
Parameter Estimation in Differential Equations:

A Numerical Study of Shooting Methods

Franz Hamilton

Faculty Advisor: Dr. Timothy Sauer

January 5, 2011

Abstract

Differential equation modeling is central to applications of mathematics to science

and engineering. When a particular system of equations is used in an application, it

is often important to determine unknown parameters. We compare the traditional

shooting method to versions of multiple shooting methods in chaotic systems with

noise added and conduct numerical experiments as to the reliability and accuracy

of both methods.

1 Introduction

Modeling by differential equations is important in applications. It is used in a variety

of fields to accurately depict the physical state of a system. Accurately describing the

system allows for future behavior to be predicted. This is particularly useful when looking

at applications in chemistry, engineering, physics and other disciplines.

A differential equation model is designed to capture as much of the system behavior

as possible. These differential equations often have parameters. Some parameters may

be calculated from first principles or known from literature. However, it is extremely

common that other parameters need to be fitted from observed data.

In this article, we will restrict ourselves to problems that arise in chaotic dynamics.

In chaotic systems, the trajectories are sensitive to small changes in the initial conditions

as well as the parameters, making parameter estimation even more difficult. Due to these

sensitivities, there is always the danger of diverging from the correct trajectory.

For our study we assume a system of n coupled ordinary differential equations in vari-

ables x1, . . . , xn. In real world problems, it is rare to be able to simultaneously measure

16Copyright © SIAM
Unauthorized reproduction of this article is prohibited

the values of all the dynamical variables at all time points and sometimes these dynam-

ical variables are not known at all. For this reason we will assume in our analysis the

value of only one variable, say x1, is available for observation. To each equation we add

a white noise term. From the observed x1 variable we want to determine the parameters

in the systems as well as the initial conditions of x1, . . . , xn. We will investigate the use

of shooting methods in fitting parameters with a particular interest in the method of

multiple shooting.

The traditional shooting method (details for example can be found in [9]) can be

used to solve boundary value problems in ordinary differential equations. Given a set of

boundary values, the initial condition of the system is guessed and the resulting solution

is compared with the boundary values. If the boundary values are not met, then the

initial condition is adjusted, according to some predetermined iterative protocol, until the

solution converges to the correct boundary values. A bisection or Newton-type iteration

is often used for this purpose.

For parameter estimation problems, applying the traditional shooting method requires

a slightly different approach. Now we are not only trying to adjust initial conditions but

also parameters to match the boundary value. Due to the added number of unknowns,

we may need to observe the trajectory at more points to aid in the parameter fitting.

The single shooting method applied to parameter estimation uses a single initial con-

dition to produce a trajectory that attempts to fit the noisy data points. This can be

particularly problematic when considering the dynamics of chaotic systems, which are by

definition sensitive to initial data. The idea of multiple shooting was introduced by von

Domselaar and Hemker [1], further developed by Bock [4] and Baake et al. [2] and dis-

cussed in an interesting review by Voss et al. [5]. Multiple shooting takes the traditional

boundary value problem and considers it as a multi-point boundary value problem. This

allows for multiple initial values to be produced along the desired time interval, lessening

the impact of trajectory divergence for chaotic dynamics. Once we apply the multiple

shooting approach to our problem, we see that considering it as a multi-point boundary

value problem simplifies the process of data fitting, particularly when considering chaotic

data.

Adjusting initial conditions and parameters to fit either one or multiple trajectories to

data leads to a large nonlinear least squares problem. It becomes a nonlinear least squares

problem due to the complicated dependence of trajectories on parameters. Therefore, it-

erative methods are needed to solve this problem and in our instance we will be using the

Gauss-Newton and Levenberg-Marquardt iterative method.

In Section 2 of the paper we will discuss parameter fitting with both a single shoot-

ing and multiple shooting approach. We will demonstrate how to use the Gauss-Newton

17Copyright © SIAM
Unauthorized reproduction of this article is prohibited

method to solve the nonlinear least squares problem in both single and multiple shooting

instances. In Section 3 we will discuss parameter fitting for two example chaotic systems,

giving the appropriate results. We will address the use of both Gauss-Newton as well as

Levenberg-Marquardt. In Section 4 we will make some concluding remarks about param-

eter fitting for the two systems and about the overall effectiveness of single shooting and

multiple shooting.

2 Shooting Methods for Parameter Estimation

We will reconstruct the value of the parameters as well as the respective initial values for

each differential equation in the system. We initially generate noisy data points by setting

all parameters and initial values in the system to what we define as the system’s correct

values. In attempting to reconstruct parameters from noisy data we investigate the use of

a shooting method, which uses a Gauss-Newton or Levenberg-Marquardt iterative method

to solve the nonlinear least squares problem that arises. We will compare two types of

shooting methods: single shooting and multiple shooting.

2.1 Reconstruction with Single Shooting

Figure 1 shows the single shooting method schematically. The solution emanates from

an initial value, or shooting node. For the single shooting method, one solution segment

is generated. We would like to minimize the length of the vertical line segments which

represent the difference between the values of the solution segment and the noisy data

points represented by the red circles. We will assume throughout that the noise is Gaussian

and therefore it will be convenient to minimize the differences in the least squares sense.

The goal of a shooting method is to alter the values at the shooting nodes so that the

values of the solution segment approximate the noisy data points as closely as possible.

We assume a parametrized system of the form

ẋ = f1(x, y, z, ~p)

ẏ = f2(x, y, z, ~p)

ż = f3(x, y, z, ~p)

where only one of the three equations is observable. Without loss of generality, we assume

only the x variable is observable. Furthermore, the observations are noisy. In particular

the initial conditions of ẏ and ż are not known at all. Denote by d0, d1, . . . , dm the x

coordinate of our noisy data points and denote by ~p a vector of unknown parameters.

Define the residual vector, r, as the following:

18Copyright © SIAM
Unauthorized reproduction of this article is prohibited

Figure 1 – Schematic of the single shooting method. The red circles represent noisy data points
generated from a differential equation. The blue circle represents the shooting node and the blue
curve is the solution segment resulting from the shooting node. The red lines represent the difference
between the data points and the values of the solution segment.

r =


x(t0,~c, ~p; t1)− d1
x(t0,~c, ~p; t2)− d2

...

x(t0,~c, ~p; tm)− dm
cx − d0

 (1)

Let (x(t), y(t), z(t)) = (x(t0,~c, ~p; t), y(t0,~c, ~p; t), z(t0,~c, ~p; t)) denote the solution of the

system (calculated without noise) with initial value vector ~c at time t0 with parameter

vector ~p. In our examples, ~c and ~p will each have three entries (cx, cy, cz and p1, p2, p3

respectively) since the two systems we will be considering both have three parameters

and three initial values (one for each differential equation in the system). Since we are

only observing the x variable, we consider only x(t0,~c, ~p; t) in the formulation of r. The

differences between the values of the solution of the system and the data points are

represented in the upper part of r and the last entry in r represents the difference between

the value of the shooting node cx and the data point. Pictorially, r will contain the lengths

of the red lines in Figure 1.

The goal is to solve

min~c,~p||r||22 (2)

Since r depends non-linearly on ~c, ~p, we will solve (2) using the Gauss-Newton method

first. The Gauss-Newton method [9] is an iterative method used to solve nonlinear least

19Copyright © SIAM
Unauthorized reproduction of this article is prohibited

squares problems. Implementing it will minimize the difference between the solution

segment and the noisy data points.

We will use the Gauss-Newton method to choose parameters ~p and initial values ~c to

minimize r. It is an iterative method whose ith step is

J(wi)TJ(wi)vi = −J(wi)T r(wi) (3)

wi+1 = wi + vi

We will denote by wi a vector of guesses at step i for the parameters and initial values we

are trying to reconstruct and define J = Dr to be the Jacobian of the residual vector, r.

Equation (3) is the heart of the Gauss-Newton method. We solve for vi which essentially

is an adjustment vector for the values in wi. We add vi to wi and generate the new

iteration, wi+1. To generate the next iteration we put the values in wi+1 into our system

and generate a new solution via the shooting method. From this we re-define r and J

and proceed to equation (3) to solve for wi+2. This process is repeated until convergence

to within 10−6 accuracy is reached.

As (3) shows, the Gauss-Newton iteration requires calculation of J , the Jacobian

matrix of the vector r. Calculating the Jacobian requires extra, auxiliary differential

equations known as variational equations [6] to be solved along with the original system.

We use a numerical ODE solver, with appropriate step size, to follow the variational

equations. Given a differential equation u̇ = f(u, ~p) where u ∈ Rn and ~p ∈ Rk define

F (~c, ~p;T) = u(T) where u(t) is the solution to the following:

u̇ = f(~c, ~p)

u(0) = ~c

F (~c, ~p; t) satisfies the differential equation, therefore d
dt
F (~c, ~p; t) = f(F (~c, ~p; t), ~p) and

F (~c, ~p; 0) = ~c. Using the chain rule:

d
dt

[DF (~c, ~p; t)] = Df ·D

[
F

~p

]
where D represents differentiation with respect to ~c and ~p. This can then be written as

the following:

[
∂Ḟ
∂cx

∂Ḟ
∂cy

∂Ḟ
∂cz

∂Ḟ
∂p1

∂Ḟ
∂p2

∂Ḟ
∂p3

]
=
[

∂f
∂u1

∂f
∂u2

∂f
∂u3

∂f
∂p1

∂f
∂p2

∂f
∂p3

]
·


∂F
∂cx

∂F
∂cy

∂F
∂cz

∂F
∂p1

∂F
∂p2

∂F
∂p3

0 . . . 0 1
...

.

0 0 1


Defining z = ∂F

∂~c
and q = ∂F

∂~p
we can write the above as:

20Copyright © SIAM
Unauthorized reproduction of this article is prohibited

[
ż1 ż2 ż3 q̇1 q̇2 q̇3

]
=

[
∂f
∂~u

∂f
∂~p

]
·


z1 z2 z3 q1 q2 q3

0 . . . 0 1
...

.

0 0 1


With the above we are able to construct the Jacobian matrix J needed for Gauss-Newton.

Differentiating (1) with respect to the 6 variables x, y, z, p1, p2, p3 yields the Jacobian

matrix 

z1(t1) z2(t1) z3(t1) q1(t1) q2(t1) q3(t1)

z1(t2) z2(t2) z3(t2) q1(t2) q2(t2) q3(t2)

...
...

...
...

...
...

z1(tm) z2(tm) z3(tm) q1(tm) q2(tm) q3(tm)

1 0 0 0 0 0


which we can write as:



∂F
∂cx

(t1)
∂F
∂cy

(t1)
∂F
∂cz

(t1)
∂F
∂p1

(t1)
∂F
∂p2

(t1)
∂F
∂p3

(t1)

∂F
∂cx

(t2)
∂F
∂cy

(t2)
∂F
∂cz

(t2)
∂F
∂p1

(t2)
∂F
∂p2

(t2)
∂F
∂p3

(t2)
...

...
...

...
...

...

∂F
∂cx

(tm) ∂F
∂cy

(tm) ∂F
∂cz

(tm) ∂F
∂p1

(tm) ∂F
∂p2

(tm) ∂F
∂p3

(tm)

1 0 0 0 0 0


where cx, cy, cz represent our three initial values and p1, p2, p3 represent our three param-

eters.

2.2 Multiple Shooting Approach

The single shooting approach is often numerically unstable. Slightly incorrect parameters
can cause the estimated trajectory to diverge from the correct trajectory after a small
amount of time. This is clearly seen when considering chaotic systems where systems can
be extremely dynamic [10].

Multiple shooting uses multiple shooting nodes, rather than a single shooting node,
along the time interval in an attempt to match the trajectory of the data points more

21Copyright © SIAM
Unauthorized reproduction of this article is prohibited

accurately. The trade-off for extra accuracy in the trajectories is several extra initial
conditions added to the list of parameters to be determined. Figure 2 shows the idea
behind multiple shooting. The blue circles represent our k shooting nodes and each
shooting node has a solution segment to the next shooting node that spans m + 1 data
points. At each shooting node, our vector of initial values (denoted ~cj) will change to
reflect the current shooting node. Once again ~cj is a vector of initial values for our system
and since we have three differential equations in our system, ~cj will have three entries
(cxj, cyj, czj). For k shooting nodes we will have k initial value vectors ~c1,~c2, . . . ,~ck.

Denote by d0, d1, . . . , dkm the x coordinate of our noisy data points. For some data

Figure 2 – Schematic of the multiple shooting method. The red circles represent noisy data points
generated from a differential equation. The blue circles represent the shooting nodes and the blue
curves are the solution segments resulting from the shooting nodes. The red lines represent difference
between the data points and the values of the solution segments. In this schematic k = 3 and m = 3.

points, there are two differences (represented by the red lines) that need to be minimized:
the difference between the value of the shooting node cxj (since we are observing the x
variable) and the data point and the difference between the values of the solution segment
from the previous shooting node and the data point. Once again we use Gauss-Newton

22Copyright © SIAM
Unauthorized reproduction of this article is prohibited

to minimize these differences. For multiple shooting define the residual vector

r =



x(t0,~c1, ~p; t1)− d1

x(t0,~c1, ~p; t2)− d2
...

x(t0,~c1, ~p; tm)− dm

x(tm,~c2, ~p; tm+1)− dm+1

x(tm,~c2, ~p; tm+2)− dm+2

...

x(tm,~c2, ~p; t2m)− d2m

x(t2m,~c3, ~p; t2m+1)− d2m+1

x(t2m,~c3, ~p; t2m+2)− d2m+2

...

x(t(k−1)m,~ck, ~p; t(k−1)m+1)− d(k−1)m+1

...

x(t(k−1)m,~ck, ~p; tkm)− dkm

cx1 − d0

cx2 − dm
...

cxk − d(k−1)m


Once again we assume only the x variable is observable and ~cj is an initial value vector

and ~p is a parameter value vector. In our examples, ~cj and ~p will each have three entries

(cxj, cyj, czj and p1, p2, p3 respectively) since the two systems we will be considering both

have three parameters and three initial values (one for each differential equation in the

system). The differences between the values of the solution segments and data points are

represented in the upper part of r and the differences between the values of the shooting

nodes and the data points are represented in the lower part of r where cxj is the jth

shooting node. Pictorially, r will contain the lengths of the red lines in Figure 2. The

Jacobian J is computed in a similar fashion to the discussion in Section 2.1.

3 Results

We compare the performance of single shooting to multiple shooting in two different sys-

tems: the Rössler system and the Lorenz system. For both systems we will reconstruct

the three initial values in addition to the three parameters, though it is the reconstruction

of the parameters that we are mainly interested in. Due to our use of the Gauss-Newton

or Levenberg-Marquardt iterative method, there exists the possibility that our iteration

could diverge. Often this is the case when our initial guesses are too distant from the

actual value we are trying to reconstruct. Due to this, we evaluate success in two ways:

23Copyright © SIAM
Unauthorized reproduction of this article is prohibited

Figure 3 – Example of the Rössler system with noise. Curve represents true solution while circles
represent noisy data points at a noise level of 0.6

First, whether or not the iteration converges to the neighborhood of correct values, and

second, if they converge, the accuracy in finding the original values. We run 100 trials,

find the number of times our method converges to a finite parameter set and then find the

average and standard deviation of our results for the cases that converge. Of course, the

results are highly dependent on the nearness of the initial guesses (initial guesses used to

start Gauss-Newton and Levenberg-Marquardt are found in the captions of Figure 4 and

Figure 5 for the Rössler and Lorenz systems respectively). However they serve the pur-

pose of comparing the success of the algorithm among different number of shooting nodes.

3.1 Gauss-Newton

We first consider the results of the shooting methods when Gauss-Newton is used. When

fitting the three parameters in both chaotic systems we needed to use an under-relaxation

version of Gauss-Newton to aid convergence. The difference between Gauss-Newton and

the under-relaxation version is that the second line of equation (3) becomes:

wi+1 = wi + αvi

where 0 < α ≤ 1. This is needed due to the complexity of fitting three parameters. When

fitting one parameter, with the other two parameters fixed, then the under-relaxation

version of Gauss-Newton is not needed. For the Rössler system we used α = 0.55 and for

the Lorenz system we used α = 0.1. These values for α were chosen to be more or less

optimal after numerous trial runs for both chaotic systems.

We initially apply our method to the Rössler equations [8], a system of three differ-

24Copyright © SIAM
Unauthorized reproduction of this article is prohibited

(a) (b)

(c)

Figure 4 – Reconstruction of Rössler parameters a, b, c. We run 100 trials, find the number of times
our method converges and then find the average and standard deviation (shown as error bars) of our
results for the cases that converge. The correct parameters we are trying to reconstruct are a = 0.2,
b = 0.2 and c = 5.7 and we start our method at a = 0.05, b = 0.05 and c = 4. We also attempt to
to reconstruct initial values cx1

= 4.7820, cy1
= −8.7335 and cz1 = 0.0666 and we start our method

at cx1
= 4, cy1

= −8 and cz1 = 0. Dotted line indicates true value and marker color indicates
type of shooting used: red- single shooting, blue- multiple shooting with 3 shooting nodes, purple-
multiple shooting with 6 shooting nodes. Results are slightly displaced horizontally for readability.
(a) Approximation of parameter a. Correct value is a = 0.2. (b) Correct value b = 0.2. (c) Correct
value c = 5.7.

ential equations with three parameters and three initial values of the form:

ẋ = y − z
ẏ = x+ ay (4)

ż = b+ z(x− c)

We will look at noisy data points generated by this system over a time interval of [0, 25].

Noise will be added by attaching a white noise term to the Rössler equations:

ẋ = y − z + nξ1(t)

ẏ = x+ ay + nξ2(t) (5)

ż = b+ z(x− c) + nξ3(t)

25Copyright © SIAM
Unauthorized reproduction of this article is prohibited

where ξi(t) represents standard white noise of unit variance, and n is the noise level to be

chosen later. Figure 3 shows the influence of noise on the system. We will observe the x

differential equation and apply the shooting methods described above. Our goal here is

to reconstruct the three Rossler parameters: a, b, c.

Table 1 and Figure 4 show the results of our reconstruction of the three Rössler

Convergence Table for Parameters a, b, c
Number of Shooting Nodes Noise Level Covergence (%)

1
0.2 56
0.4 33
0.6 29

3
0.2 74
0.4 42
0.6 36

6
0.2 92
0.4 69
0.6 44

Table 1 – The table above summarizes the probability of convergence of our trials for the Rössler
equations with noise. The number of times the Gauss-Newton method converged, out of 100 trials,
is listed.

parameters. The first thing we notice is that as intuition suggests, the error bars increase

in size as the noise level increases for the various shooting types. In terms of performance

advantage, we see that multiple shooting presents an advantage over single shooting.

The first indicator comes from looking at the convergence percentage. An increase in the

number of shooting nodes causes the number of times our Gauss-Newton iteration diverges

to decrease. So in terms of convergence percentage, six shooting nodes performs the best,

three shooting nodes the second best and one shooting node the worst. In looking at

the accuracy of the parameter reconstruction, we see that multiple shooting once again

performs better than single shooting. Increasing the number of shooting nodes improves

the accuracy of the average values for the parameters as well as decreases the size of the

error bars.

The Lorenz equations [3] form a system of three differential equations that have an

importance in climate and weather predictions. A version of the Lorenz equations with

white noise is

26Copyright © SIAM
Unauthorized reproduction of this article is prohibited

(a) (b)

(c)

Figure 5 – Reconstruction of Lorenz parameters s, r, b. We run 100 trials, find the number of times
our method converges and then find the average and standard deviation (shown as error bars) of our
results for the cases that converge. The correct parameters we are trying to reconstruct are s = 10,
r = 28 and b = 8/3 and we start our method at s = 8, r = 26 and b = 5/3. We also reconstruct
initial values cx1 = −8.0969, cy1 = −6.9108 and cz1 = 28.0485 and start our method at cx1 = −7.2,
cy1

= −6 and cz1 = 27. Dotted line indicates true value and marker color indicates type of shooting
used: red- single shooting, blue- multiple shooting with 3 shooting nodes, purple- multiple shooting
with 6 shooting nodes. Results are slightly displaced horizontally for readability. (a) Approximation
of parameter s. Correct value is s = 10. (b) Correct value is r = 28. (c) Correct value is b = 8/3.

ẋ = −sx+ sy + nξ1(t)

ẏ = −xz + rx− y + nξ2(t) (6)

ż = xy − bz + nξ3(t)

where s, r, and b are the unknown parameters within the system. The noisy data points

are generated from the x equation over a time interval of [0,5].

Table 2 and Figure 5 show the results of our reconstruction of the three Lorenz

parameters. Once again, we see that multiple shooting offers an advantage over single

shooting. Looking at the convergence percentage, an increase over one shooting node

causes the number of times our Gauss-Newton iteration diverges to decrease. However,

unlike in the Rössler example there is no observable advantage of using six shooting nodes

over three shooting nodes. Looking at the parameter reconstruction, we yet again see that

27Copyright © SIAM
Unauthorized reproduction of this article is prohibited

Convergence Table for Parameters s, r, b
Number of Shooting Nodes Noise Level Covergence (%)

1
0.2 39
0.4 24
0.6 21

3
0.2 100
0.4 100
0.6 100

6
0.2 100
0.4 99
0.6 94

Table 2 – The table above summarizes the probability of convergence of our trials for the Lorenz
equations with noise. The number of times the Gauss-Newton method converged, out of 100 trials,
is listed.

multiple shooting offers a performance advantage in the form of more accurate average

values and smaller standard deviations. Amongst multiple shooting methods, we see that

there is no improvement in the accuracy of the reconstruction when using six shooting

nodes over three shooting nodes. One would assume that six shooting nodes would lead

to a better performance than three shooting nodes. However, it could be that for the

solution to the Lorenz system that we were looking at three shooting nodes was optimal.

3.2 Levenberg-Marquardt

Levenberg-Marquardt [7] is an alternative to the Gauss-Newton method that is often

utilized when the Gauss-Newton approximation results in an ill-conditioned problem.

Just like Gauss-Newton, it minimizes the difference between the value of the solution

segment and the noisy data points.

We use the Levenberg-Marquardt method to choose parameters ~p and initial values ~c

to minimize the residual vector r. It is an iterative method whose ith step is

(J(wi)TJ(wi) + λdiag(J(wi)TJ(wi)))vi = −J(wi)T r(wi) (7)

wi+1 = wi + vi

Here λ is a damping parameter to be chosen. Notice that if λ = 0 then we have (3), the

equation for the Gauss-Newton method. The setup for our problem is the same as defined

in Section 2, we just replace equation (3) with equation (7).

Use of Levenberg-Marquardt though requires determining what value λ should be. λ

28Copyright © SIAM
Unauthorized reproduction of this article is prohibited

could be fixed to a value, but what is more likely to be done is that λ is adjusted based

on the success of the Levenberg-Marquardt iteration. At each iteration, the norm of the

current residual vector is compared with the norm of the previous iteration’s residual

vector. If the norm of the current residual vector is less than the norm of the previous

residual vector, than you reduce λ by a factor of k where k is a number to be determined.

Otherwise, λ is kept the same.

A large value of λ assures convergence of the Levenberg-Marquardt iteration but less

accurate parameter reconstruction, while a smaller value of λ trades likelihood of con-

vergence for accuracy in the parameter reconstruction. We took the approach to start λ

large and progressively make it smaller at a rate determined by k. For both systems we

set λ = 10000 and k = 2. The values for λ and k were chosen to be more or less optimal

after numerous trial runs for both chaotic systems.

We find that use of Levenberg-Marquardt more or less generates the same plots as

Figure 4 and Figure 5. This makes sense since as λ gets smaller and smaller Levenberg-

Marquardt essentially becomes Gauss-Newton. Where you can see the real difference is

in the convergence of the shooting methods. For the Lorenz system, use of Levenberg-

Marquardt yields convergence every time for both three and six shooting nodes and signif-

icantly increases the convergence percentage of the single shooting method as compared

to when Gauss-Newton was used. For the Rössler system, use of Levenberg-Marquardt

increased the convergence percentage for both single shooting and three shooting nodes

as compared to the Gauss-Newton results. We did not notice an increase in convergence

percentage for six shooting nodes. It is still unclear why this is the case.

4 Conclusion

Our goal was to investigate the accurate reconstruction of unknown parameters in two

systems of differential equations: the Rössler system and the Lorenz system. Given noisy

data points observed from the x differential equation and the actual equations themselves,

we utilized shooting methods to reconstruct the values of each system’s three parameters

at various noise levels.

We looked at a single shooting method and multiple shooting methods (consisting

of three and six shooting nodes), both of which used the Gauss-Newton or Levenberg-

Marquardt method to solve the nonlinear least squares problem that arose. We wanted

to compare the performance of both shooting methods in the reconstruction of the three

Lorenz and three Rossler parameters. This comparison was done in regards to two sets

of results: the number of times our Gauss-Newton or Levenberg-Marquardt method con-

verged in the shooting method and in the case of convergence the accuracy of the shooting

29Copyright © SIAM
Unauthorized reproduction of this article is prohibited

method in finding the correct values.

We first examined the shooting methods with Gauss-Newton. In the case of the Rössler

system, Table 1 and Figure 4 illustrate the performance advantage of using multiple shoot-

ing over single shooting. The convergence percentage of our method increases with the

use of multiple shooting. In terms of the actual reconstructed values, multiple shooting

delivers more accurate average values for the parameters with a smaller standard devia-

tion. Amongst multiple shooting methods, we see an increase in convergence percentage

as well as an increase in the accuracy of the reconstructed values when we jump from

use of three shooting nodes to six shooting nodes. The parameter reconstruction in the

Lorenz system yields somewhat similar results to what we found in the Rössler system.

Table 2 and Figure 5 show that multiple shooting once again has a performance advantage

over single shooting in terms of convergence percentage and accuracy of the reconstructed

values. We also considered the shooting methods with Levenberg-Marquardt instead of

Gauss-Newton. What we found was that the parameter reconstruction was comparable

to that done with Gauss-Newton. The main advantage in using Levenberg-Marquardt is

that for the most part it increases the likelihood of convergence for the shooting methods.

We were able to conduct a numerical study on shooting methods in fitting parameters

to chaotic data. In particular, we examined parameter fitting in both the Rössler and

Lorenz systems. In both systems, we found that methods of multiple shooting perform

better than the traditional single shooting method.

30Copyright © SIAM
Unauthorized reproduction of this article is prohibited

References

[1] B. von Domselaar, P. Hemker. Nonlinear parameter estimation in initial value prob-

lems. (1975).

[2] E. Baake, M. Baake, H. Bock, K. Briggs. Fitting ordinary differential equations to

chaotic data. Phys. Rev. 45A, 5524 (1992).

[3] E. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sceinces, 20,

(1962).

[4] H. Bock. Recent advances in parameter identification for ordinary differential equa-

tions. Progress in Scientific Computing, 2, 95-121 (1983).

[5] H. Voss, J. Timmer, J. Kurths. Nonlinear dynamical system identification from un-

certain and indirect measurements. Int. J. Bif. Chaos, 14, 1905-1933 (2002).

[6] J. Riley, M. Bennett, E. McCormick. Numerical integration of variational equations.

Mathematics of Computation, 21, 12-17 (1967).

[7] M. Heath. Scientific Computing An Introductory Survey. McGraw-Hill (2002).

[8] O. Rossler. An equation for continuous chaos. Physics Letters, 57A, 5 (1976).

[9] T. Sauer. Numerical Analysis. Pearson Addison-Wesley (2006).

[10] W. Horbelt, T. Muller, J. Timmer, W. Melzer, K. Winkler. Analysis of nonlinear

differenatial equations: parameter estimation and model selection. Medical Data

Analysis, 152-158 (2000).

31Copyright © SIAM
Unauthorized reproduction of this article is prohibited

