlike acute inflammation, which is the natural
response to injury or infection, chronic inflammation results from a defective immune
response. The excessive activity of pro-inflammatory cells and proteins can result in ad-
ditional defects for surrounding tissues. Chronic inflammation can lead to diseases such
as cancer, kidney failure, atherosclerosis, and type 2 diabetes mellitus [2].

When a body is obese, the adipocyte cells swell to abnormal volumes. As the adipocytes
continue to enlarge, the cells’ endoplasmic reticulum comes under excessive stress and
fails. This leads to the excessive production of pro-inflammatory proteins such as mono-
cyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) [2]. MCP-1
is a chemokine that attracts cells expressing the C-C motif chemokine receptor 2 (CCR2)
on their cell surface [13]. This is relevant because recent studies have shown that the
migration of macrophages expressing the glycoprotein F4/80 and CCR2 at high concen-
trations is associated with impaired glucose tolerance [6].

The release of TNF-α and MCP-1 and the subsequent progression of chronic inflammation
are shown in Figure 1 below.
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Figure 1: Diagram of Chronic Inflammation [2].

The monocytes that reach the white adipose tissue interact with various cytokines to dif-
ferentiate into 4 characterized subsets of macrophages. The four subsets are M1, M2, deac-
tivated, and transforming growth factor-β (TGF-β). M1 and deactivated macrophages are
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the most relevant subsets to the system. M1 macrophages are induced by the presence of
interferon-γ (IFN-γ) and secrete interleukin-12 (IL-12), MCP-1, and TNF-α. Deactivated
macrophages are induced by interleukin-10 (IL-10) and also secrete IL-10 [16].

T cells are also drawn to the adipose tissue. Many of the T cells are already differentiated
into pro-inflammatory and anti-inflammatory cells once they reach the adipose tissue,
but a significant portion of the differentiation is due to the same cytokines that convert
monocytes to macrophages. The interaction between naı̈ve T cells and IL-12 produces
pro-inflammatory T helper (Th1) cells. The Th1 cells produce IFN-γ, more MCP-1, and
more TNF-α, which further contribute to the inflammation. Similarly, the interaction be-
tween naı̈ve T cells and IL-10 produce anti-inflammatory T regulatory (Treg) cells. The
Treg cells manufacture and release more IL-10 [1].

The role that chronic inflammation plays in health issues such as obesity-related insulin
resistance are well documented [15]. There are numerous other mathematical models
related to the immune system and chronic inflammation. Some models describe the effect
of the immune system on type 1 diabetes [3] [9] while other models describe inflammation
resulting from shock or trauma [14]. The focus on obesity-induced chronic inflammation
and the number of incorporated immune system components separate this model from
other models of the immune system. Also, the potential to include insulin resistance seen
in type 2 diabetes mellitus and possible drug treatments make this initial study valuable
for understanding and eventually controlling the diabetes pandemic.

This research aims to aid and complement current studies on chronic inflammation by
building a mathematical model that accurately reflects the interactions of the macrophages,
T cells, chemokines, and cytokines that cause chronic inflammation. The model provides
quantitative insight into the progression of chronic inflammation that would not other-
wise be possible due to the limits of data collection.

2 Model/Methods

2.1 Experiment and Data

Drs. Josep Bassaganya-Riera and Amir Guri performed all the experiments and collected
all the data used for this research in their laboratory at the the Virginia Bioinformatics
Institute at Virginia Tech.

A collection of C57BL/6J mice were separated into three test groups: high-fat diet, low-
fat diet, and control. The mice were put in identical environments that prevented any
opportunities for exercise, so there would be no variations other than their diet. At Day
0 the control group was necropsied; on Days 35, 70, and 140 of the experiment mice on
high-fat and low-fat diets were also necropsied.

The percentage of macrophage subsets, CD4+ T cells, and regulatory T cells in the white
adipose tissue (WAT) were collected using flow cytometry. MCP-1 and TNF-α gene ex-
pression in the WAT were measured using real-time RT-PCR. Finally, glucose-normalizing
ability was examined using a peritoneal glucose tolerance test.
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The amount of available data varies depending on the species being viewed. Averages
are taken for the four time points for the mice on the high-fat diet. In addition, the Day 35
data is interpolated using an unweighted average of Day 0 and Day 70 for Th1, Treg and
MCP-1 because data does not exist. Initially, we have a total of four average data points
for MCP-1, T cells and macrophages; however, the scope of our model decreases the data
to three reference points, Days 35, 70 and 140.

Having the cell data as a percentage of the total cells in the stromal-vascular fraction (SVF)
poses a problem because the data reflects any changes in the rest of the SVF, which the
model cannot possibly do. Our model assumes the change in the number of stromal-
vascular cells not considered in the model to be zero and converts between the data given
as percentages and cell counts to solve the system, which presents an additional assump-
tion.

2.2 System of Equations

The model has nine variables and twenty-five parameters. The system consists of eight
differential equations, six of which are linear. A ninth equation characterizes the forcing
function. Some agents that contribute to obesity-induced inflammation are not accounted
for in this model. For our system we only considered the following factors:

Table 1: Variables and associated factors.
Variable Associated Factor

Ad Adipocyte size
T Concentration of TNF-α
M Concentration of MCP-1
Fhi Population of F4/80hi CCR2+ macrophages
Flo Population of F4/80lo CCR2+ macrophages
Th Population T helper 1 cells
I Concentration of IFN-γ
Tr Population of Treg cells
L Concentration of IL-10

We consider Day 35, the approximate time for average adipocyte hypertrophy, as the
beginning of our model. Adipocytes secrete TNF-α and MCP-1. TNF-α is a cytokine
that increases insulin resistance, and MCP-1 plays a significant role in the recruitment of
monocytes expressing CCR2 on their surface. The monocytes that MCP-1 recruits to the
site are classified as high or low, corresponding to the expression of F4/80 on the cell sur-
face. The F4/80hi monocytes (Fhi) only become pro-inflammatory macrophages and the
F4/80lo monocytes (Flo) are uncharacterized, producing either pro or anti-inflammatory
macrophages [2]. Pro-inflammatory macrophages contribute to the production of IFN-
γ, a cytokine that is also secreted by Th1 cells. Anti-inflammatory macrophages secrete
IL-10, which is also released by Treg cells. From this overview, the system of equations
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seen below is created. In the system, cells are measured as populations, and protein con-
centrations are measured in gene expressions (pg-cDNA/μg-RNA). The adipocyte size is
measured by the cross-sectional area (μm2) of the adipocytes.

dT (t)

dt
= k1(Fhi(t) + αFlo(t)) + k2Ad(t) + k3Th(t)− d1T (t) (1)

dM(t)

dt
= k4(Fhi(t) + αFlo(t)) + k5Ad(t)− d2M(t) (2)

dFhi(t)

dt
= k6

(
M(t)I(t)− αM(t)L(t)

1− α

)
− d3Fhi(t) (3)

dFlo(t)

dt
= k7M(t)L(t) + k8

αM(t)L(t)

1− α
− d4Flo(t) (4)

dTh(t)

dt
= k9(Fhi(t) + αFlo(t)) + m1 − d5Th(t) (5)

dI(t)

dt
= k10Th(t) + k11(Fhi(t) + αFlo(t))− d6I(t) (6)

dTr(t)

dt
= k12L(t) + m2 − d7Tr(t) (7)

dL(t)

dt
= k13Tr(t) + (1− α)k14Flo(t)− d8L(t) (8)

Ad(t) = a
√

t + b (9)

We consider all of the F4/80hi macrophages to be pro-inflammatory. However, the F4/80lo

macrophages are uncharacterized, so we define α to be the fraction of F4/80lo macrophages
that are pro-inflammatory.

MCP-1 attracts monocytes with CCR2 receptors; therefore, we assume that given a nonzero
concentration of MCP-1 there are monocytes available in the adipose tissue. For the
purpose of this model, the representative interaction between MCP-1 and IFN-γ differ-
entiates the monocytes into pro-inflammatory macrophages, and the representative in-
teraction between MCP-1 and IL-10 differentiates the monocytes into anti-inflammatory
macrophages. Our model must be able to differentiate between the F4/80hi and the
F4/80lo pro-inflammatory macrophage production. There exists some fraction β of the in-
direct interaction between MCP-1 and IFN-γ that produces F4/80lo macrophages. Thus,
(1-β) is the fraction of the indirect interaction that leads to F4/80hi macrophages. Using
the definition of α we can say

βMI

(βMI + ML)
= α . (10)
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Solving for βMI gives

βMI =
αML

(1− α)
. (11)

The right-hand side of this equation can then be substituted for β MI, the number of
F4/80lo pro-inflammatory macrophages, in any of the differential equations, eliminating
the need for another parameter.

Equation (1) represents the rate of change in the concentration of TNF-α with respect to
time. TNF-α is initially released by the enlarged adipocytes in the system, although the
main production of this cytokine is accredited to pro-inflammatory macrophages [2]. The
term (Fhi(t) +αFlo(t)) describes the total number of pro-inflammatory macrophages. Th1
cells also produce TNF-α. The concentration of TNF-α decreases due to its denaturation.

Equation (2) represents the change in concentration of MCP-1 with respect to time. MCP-1
is also initially released by the enlarged adipocytes in the system. Once monocytes be-
come M1 macrophages, however, the activated macrophages, presumably F4/80hi CCR2+

macrophages, contribute to MCP-1 concentrations [6].

The change in the population of F4/80hi macrophages with respect to time is represented
by Equation (3). The first term accounts for the production of all F4/80hi macrophages
while the second term determines the number of pro-inflammatory macrophages that are
F4/80lo. The third term accounts for their death.

The change in the population of F4/80lo is represented in Equation (4). The first term ac-
counts for the interaction of F4/80lo monocytes with IL-10 to produce anti-inflammatory
F4/80lo macrophages. The second term, like in Equation (3), represents the F4/80lo mono-
cytes that become pro-inflammatory macrophages. The third term accounts for macrophage
death.

In Equation (5), the pro-inflammatory macrophages release IL-12, which differentiates
naı̈ve T cells into Th1 cells. The presence of pro-inflammatory macrophages, (Fhi(t) +
αFlo(t)) implies the presence of IL-12 since pro-inflammatory macrophages produce IL-
12. For simplicity, we take advantage of this relationship and assume that the Th1 cell
population is dependent on pro-inflammatory macrophages. The term m1 accounts for
any migration of Th1 cells to the site, naturally occurring or by chemokines and cytokines
we are not considering in our model. Finally, d5Th(t) represents the removal or death of
Th1 helper cells.

Th1 cells and pro-inflammatory macrophages produce IFN-γ, so they directly increase
the concentration of IFN-γ. The IFN-γ concentration decreases with its denaturation or
internalization by its receptor, which is shown in Equation (6).

In regard to Equation (7), IL-10 increases the concentration of adaptive T regulatory cells
by differentiating naı̈ve T cells. The term m2 accounts for any migration of T regulatory
cells to the site. Finally, d7Tr(t) represents the death of T regulatory cells.

T regulatory cells and anti-inflammatory macrophages secrete IL-10 during the immune
response. The concentration decreases through denaturation or internalization by its re-
ceptor, as shown in Equation (8).
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Adipocyte size (Ad) has a logarithmic correlation with body weight, for which we have
data [4]. Equation (9) represents the enlargement of adipocytes with respect to time.

2.3 Parameter Estimation

Our model includes 25 parameters. Fourteen of these parameters describe interaction
rates, eight describe component degradation, two describe cell migration rates, and one
(α) defines the fraction of F4/80lo macrophages that are pro-inflammatory. Several of the
parameters may be amenable to special laboratory observations; many other parameters
only make sense within the context of model equations (1)-(9). Because experimental
procedures isolating each effect are impractical, we are led to mathematical methods to
characterize good parameter values.

To evaluate the quality of a parameter set, we quantitatively describe the error of the
corresponding solution against available data using the 2-norm – the distance between
the solution and the data. Due to concerns about the accuracy of the MCP-1 data, the
calculation ignores the MCP-1 data even though the data is plotted in Figure 2(b). The
2-norm computes the errors using the percentage of total cells for F4/80hi and F4/80lo

macrophages, Th1 cells, and T regulatory cells at Days 35, 70, and 140. The equation for
the error J(p) is below.

J(p) = 1
2

∑
k ‖x(tk; p)− x̂(tk)‖2

Defining an appropriate range for each parameter is important for implementing a ran-
dom search method for which we write an algorithm. As the model is written, all pa-
rameters are defined to be positive. Unfortunately, we have no further knowledge of the
interaction parameters ranges; therefore, these were selected in the range [0, 0.1] in order
to maintain reasonable cell populations. The values for k6, k7, and k8 are set equal due to
their similar nature. Based on equilibrium constraints of equations (5) and (7), functions
of d5 and d7, respectively, determine the parameters m1 and m2. Once inside the adipose
tissue, macrophages survive on the order of months, so the range for the degradation of
F4/80hi and F4/80lo macrophages is [0, 1]. We expect the proteins and other immune cells
to live on the order of hours and days, respectively, and their initial ranges are set accord-
ingly. Finally, we set α equal to zero since the latest experimental data shows a very high
percentage, if not all, of the F4/80lo macrophages are anti-inflammatory.

We implemented a solver for the system of eight coupled, differential equations using
one of MATLAB’s built-in ODE solvers. Since the cell variables grow much faster than
the gene expression variables, the system (1)-(9) is stiff. Therefore, we used MATLAB’s
stiff equation solver (ode15s).

Three optimization methods were used to decrease the error and to better match the sys-
tem solution to the data: a random search method, a Nelder-Meade unconstrained mini-
mization procedure (fminsearch), and a constrained, nonlinear minimization algorithm
(fmincon), which is part of the MATLAB Optimization Toolbox.

The initial conditions are experimental values from Day 35. After selecting a parameter
set which minimizes the error and adheres to the constraints, we allow the initial condi-
tions to vary, along with all 25 parameters. Adjusting the initial conditions improves the
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overall-fit. We select the following set of initial conditions and parameters to characterize
our model:

Table 2: Final Values for the 8 Initial Conditions, x0.
State Value* State Value*
T 2.74×10−5 M 1.12×10−5

Fhi 1.176×101 Flo 1.331×101

Th 1.679×101 I 3.4×10−5

Tr 2.968×100 L 7.270×10−5

*Cell values are cell populations (in thousands) and protein values are measured in pg-cDNA/μg-RNA.

Table 3: Final Values for the Parameter Set, p.
Parameter Value Parameter Value

k1 7.10×10−9 k8 1.71×1010

k2 4.22×10−8 k9 6.82×10−7

k3 5.81×10−8 k10 7.66×10−6

k4 5.70×10−14 k11 1.16×10−5

k5 6.88×10−9 k12 1.60×104

k6 1.42×1010 k13 1.04×10−4

k7 1.07×1010 k14 9.11×10−6

d1 6.289 d5 1.472
d2 2.474 d6 7.700
d3 0.569 d7 0.628
d4 0.842 d8 5.798

m1 23.44 m2 0.586
α 0.0
a* 3.421×102 b* 2.046×103

*These parameters are characterized in [4].

Note that the largely different values of the collected data (cell counts and gene expres-
sions), as discussed before, produce a staggering range for the parameter set. Parameter
values associated with the interactions of MCP-1 with other proteins (which both have
experimental values on the order of 10−5) will have parameter values on the order 1010.
Likewise, parameter values associated with the production of proteins by cells will have
values on the order of 10−10 or often smaller because a large number of cells are produc-
ing relatively small concentrations of proteins. Scaling the units of the parameters may
improve the aesthetics, but likely would not change the results.
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3 Results

After deciding upon a specific set of parameters, we numerically solve the system of equa-
tions. Each subsequent solution is graphed independently as seen below. The solution is
obtained using one of MATLAB’sTM built-in ODE solvers. Several plots show the average
data points to which the solution is fitted, while the remaining solutions are a product of
the system.

Figure 2(a) shows that from Day 35 to Day 140, the gene expression for TNF-α increases
at a moderate rate.

From Day 35 to Day 140, the gene expression for MCP-1 gradually increases (Figure 2(b)).
As previously explained, the average data points for MCP-1 appear in the figure, but the
solution is independent of the data because the data is ignored due to accuracy concerns.
We chose to include the data in the figure to illustrate that data was collected for MCP-1.

(a) TNF-α gene expression. (b) MCP-1 gene expression.

Figure 2: Results of the gene expressions of TNF-α and MCP-1.

The percentage of F4/80hi macrophages immediately decreases, followed by a sharp in-
crease over the 105-Day period in which adipocytes are hypertrophic. The solution, seen
in Figure 3(a), is shown to fit the data with moderate error as the line goes through one
data point and is in close proximity to the Day 70 and Day 140 averages.

The percentage of F4/80lo macrophages is shown to follow the same general trend as the
F4/80hi macrophages, steeply decreasing followed by a significant increase in the last 95
days (Figure 3(b)). The percentage of F4/80lo macrophages at Day 140 is slightly smaller
than the percentage of F4/80hi macrophages at the same time. The error is also relatively
small between the solution and plotted data points.
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(a) F4/80hi macrophages. (b) F4/80lo macrophages.

Figure 3: Results of the populations of F4/80hi and F4/80lo macrophages.

The percentage of Th1 cells decreases slightly, possibly due to the rapid decline of the
cell population to equilibrium. This is followed by a quick increase and finally a steady
decline for the 105-day period, which is shown in Figure 4(a). The data points show
similar trends to the solution, but the change in magnitude between the average data
points is much greater. Therefore, the error is relatively larger for this solution.

Figure 4(b) shows an initial sharp decrease occurs in the gene expression of IFN-γ suc-
ceeded by a gradual increase in gene expression.

(a) Th1 immune cells. (b) IFN-γ gene expression.

Figure 4: Results for the population of Th1 cells and the expression of IFN-γ.
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Considering total cells in the system, the percentage of T regulatory cells quickly de-
creases and then slowly increases (Figure 5(a)). The error is small as the solution comes
close to the three data points.

The gene expression for IL-10 decreases at a fast rate and then sharply increases for the
remaining 90-day period as seen in Figure 5(b).

(a) Treg immune cells. (b) IL-10 gene expression.

Figure 5: Results for the population of Treg cells and the expression of IL-10.

3.1 Sensitivity Analysis

Understanding how the solution changes with respect to the parameters’ changes can
give insight into the biology. Therefore, analyzing how sensitive the model is with respect
to the parameters becomes important. We describe the sensitivities mathematically by

Sj
i = ∂xi

∂pj
,

where i represents a particular variable (1)-(8), and j signifies the particular parameter
(1)-(25). The matrix [Sj

i ] consists of 200 entries and is time dependent.

We compute the sensitivities of our nonlinear system by solving the coupled state/sensitivity
initial value problem. Define S

j
(t) by summing the sensitivities over each of the i (state)

values, S
j
(t) =

∑8
i=1 |Sj

i |. S
j
(t) provides insight into how each parameter affects the

system as a whole, at a given time, t. As seen Figure 6, sensitivity analysis helps identify
important parameters like k5, d2, and d8. Figure 6 depicts the system’s sensitivities to each
parameter, summed over the eight states and integrated from Day 35 to 140. In terms of
S

j
(t), Figure 6 shows

∫ 140
35 S

j
(t)dt for each of the j (parameter) values.
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Figure 6: Sensitivities with respect to each of the 25 parameters summed over the state-
space and integrated with respect to time.

Each of the sensitivities has been scaled by both their respective parameter value and
the average value of the state over Days 35 to 140 to understand the relative sensitivities.
Moreover, it is important to recognize that these are local values. The sensitivities depend
on the area of existence in the parameter and time spaces; with different parameter sets
and at different times the sensitivities may change drastically. Taking parameters k12,
k13, and k14 as examples, Figure 7 emphasizes the locality of parameter sensitivities with
respect to time.

Figures like 7 and 8 reveal more information than Figure 6 and provide a more complete
understanding of the system.

Figure 7: Sensitivities of the system to k12, k13, and k14 summed over the state-space,
emphasizing the change with respect to time.
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To further understand the impact and importance of these sensitivities in the parameter
estimation process, consider the gradient of the cost function:

J(p) = 1
2

∑
k ‖x(tk; p)− x̂(tk)‖2

in which k represents the time steps where data was gathered, and x̂ denotes the experi-
mental data set. Differentiating with respect to the parameters gives:

∂J(p)
∂pj

=
∑

k

[
‖x(tk; p)− x̂(tk)‖ · ∂x(tk)

∂pj

]
.

The gradient of the cost function contains ∂xi

∂pj
, which are the sensitivities. For nonzero

error terms, [x (tk; p)− x̂ (tk)] in the equation, the corresponding sensitivities drive that
error’s contribution to the gradient. Hence, highly sensitive parameters control large
changes in the cost function. The gradient and an understanding of the sensitivities will
help in implementing a more sophisticated parameter optimization technique.

Figure 8: Sensitivities of each of the 8 variables with respect to each of the 25 parameters,
integrated with respect to time.

3.2 Stability Analysis

The adipocyte size is held constant throughout the stability analysis at 4069 μm2, the Day
35 value [4]. The six linear differential equations have the change in each state, the left-
hand side, set equal to zero, and the F4/80hi, F4/80lo, and adipocyte terms are subtracted
to the left hand side. The system of equations can now be written and solved using ma-
trices. The solution gives the six linear differential equations written in terms of F4/80hi,
F4/80lo, and adipocyte size. The three variables in the F4/80hi and F4/80lo equations
- MCP-1, IFN-γ, IL-10 - are replaced by their respective equations written in terms of
F4/80hi and F4/80lo and the left-hand sides of these two equations are set to zero. The
system’s equilibrium is now condensed down to two implicit functions.

The F4/80hi and F4/80lo equations are plotted on the same graph. Intersections between
the two curves indicate where the entire system is in equilibrium. The values for F4/80hi
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and F4/80lo are determined from the plot, and these values are put back into the six equa-
tions to determine the values for the remaining six variables. To determine the stability
of the system, we look at the eigenvalues of the Jacobian matrix for the entire system of
equations.

The two equilibrium points found are analyzed to determine the stability. One equi-
librium point gives all negative eigenvalues, and the point is stable. The values are in
Table 3. However, the second equilibrium point has one positive eigenvalue and is unsta-
ble [8]. In addition, the F4/80hi value at the unstable equilibrium point is too high to be
biologically valid.

Table 4: Stable Equilibrium Solution.
Variable Equilibrium Value* Eigenvalue
TNF-α 2.746×10−5 -6.289
MCP-1 1.132×10−5 -7.953
F4/80hi 7.781 cells -6.294
F4/80lo 7.579 cells -2.474

Th1 15.931 cells -0.317
IFN-γ 2.757×10−5 -0.200
Treg 2.274 cells -0.775
IL-10 5.269×10−5 -1.472

Ad Size 4069 μm2 N/A
*Protein values are measured in pg-cDNA/μg-RNA.

4 Discussion

One objective was to develop a better sense of the role F4/80hi macrophages and F4/80lo

macrophages play in the progression of chronic inflammation. As seen in Figures 3(a)
and 3(b), F4/80hi and F4/80lo macrophages, respectively, more accurately fit the data
when compared to the other six variable solutions. The solution for the percentage of
F4/80lo macrophages is similar in shape to the solution for percent F4/80hi macrophages.
However, F4/80lo increases at a slower rate, which can be seen more easily when the
model extends beyond 140 days. As inflammation worsens, it is expected for pro-inflammatory
macrophages to be greater in number than anti-inflammatory macrophages. The solution
shows a greater percentage of F4/80hi macrophages than F4/80lo macrophages at Day
140, which can be viewed as a faster production rate in the inflamed area.

The TNF-α gene expression (Figure 2(a)) increases as expected because its producers are
also increasing. The hypertrophic adipocytes and increasing F4/80hi macrophages con-
tribute to the increase seen in TNF-α. While Th1 cells also produce TNF-α, they are not
causing the increase in concentration because they are constant in cell count, as explained
later.

The plot for MCP-1 gene expression (Figure 2(b)) shows the expected increase in MCP-1
concentration due to the increasing number of pro-inflammatory macrophages and the
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presence of hypertrophic adipocytes in the system. Since the solution for MCP-1 is in-
dependent of the three data points, it does not show the very large drop that occurs in
MCP-1 gene expression in the first 35-day period. However by observing the solutions,
this decrease in the data could correlate to the drop in the number of F4/80hi macrophages
during the same time period. Discrepancies lie in the period from Day 70 to Day 140
where the solution shows a moderate increase and the raw data shows a fairly constant
MCP-1 gene expression. One would predict a greater increase in MCP-1 as the F4/80hi

macrophages drastically increase.

Figure 9, below, shows very unique behavior of Th1 cells in the system. Regardless of the
initial condition, the Th1 cell count stabilizes quickly to a constant population. Since the
Th1 cell population remains constant, the percentage of Th1 will vary according to the
rest of the system. As the macrophages decrease, the Th1 percentage naturally increases
and finally when the macrophage percentage increases, the Th1 percentage will decrease.
The nature of the Th1 cells needs to be further explored as it is surprising to see a constant
cell count indicating the possibility of a missing component in Equation (5).

Figure 9: Th1 cell population with varying initial conditions.

Since IFN-γ is produced by Th1 and F4/80hi macrophages and Th1 cells are constant
in our system, pro-inflammatory macrophages are responsible for the changes in IFN-γ
concentration.

The Treg solution (Figure 5(a)) is somewhat surprising considering the solution for the
percentage of Th1 cells. Because chronic inflammation is dominated by pro-inflammatory
molecules, the percentage of Treg cells is expected to increase at a slower rate than the Th1
cells. The solution shows, even though the percentage of Treg decreases from Day 35 to
Day 140, the percentage decreases less than the percentage of Th1 cells.

The solution for IL-10 gene expression (Figure 5(b)) correlates to the F4/80lo macrophage
solution. Since F4/80lo macrophages produce IL-10 it is fitting for the IL-10 solution to
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mimic that of the F4/80lo macrophage curve. The IL-10 solution also correlates well with
the Treg solution because Treg cells produce IL-10.

Limitations exist and assumptions must be identified when observing the model. The
first issue lies in the data used to select the parameters and to judge the validity of the
model. As discussed in the Model and Methods section, the sparsity of data as well as the
units of the data both add challenges to the modeling.

The design of the model reflects the interactions of the macrophages, T cells, chemokines,
and cytokines that cause chronic inflammation, after the onset of adipocyte hypertrophy.
The model does not account for the time period in which the subject becomes obese. Us-
ing body weight data for our study of interest by Guri et al., we track average adipocyte
sizes over a period of 140 days, and note Day 35 as being a threshold for problematic
adipocyte hypertrophy [7]. Hence the Day 0 data was not used in our model. In addi-
tion, the MCP-1 data acquired was questionable due to the sporadic nature of the results.
When finding parameters, we are only confident in using the F4/80hi, F4/80lo, Th1 and
Treg data for our base platform. This constitutes an over-parameterized problem de-
creasing the confidence in our initial conditions and model and leaving ample room for
improvement in the future when more data is available.

The model must be confined within some set of biological boundaries. The limited scope
of the model almost certainly accounts for some of the discrepancies between the data
and the model, but the immune system encompasses many systems in the body along
with various other proteins and cell types. We ignored many of these components in this
model to simplify a complex problem. Immune cells, such as monocytes, travel through-
out the body via blood and lymph, but our model isolates the specific destination of these
immune cells, the white adipose tissue due to the well-established significance of intra-
abdominal fat inflammation. The F4/80 macrophages, Treg, Th1 cells and specific corre-
sponding proteins, IL-10, IFN-γ, TNF-α, and MCP-1 are extracted from the SVF as focal
points for our model. All other components of the SVF are assumed to remain constant
in our model.

Ultimately a model should reasonably project into the future, but this model is designed
for the small 105-day experimental period of adipocyte hypertrophy. As seen by Fig-
ure 10, expanding the time span causes the model to fail.
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Figure 10: F4/80hi macrophage population.

At about 535 days, the F4/80hi macrophages count grows to nearly 1 million cells, which
is an unreasonable increase from the initial condition of about 10 cells. We must adjust
the system of equations in order to apply the model beyond Day 140.

5 Conclusion and Future Work

With obesity continuing to grow as a pandemic, national governments such as the United
States have established initiatives to reduce the number of obese citizens over a certain
time frame [5]. This makes understanding obesity-related inflammation both timely and
urgently needed.

We have developed a mathematical model to quantify the molecular and cellular interac-
tions of chronic inflammation. We fit the solution for the model to the experimental data.
The F4/80hi macrophages increase at a steep rate. The F4/80lo macrophages and T regula-
tory cells also increase but at a lesser rate than the F4/80hi macrophages. The chemokine
and cytokine levels all also increase which is expected due to the increase in the num-
bers of cells that produce these proteins. One consequence of higher cytokine levels, for
example, is increased TNF-α levels have been linked to increased insulin resistance [1].

The solution also presents two major discrepancies from the expected results: the percent-
age of Th1 cells decreases, and in looking at the cell count, the Th1 population rapidly
decreases to an equilibrium where it resides for the remainder of the time. The other
unexpected result is the initial decrease in the percentages and cell populations for both
macrophage types and both T cell types.

The limitations and assumptions of the model allow for improvements and further work
on the continuous model. The model’s simulation capabilities start at Day 35, approxi-
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mately when adipocyte hypertrophy sets in. Extending the model to include Day 0 in-
formation will improve the biological relevance of the model. Understanding how the
adipose cells reach hypertrophy and the immune system’s response in the first 35 days is
just as important as understanding what occurs in the adipose tissue after the adipocytes
reach hypertrophy.

Similarly, extending the model to accurately reflect the progression of chronic inflamma-
tion beyond 140 days would improve the model’s value. While the current model has
the capability of simulating beyond 140 days, the accuracy of the results are questionable
since there is no data for extended time spans currently available to validate the model.
The ability to project the changes in chronic inflammation over an experimental subject’s
lifespan makes the model easier to apply for future research. In addition, having a model
that is valid over extended periods of time reduces the necessity of experimental research
to gain valuable insight into a biological system.

Another suggestion for further work is to examine the existence of equilibrium at the
point in time where adipocytes stop enlarging and the average adipocyte size remains
constant. This research analyzes the equilibria that occur once the adipocyte reaches hy-
pertrophy, but the existence of equilibrium at the end of adipocyte swelling is much more
relevant. If there is a stable equilibrium where average adipocyte size remains constant,
the model says chronic inflammation increases a finite level even without intervention.
This knowledge would be applicable to research on both the escalation and treatment of
chronic inflammation.

A highlight of future work is adding the effect of drug treatments to the model, which
also promises to give a better and more relevant system of equations. Similarly, find-
ing a way to incorporate the relationship between inflammation and insulin resistance
would be extremely beneficial. If the model could accurately reflect drug treatments’ role
in chronic inflammation, a better understanding of how chronic inflammation progresses
could result. The drug treatment model could also lead to new ideas for research both
in the function of the immune system and in the drugs used to treat chronic inflamma-
tion. The research that could stem from the system of equations modeling capabilities
could lead to newer, more effective drugs that treat chronic inflammation with fewer side
effects.

Our model and the corresponding solution have positive results. The solution reflects
what is known to occur as chronic inflammation progresses. The solution does, how-
ever, present some questions about the validity of the system. The discrepancies with the
biology could result from the limitations of the data, numerical error, or the absence of
key components in the system of equations. Even with the inconsistencies, our model
can improve by incorporating more data, more significant variables, or even by simply
modifying the equations to better imitate the biological interactions. While the model is
currently unrefined, it has the potential to grow and develop into a future work benefiting
research on obesity, chronic inflammation, and type 2 diabetes mellitus.
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