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Abstract

One of the main problems in mathematical finance is to find the fair price of var-
ious contracts that convey a right, known as options, which depend on the price of
other financial assets like stocks, known as the underlying assets. A "fair" price for
some of these contracts may not be obtained analytically. In this manner, Monte Carlo
simulations offer a convenient way to compute the fair price numerically, relying on
the approximation of an expected value by the average of the simulated values. We
biefly discuss some common random number generators, including a combined inverse
congruential random number generator, in Monte Carlo simulations to compute the
fair price of a European call option and to analyze the sensitivity of the price with
respect to the changes in the key model parameters.
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1 Introduction

1.1 Options

An option is a financial contract that gives the holder of the contract the right to sell or
buy an asset, but the holder does not have to exercise this right. Moreover, the purchase of
an option requires an upfront payment. There are two basic types of options: call and put
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options. A call option gives the holder the right to buy an asset by a certain date (expiration
date) for a certain price (strike price). On the other hand, a put option gives the holder the
right to sell an asset by a certain date for a certain price. Furopean options are options that
can be only exercised on the expiration date [4]. Even though there are many analytical
formulas and online tools to compute the fair price (premium) for such contracts under
various simplifying conditions (e.g. constant model parameters, complete markets, etc), it
becomes a difficult task to compute the price of an option when more realistic assumptions
are used. There are no explicit formulas available in such cases and the computations should
be done numerically. In this paper, by using simulation-based probabilistic methods, we
describe and analyze how such a price can be computed numerically.

In sections two and three, we briefly describe and compare some well-known random
number generators and their statistical properties. The section four is about the stochastic
modeling of the financial market structure for our problem. We show how the numerical
results compare with the values computed from the well-known Black-Scholes formula. We
then conclude in section 5.

2 Random Number Generators

Since many statistical and stochastic systems in science, engineering, cryptography and
economics rely on Monte Carlo simulations, which use (pseudo)random numbers, researchers
in such areas need reliable "random number generators" (RNGs for short) for their work.
There are various methods to generate such pseudo-random numbers. We discuss some well
known RNGs below before starting the Monte Carlo simulations for financial applications.

2.1 Linear Congruential Generator

The linear congruential generator (LCG) is one of the oldest and best known pseudo-random
number generators. The LCG was first proposed by D.H. Lehmer in 1948. The LCG uses a
recursive formula: z; = (ax;_1 + ¢)modm to generate a series of pseudo-random numbers x;,
where 0 < z; < m. The first number in the series, xg, is the seed, a is the multiplier, ¢ is the
increment and m is the modulus [2]. LCG algorithms have faster and simpler computations
compared to other reasonable alternatives, but they are tractable.

In 1988, S.K. Park and K.W. Miller proposed a "minimal standard" LCG. The main aim
of the Park and Miller was to create a LCG algorithm that could be ported to all systems
available at that time. The minimal standard LCG is also known as the Park—Miller random
number generator, which uses the parameters a = 16087, ¢ = 0, and m = 23! — 1 in the
LCG formula. The modulus, 23! — 1 = 2,147, 483,647, is the period of the generator, and
is also a Mersenne number that is prime [7]. This period is considered too small for serious
simulation-based work in science, engineering and financial economics applications. Besides
being tractable and having relatively small period, this generator and in general LCGs are
also criticized due to the lattice patterns and serial correlations issues that are not good
indicators of ideal RNGs (e.g. see [2, p. 15-16], and the references there). Many of the
alternative (non-linear) generators are much slower compared to LCGs but thanks to the
advances in technology in regards to the computational power and efficiency, such alternatives
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are becoming more and more popular for more complex applications. Due to the desirable
"randomness" properties, we discuss and use only inversive congruential generators (ICGs in
short) together with their simple modifications (explicit and combined ICGs) in this paper.
The reader may consult to [5, p. 15-16] and [2] for more information about other linear and
nonlinear alternatives.

2.2 Inversive Congruential Generator

As a first nonlinear alternative to the LCGs, we considered the inversive congruential gener-
ators (ICGs, in short). After the ICGs were first proposed by Fichenauer and Lehn in 1986,
various research papers were published on their good uniformity properties. An ICG doesn’t
show the regular lattice patterns or apparent serial correlations like LCGs but some spacing
issues were still reported in some randomness tests (see [2, p. 36-37], [6] and the references
there for more information). Another alternative that shares some of the similar nice the-
oretical and empirical properties is explicit (EICG) inversive congruential generators. For
both of these generators, some extensive tables of parameters [3], and empirical comparisons
are available [6].

The ICG uses the modular multiplicative inverse (when it exists) to generate next
number in the sequence of pseudo-random numbers. The formula for the ICG is z; =
(ax;_; 4+ c)modm, where 0 < z; < m, x~ denotes the modular multiplicative inverse, a is the
multiplier, ¢ is the increment and m is the modulus. If = does not exists, then z; = ¢. The
ICG has a slow computation time and the choices for the modulus are restricted. There-
fore, ICG is not a very common choice for a random number generator [2]. The choices
for the modulus are restricted in order to achieve the full period m !. Hellekalek (1995)
proposes the following parameters: (a = 55,m = 1031,¢ = 1), (a = 103,m = 1033,¢c = 1),
(a = 481,m = 1039,c = 1), and (a = 66, m = 2027,c = 1) [3].2

2.3 Combined Inversive Congruential Generators

A way to improve the period and the randomness of certain RNGs (and to make them look
less tractable) is to combine more than one generator, e.g. by applying a module reduction to
a linear combination of a pool of RNGs. Intuitively, such "combined" generators are expected
to be more "random" with nice uniformity properties since they may produce numbers from
a richer finite set than each single generator with a more complex operation. However, the
combination of multiple generators doesn’t guarantee that the resulting generator is much
better than each generator in the combination, especially if the generators are correlated
with each other, possibly magnifying their "bad" properties. Below, we consider a pool of
generators from ICGs. This approach has some certain advantages: First of all, since the
moduli of the ICG generators are relatively small, the computational time resulting from the
complexity of the modular operations can be improved, especially in parallel computational
systems where each ICG generator can run in a different computer, independently of the
others. Secondly, combined ICGs still preserve the desired statistical properties of ICGs

!The maximal period is obtained if and only if 22 — cx — a is a primitive polynomial in the finite field of
{0,1,...p — 1}. See e.g. [6].
2See also the pLab project group website for similar combinations: http://random.mat.sbg.ac.at/
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that are discussed in section [?]. So such generators have a good potential to be more
popular in more complex (multiscale) simulation applications, for example when a quick and
precise price quote for a certain complex financial contract or insurance premium is needed.

2.3.1 Three-Source ICG

We first start with a three-source ICG where each (source) ICG generator has a prime (full)
period. The formula that we use for the three-source ICG in our simulations is u; = (3557 +
o5 + 5057 )modl, where x; is generated by ICG(a = 55,m = 1031,c = 1), y; is generated
by ICG(a = 103,m = 1033,c = 1), and z; is generated by ICG(a = 66, m = 2027,¢ = 1).
Since we want to simulate a uniform distribution from (0,1) (in short U(0, 1)), we divide
each ICG by its own modulus. Assuming that all the variables z,y and z have a U(0, 1)
distribution and are independent, the resulting variable u has also a (theoretically) U(0, 1)
distribution. The period for the three-source ICG is the product of the three prime moduli
[3]: 1031 x 1033 x 2027 = 2,158,801, 621, which is slightly larger than that of the minimal

standard LCG.

2.3.2 Four-Source ICG

Later on, we decided to improve the combined ICG by adding a fourth ICG. In this manner,
we came up with a four-source ICG. The formula for the four-source ICG is u; = (3557 + 10535 +
Tos5 + 3057 )modl, where x; is generated by ICG(a = 55,m = 1031,¢c = 1), y; is generated
by ICG(a = 103,m = 1033,¢ = 1), z; is generated by ICG(a = 481, m = 1039,¢ = 1) and
v; is generated by ICG(a = 66,m = 2027,c¢ = 1). The period for the four-source ICG is

approximately 2.242995 x 10*2, which is greater than the three-source ICG period.

3 Empirical Tests

In our statistical tests or the heuristic discussions for the random number generators, the
null hypothesis states that the output from a certain generator consists of independently
and identically distributed (i.i.d.) observations from U(0,1). The alternative says that the
sequence of such numbers doesn’t have this distribution. After comparing the basic statistical
summary (mean and standard deviation) of the sequence of the numbers generated, we
mainly consider two types of tests: the y? goodness-of-fit test and the Kolmogorov-Smirnov
test. There are many other tests and measures to assess the quality of the random number
generators, including spectral tests, lattice tests, Anderson-Darling tests, serial tests and
runs tests, among others (see e.g. [2] and [5] for these and other well-known tests including
the theoretical ones). Each test may be sensitive to some certain aspects of the alternative
hypotheses. Some publically available test batteries or suites consider a rich set of tests that
cover some common forms of the alternative hypotheses. Among them, the DIEHARD tests
of G. Marsaglia, the NIST Test Suite and TestUO1 of L’Ecuyer are well known. The TestU01
package includes most of the tests from the other suites and is usually preferred to others

[2].
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Figure 1: LCG and ICG scatterplots
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Figure 2: LCG and ICG histograms.
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3.1 Computing Time

One of the biggest drawbacks of the ICG compared to the LCG alternatives is the slow
computing time, mostly due to the operations to find the modular multiplicative inverse. So
the implementation of the three-source and the four-source ICGs are also slow.

Table 1: Comparison of computing time with improved version

Name n=100 n=1000 n=10,000
LCG(a=16807,m=23" —1) 2.0589 x 10~* 3.8077 x 10~* 0.0021
Three-Source ICG 0.1702 0.4112 3.9843
Four-Source ICG 0.0861 0.5481 5.4486
*seconds

3.2 Mean and Standard Deviation

Since our implementations of the minimal standard LCG and the combined ICGs are sup-
posed to resemble a U(0, 1) distribution, a way to assess the performance of a pseudo-random
number generator is to compare the mean and the standard deviation of a sample gener-
ated by the generators with the mean of U(0,1) distribution. Recall that for a U(0,1)

distribution, ¢ = 0.5 and ¢ = ,/% = 0.288675135. Overall, the performance of the ICGs

and combined ICGs were much better than the minimal standard LCG. In our simulations,
ICG(a = 66, m = 2027,c = 1) generator had the best performance in terms of being closer
to the theoretical mean and the standar deviation (see the tables below).

Table 2: Comparison of LCG and ICGs(n=100)

Name Mean Standard Deviation
LCG(a=16807,m=2%" — 1) 0.4778 0.3129
ICG(a=55,m=1031,c=1) 0.4930 0.2981
ICG(a=103,m=1033,c=1) 0.5119 0.2981
ICG(a=481,m=1039,c=1) 0.5058 0.2834
ICG(a=66,m=2027,c=1) 0.5039 0.3057
Three-Source ICG 0.5093 0.2907
Four-Source ICG 0.5057 0.2883

3.3 %2 Goodness of Fit Test and Kolmogorov-Smirnov Test

We performed two statistical tests, the y? goodness-of-fit test and the Kolmogorov-Smirnov
test, to assess the quality of our combined ICGs and compare it to the minimal standard LCG
(with about the same period). For these tests, we obtained 10,000 random numbers from each
RNG and divided them in 10 intervals: (0,0.1], (0.1, 0.2], (0.2, 0.3],(0.3,0.4], (0.4, 0.5],(0.5, 0.6],
(0.6,0.7], (0.7,0.8], (0.8,0.9],(0.9,1]. In these manner, we obtained a sample of size ten:
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Table 3: Comparison of LCG and ICGs(n=1000)

Name Mean Standard Deviation
LCG(a=16807,m=2%" — 1) 0.4971 0.2899
ICG(a=55,m=1031,c=1) 0.4992 0.2894
ICG(a=103,m=1033,c=1)  0.5004 0.2886
ICG(a=481,m=1039,c=1)  0.4992 0.2880
ICG(a=66,m=2027,c=1) 0.5002 0.2826
Three-Source ICG 0.4973 0.2889
Four-Source ICG 0.5050 0.2898

Table 4: Comparison of LCG and ICGs(n=10000)

Name Mean Standard Deviation
LCG(a=16807,m=2! — 1) 0.4950 0.2866
ICG(a=55,m=1031,c=1) 0.5001 0.2885
ICG(a=103,m=1033,c=1)  0.4990 0.2888
ICG(a=481,m=1039,c=1) 0.4994 0.2888
ICG(a=66,m=2027,c=1) 0.4999 0.2885
Three-Source ICG 0.5021 0.2879
Four-Source ICG 0.4993 0.2903

X1, Xo, X3, Xy, X5, X, X7, X3, X9, Xq9. Each random variable, X;, represents the frequency
of the random numbers in each interval. If we assume that this is a U(0, 1) distribution
then X; = 1000 for ¢ = 1,2,3,4,5,6,7,8,9,10. For both tests we choose a significance level
a = 0.05.
In both cases, the hypotheses are Hy: The sample belongs to the uniform distribution
U(0,1), and H;: The sample does not belong to the uniform distribution U(0,1). The
10 2
test statistic in y? goodness-of-fit test is given by Xf, = Z M
i=1
respectively, the observed and expected numbers of X;. The decision rule is if x2 > x§ .05
we reject Hy and accept H;. Otherwise we retain Hy. For Kolmogorov-Smirnov Test, the
test statistic is given by D, = sup|F,(x) — F(z)|, F,(z) and F(x) are, respectively, the

where o; and e; are,
€i

empirical and the hypothesized cumulative distribution functions of X. The decision rule is
it D,, > D510 we reject the null hypothesis H, and accept the alternate hypothesis H;.
Otherwise we retain Hy.?

All of the p-values are large and the statistical results are the same for the minimal
standard LCG, the Three-Source ICG and the Four-Source ICG: there was a very weak
evidence to reject the null hypothesis that these samples belonged to a U(0, 1) distribution.

3Since all of these generators are sufficiently good to pass the standard tests (with very large p-values),
it is advised to use second order tests, e.g. another one based on the observed p-values of the generator.[2,
p. 71-72]
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Table 5: Minimal Standard LCG

Interval 1 2 3 4 5 6 7 8 9 10
0; 970 981 983 1008 1055 1029 989 983 1009 993
e; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
F,.(z) 0.0970 0.1951 0.2934 0.3942 0.4997 0.6026 0.7015 0.7998 0.9007 1.0000
F(z) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X2 = 6.0200 < X205 = 16.92, keep H,,
p-value = 0.737915
DlO = 0.0066 < D0'05’10 = 0410, keep HO

Thus, the test fails to reject the hypothesis that the sequence comes from the distrib-
ution U(0, 1).

Table 6: Three-Source ICG

Interval 1 2 3 4 5 6 7 8 9 10
0; 1014 968 1010 963 983 944 1020 1011 1021 1066
e; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
F.(z) 0.1014 0.1982 0.2992 0.3955 0.4938 0.5882 0.6902 0.7913 0.8934 1.0000
F(z) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X; = 11.4320 < X3 9,05 = 16.92, keep Hy
p-value = 0.7527448
DlO =0.0118 < D0'05710 = 041(), keep HO

Thus, the test fails to reject the hypothesis that the sequence comes from the distrib-
ution U(0, 1).

Table 7: Four-Source ICG

Interval 1 2 3 4 5 6 7 8 9 10
0; 997 986 971 1025 1027 1091 961 977 987 978
e; 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
F,(x) 0.0997 0.1983 0.2954 0.3979 0.5006 0.6097 0.7058 0.8035 0.9022 1.0000
F(x) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Xo = 13.3840 < x§ 0,05 = 16.92, keep Hy
p-value = 0.8540135
D1y =0.0097 < D0_05710 = 0.410, keep H,

Thus, the test fails to reject the hypothesis that the sequence comes from the distrib-
ution U(0,1).
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4 Stock Pricing and Interest Rate Model

4.1 Stochastic Equations
The stock price is modeled by the stochastic differential equation (SDE, in short)

dS(t) = S()r(t)dt + S(t)odW (¢), (1)

where 7(t) represents the interest rate, o the stock price volatility, and W (¢) represents a
Brownian motion. Moreover, the interest rate is also modeled by a stochastic differential
equation dr(t) = al[b — r(t)]dt + &+/r(t)dW (t),where a represents how fast the interest rate
reverts to the long term interest rate, b represents the long term interest rate process, ¢ is
the interest rate volatility, and W (t) represents another Brownian motion process that is
correlated with W (¢). The details of the correlation structure is given below.

4.2 Discrete Versions

In order to use Monte Carlo simulations, we use the discretized versions of the SDEs for
the interest rate and the stock price processes. The discrete version of the stock price dif-
ferential equation is AS(t) = S(t)r(t)At 4 S(t)c AW (t), where AW (t) = V/AtZ; represents
an increment of the Brownian motion process W, and Z; represents a standard normal
random variable. Similarly, the discrete version of the interest rate differential equation is
Ar(t) = a(b — r(t))At + 6/r()AW (t), where AW (t) = /ALZ represents an increment
of the correlated Brownian motion process W, and Z = pZ1 + /1 — p*Zy is a standard
normal random variable correlated with i.i.d. standard normally distributed variables Z;
and Z,, and p = p(Z, Z) is the correlation coefficient. The i.i.d. standard normal vari-
ables Z; and Z, are generated using the Box-Muller method: Z; = /—21Inwu; cos(2muy) and
Zy = v/—2Inwuy sin(27us), where u; and uy are both generated by the Four-Source ICG. Since
the sequences generated by the ICG methods and their combined generators don’t have serial
correlation or lattice structure issues [6], we can safely assume that the normally distributed
pairs obtained through combined ICGs and Box-Muller method are also independent. Even
though theoretical results justify the assumption of independence, it is always a good idea
to test for independence of the generated sequence of numbers. Our empirical observations
with the ICG-based computations didn’t reveal any correlation issues.*

In our model, the expiration date, T, was set to a year for simplicity, and the following
model parameters are chosen for the initial computations: a = 0.25, b = 0.06, 6 = 0.1,
ro = 0.04, and ¢ = 0.2. Later, we change these parameters to assess the sensitivity of the
option price with respect to key parameters.

4One way to get an even safer set of independent normal sequences would be perhaps using two different
combined ICGs; one for uy (e.g. three-source ICG) and one for uy (e.g. four-source ICG) to generate a pair
(21, z2) of pseudo-random numbers from a normal distribution..
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4.3 Call Option Prices

The terminal payoff of an European Call Option is given by

S(T) - K, if S(T) > K
o) = { 0, if S(T) < K.

where K is the strike price of the contract (the holder exercises it only when the terminal
stock price is larger than K). See [4] for details. Using the terminal payoff and applying

a discounting term, we can calculate the option price as Cy = E |e~ Iy rWdt(Sy — K )*] In

our model, we also use a discretized version of the Riemann integral to approximate the
integral fOT r(t)dt for each realization (simulation) of the interest rate process r: fOT r(t)dt ~
Z?:_Olr(ti)At. Since the expected value to find Cy above cannot be computed explicitly, it
will be estimated through the Monte Carlo simulations numerically.

4.3.1 Black-Scholes Model

The Black-Scholes model is used to calculate the value of an option, by considering the
stock price, the strike price and the expiration date, the risk-free return, and the standard
deviation of the stock’s return on the basis of an assumed stochastic process for stock prices.
This model was created by Myron Scholes and Fischer Black. However, Robert Merton was
the first to publish the paper expanding the understand of the mathematics of option pricing.
Merton and Scholes received the Nobel Prize in economics in 1997, but unfortunately, Black
had already passed away. The model develops a partial differential equation whose explicit
solution, known as the Black-Scholes formula, is widely used in the pricing of European-
style options, usually for comparison purposes. It should be noted that the assumptions of
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the Black-Scholes model (constant model parameters, complete markets and no borrowing
constraints etc.) don’t hold in real stock markets and shouldn’t be used to price the options
directly.

4.3.2 Comparison of Black-Scholes Model and Our Model

The call option price can be calculated using the closed form of Black-Sholes formula assum-
ing that the interest rate is fixed. Cy = Sy®(d;) — Ke™'®(dy), where

® : standard normal cumulative distribution function
In(%2) + (r+1o%) T

d
1 oV/T
d2 = dl—O'\/T

Comparing our model with Black-Scholes formula gave us an idea if our model offered
reasonable estimates since Black-Scholes formula is still widely used. For our model, we used
1000 simulations, At = 50 and the parameters metioned previously. Moreover, we tried to
see how the correlation p would affect the option price. A positive correlation of p = 0.5
gave us the closest estimate to Black-Scholes formula.

Table 8: Comparison with Black-Scholes Formula
Black-Scholes Formula Cy = 0.1934

o= —1 Co = 0.1275
p=—05 Co = 0.1399
p=0 Cy = 0.1611
p=0.5 Co = 0.2049
p=1 Co = 0.2345

In order to get a better comparison with Black-Scholes formula, we have to fix the
interest rate r (take it as a constant) since it is one of the key assumptions of the Black-
Scholes model. Fixing the interest rate changes the SDE for the stock price from dS(t) =
S(t)r(t)dt+S(t)odW (t) to dS(t) = S(t)rdt+S(t)odW (t). Again, we use the discrete version,
AS(t) = S(t)rAt+ S(t)o AW (t), for the simulation purposes. Moreover, the formula for the
fair price also changes to Co = E [e7""(S(T) — K)*]. The estimate of our modified model
is close to Black-Scholes formula.

Table 9: Comparison with Black-Scholes Formula

Black-Scholes Formula Cy = 0.1934
Modified Model Cy = 0.1832
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4.4 Sensitivity Analysis
4.4.1 Correlation Coefficient (p)

A negative correlation between the stock price and the interest rate dynamics, (or equiva-
lently between the Brownian motion processes W and W), yields a lower call option price
because if p is negative the "dt" part of stock price that depends on r(t) will be moving in
the opposite direction of the "dW" (uncertainty) terms of the stock price (see equation 1) on
the average. However, if they are positively correlated, the combined effect will move in the
same (up) direction, hence driving the call option price up. Our simulation results confirmed
this intuition, showing a monotone increasing relationship between the corelation and the
call option price (Table 10). For the numerical computations, we used 1000 simulations and
the time increment At = 1/250 (representing roughly 250 trading days/year).

Table 10: Results

P Co

-1.00  1.0898
-0.75 1.0894
-0.50 1.1158
-0.25 1.1221
0 1.1523
0.25 1.1567
0.50 1.1621
0.75 1.1980
1.00 1.2127

Copyright © SIAM 187

Unauthorized reproduction of this article is prohibited



4.4.2 Volatility (o)

Increasing the stock price volatility, o, will increase the call option price. This is an expected
result, since an increased volatility means a higher chance of surpassing the strike price. In
the same manner, an increase in the initial stock price, Sy, will also increase the call option
price in the long run.

Table 11: Results
g C()
0.2000 0.2043
0.3000 0.7565
0.4500 1.9591

5 Conclusion

In general, the inversive congruential generators (ICGs) are suitable candidates for the finan-
cial applications due to their desirable uniformity and serial-independence advantages, de-
spite their slower computing time compared to linear congruential generators. The combined
ICGs are useful extensions of ICGs for ore advanced applications due to their computational
advantages. The Four-Source ICGs that we used passed two widely used empirical tests: the
x? goodness-of-fit test and the Kolmogorov-Smirnov test.

Our proposed European option pricing model considers the interest rate as an stochastic
process rather than a constant. Accordingly, the stock price and the interest rate are corre-
lated in this model. Since the well-known analytical methods for "complete" markets don’t
apply, we use numerical methods based on Monte Carlo simulations to compute a reasonable
price for the European options. The call option price increases with the correlation between
the interest rate and the stock price. Furthermore, an increase in the stock price volatility
also results in an increase in the call option price as expected.
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