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Abstract—The theory of chaotic dynamical systems can
be a tricky area of study for a non-expert to break into.
Because the theory is relatively recent, the new student finds
himself immersed in a subject with very few clear and
intuitive definitions. This paper aims to carve out a small
section of the theory of chaotic dynamical systems – that
of attractors – and outline its fundamental concepts from a
computational mathematics perspective. The motivation for
this paper is primarily to define what an attractor is and
to clarify what distinguishes its various types (nonstrange,
strange nonchaotic, and strange chaotic). Furthermore, by
providing some examples of attractors and explaining how
and why they are classified, we hope to provide the reader
with a good feel for the fundamental connection between
fractal geometry and the existence of chaos.

I. Introduction

THE theory of dynamical systems is an extremely
broad area of study. It exists as a science between

many different disciplines and can be applied at all levels
– from the cosmic to the quantum. Out of the many
dynamical systems we have discovered and developed,
possibly the most interesting are those that exhibit at-
tracting behavior. In such systems, all initial states tend
to evolve towards a single final state, or perhaps a set
of final states. These models contain what are known as
attractors.

The attractor is much more than simply another phe-
nomenon of nature. It happens to tie together two
very closely related mathematical fields: chaos theory and
fractal geometry. Anyone who has studied either fractal
geometry or chaos theory should know that the two sub-
jects are connected at a very deep level. Furthermore, this
connection is not at all easily grasped. By investigating
the various types of attractors and exploring the notion
of strangeness, this paper hopes to provide an example
of how fractals and chaotic dynamics are related.

In Section II, we briefly discuss some of the mathe-
matical tools used to identify and describe the various
types of attractors. These concepts are developed from
the ground up: first we introduce fractional dimension,
used to identify fractal geometry; then the Lyapunov
spectrum, used to identify chaotic behavior; and lastly
we define what it means to be an attractor and, in

particular, a strange attractor. It is a common miscon-
ception among non-experts that the term strange attractor
is simply another way of saying chaotic attractor. We
will show why this is not necessarily true. In Section
III, we apply these ideas by classifying and identifying
properties of several example attractors.

It is assumed that the reader has a rudimentary under-
standing of dynamical systems. For example, the reader
should be familiar with basic concepts concerning initial
conditions, orbits, and the differences between real and
discrete systems.

II. Mathematical Concepts
A. Fractals and Dimension

Simply put, a fractal is a geometric object that is self-
similar on all scales. This somewhat vague description
applies to a very wide variety of geometric objects found
in both the abstract and natural worlds. Coastlines,
mountains ranges, and trees are some typical examples
of natural objects with fractal properties. Although this
paper is primarily concerned with fractals as they re-
late to mathematical dynamics, it is important to keep
in mind that many times these ideas are inspired by
phenomena we observe in nature.

Since the term fractal refers to a very generalized
class of geometric object, it is probably best defined by
identifying some of its typical characteristics. Whenever
we refer to a set F as a fractal, we typically have the
following in mind [3]:
• Often F has some form of self-similarity, perhaps

approximate or statistical.
• F has a fine structure – i.e. detail at arbitrarily small

scales.
• F is too irregular to be described in traditional

geometrical language, both locally and globally.
• Usually, the fractional dimension of F is greater than

its topological dimension.
• In most cases of interest, F is defined in a very

simple way, perhaps recursively.
Of all the charateristics listed above, perhaps the

most relavent to this paper is that which refers to the
fractional dimension of a set. Just as some geometric
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objects can be 2-dimensional or 3-dimensional, there can
also exist objects that have dimensions of 1

2 , 7
4 , or 2.43.

For example, it is very clear to us that in Euclidean
space, a line segment has a dimensionality of 1, a solid
square has a dimensionality of 2, and a solid cube has a
dimensionality of 3. However, perhaps less clear are the
reasons why this is true. As it turns out, each of these
geometric objects is n-dimensional because it completely
fills in a section of Rn. In other words, a line segment
is 1-dimensional because we can measure its length, a
solid square is 2-dimensional because we can measure
its area, and a solid cube is 3-dimensional because we
can measure its volume.

Now consider another kind of geometric object – one
that is only able to partially fill in a section of space.
Suppose we have an extremely curvy line drawn on a
plane. One might say that since it is a line, and thus
has length, it must be 1-dimensional. But imagine that
this curve is special in that it is so curvy that it also
partially fills in some amount of area. Such a curve is
niether 1-dimensional nor 2-dimensional. In this case, the
curve has a fractional dimension 1 < d < 2. The Koch
snowflake is an example of such a curve.

Definition II.1. A set of points is said to be fractal if its
dimension is non-integer.

Here it is important to point out that a round integer
dimension does not necessarily imply that a set is non-
fractal. Even sets that have integer dimensions can have
fractal properties. For such special cases we must develop
alternative methods to quantify the hidden fractal geom-
etry. In Section III-C, we encounter a fractal set that has
an integer dimension.

There exist many different ways of estimating dimen-
sion, and each has its own advantages and disadvan-
tages. One measurement that is found very often in intro-
ductory liturature on fractals is the similarity dimension.
When dealing with very simple fractals, such as the
Koch snowflake, this measure can easily be calculated
by hand. Unfortunately, for the types of fractal sets that
we encounter in this paper, the similarity dimension
is not particularly useful. Instead, we use the Kaplan-
Yorke dimension, denoted DKY, because it lends itself well
to dynamical systems. Since it is closely related to the
Lyapunov spectrum, it is explained at the end of the next
section.

The similarity dimension and the Kaplan-Yorke di-
mension, combined with other dimensional measures
such as the capacity, pointwise, correlation, and information
dimensions, provide mathematicians with a wide variety
of tools to choose from when investigating fractal sets.
Luckily, when it comes to calculating fractional dimen-
sion of strange attracting sets – a main focus of this paper
– these various measures of dimension are considered
roughly equivalent [7].

B. The Lyapunov Spectrum

The Lyapunov exponent measures the sensitivity of a
dynamical system to small changes in initial conditions,
and is used primarily for identifying chaos. If two orbits
start close to one another in a chaotic system, then they
will tend to move away from each other exponentially.
We can write this idea as

d
d0

= eλ(t−t0) (1)

where d0 is the initial displacement between a starting
point and a nearby neighbor at initial time t0. The
variable d is the displacement at time t > t0. The λ is the
Lyapunov exponent. We can see that if λ > 0, then d

d0
grows exponentially with the passage of time; if λ < 0,
then d

d0
shrinks to zero. If λ = 0, then the change in

displacement over time is non-exponential.
Please note that use of e as the constant is somewhat

arbitrary. Traditionally, if the system is continuous, we
use base e; if the system is a discrete mapping, we use
base 2.

By solving the equation above for λ we get

λ =
1

t − t0
ln

∣∣∣∣∣ d
d0

∣∣∣∣∣ (2)

This equation only provides a means for calculating
λ for two specific neighboring points over a specific
interval of time. Since we want to be able to approximate
the Lyapunov exponent for an entire dynamic system,
taking a single measurement, as shown above, is not
sufficient. Thus, to approximate the true value of λ for an
entire system, we need to average it over many different
neighborhoods.

Definition II.2. If the displacement between the i-th point
and a neighboring point at time ti is di, and the initial
displacement between the two points is d0i at time t0i, then
the Lyapunov exponent is defined as

λ = lim
n→∞

1
n

n∑
i=1

1
(ti − t0i)

ln
∣∣∣∣∣ di

d0i

∣∣∣∣∣ (3)

This definition for the Lyapunov exponent is conve-
nient because it allows us to approximate λ for just
about any dynamical system using a computer. By ran-
domly choosing a large number of neighboring pairs
of points in a dynamical system, and observing their
relative movement to one another, a value for λ can
easily be calculated. However, this is not the only way
in which λ can be defined – there are several other
similar definitions which are much more analytical in
nature. These varying definitions can be found in most
introductory literature on chaos theory.

Now, to further complicate matters, most dynamical
systems have more than one Lyapunov exponent. If a
system is defined in n-dimensions, then that system has
n Lyapunov exponents, one for each of its dimensions.
Combined, this set of exponents is referred to as the
Lyapunov spectrum. The spectrum is typically ordered
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from largest exponent to smallest. To find the complete
spectrum, we must calculate λi for small displacements
in the i-th dimension, for each 1 ≤ i ≤ n.

Definition II.3. If λ1 ≥ λ2 ≥ · · · ≥ λn are the Lyapunov
exponents for a dynamical system in Rn, then the Lyapunov
spectrum is the set {λ1, λ2, . . . , λn}.

We can identify chaos with the following criterion:

λ1 > 0⇔ chaotic (4)
λ1 ≤ 0⇔ non-chaotic (5)

Not only can we use the Lyapunov spectrum to iden-
tify chaos in a dynamical system, but we can also use
it to approximate the fractional dimension of the set of
points on which the dynamical system lives. With the
help of the Lyapunov spectrum, it is a simple matter to
compute the Kaplan-Yorke dimension.

Definition II.4. If λ1 ≥ λ2 ≥ · · · ≥ λn are the Lyapunov
exponents for a dynamical system in Rn and j is the largest
integer for which λ1+λ2+· · ·+λ j ≥ 0, then the Kaplan-Yorke
dimension is given by

DKY = j +
λ1 + λ2 + · · · + λ j

|λ j+1|
(6)

C. Computing Lyapunov Exponents
A problem regarding the Lyapunov exponent quickly

arises when studying dynamical systems. Since these
systems tend to be bounded, they usually exhibit orbits
that diverge and then merge back onto each other. Cal-
culating exponential divergence becomes much trickier
due to this folding and stretching. When simulating the
orbits of two points, we must be careful to simulate only
as far as needed to see them initially diverge, then stop
when folding back occurs.

So, instead of calculating the Lyapunov exponent by
averaging the divergence over a large number of pairs
of orbits, as the definition of Lyapunov exponents in the
previous section indicates, a slightly altered method is
used. Consider the following algorithm, adapted from
[10].

1. Pick a random point. This set of initial conditions
generates a single reference orbit in our system,
which we will compare with other nearby orbits.

2. Select a nearby point. The new point and the
reference point should be seperated by some small
initial displacement d0. The point should be dis-
placed in the direction of the dimension for which
we are calculating a Lyapunov exponent.

3. Advance both orbits a small amount and calculate
the new seperation d1. In the case of a discrete
mapping, we advance the orbits by computing
one iteration. For continuous models, we have to
choose some small time interval tstep to move the
model forward by. Either way, we then calculate
d1 by finding the norm of the difference vector
between the two points.

4. Calculate the local Lyapunov exponent. In the
continuous case, this is given by

1
tstep

ln
∣∣∣∣∣d1

d0

∣∣∣∣∣ (7)

For discrete mappings, we have

log2

∣∣∣∣∣d1

d0

∣∣∣∣∣ (8)

5. Readjust the second orbit. This should be done
so thats its displacement from the reference orbit
is again d0, but in the same direction as d1. See
Figure 1.

6. Repeat steps (4–6) n times to produce an average
Lyapunov exponent. The value of n needs to be
large enough for us to see the average exponent
converge to a single value. Thus, for the continuous
case,

λ =
1

n(tstep)

n∑
i=1

ln
∣∣∣∣∣ di

d0

∣∣∣∣∣ (9)

For discrete mappings, we have

λ =
1
n

n∑
i=1

log2

∣∣∣∣∣ di

d0

∣∣∣∣∣ (10)

Fig. 1. The algorithm for calculating a Lyapunov exponent of an attractor.
First, a reference point and a nearby point are chosen (the distance between
them is d0). They are then briefly allowed to deviate from (or converge to) one
another along their respective orbits. After which, their seperation is recorded
(d1). Then, a new point is chosen near to the reference orbit – one in the
same direction as the current position of the first neighbor, but displaced from
the reference orbit by d0. Again, they are allowed to deviate and a second
seperation is recorded (d2). This process is repeated n times to find the set
{d1, d2, . . . , dn}. An approximation of λ can then be calculated with Equation
9 or 10.

To calculate the entire Lyapunov spectrum for a dy-
namical system, we need to go through these steps for
each of the system’s dimensions. So, in the case of a
2-dimensional system, we must use the algorithm to
calculate a λ for small dispacements along both the x-
axis and the y-axis. Figure 2 demonstrates the calculation
of the Lyapunov spectrum for one of the dynamical
systems discussed in Section III, the Rayleigh attractor.
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Fig. 2. The calculation of the Lyapunov spectrum for the Rayleigh dynamical
system (Section III-B). The system exists in two dimensions – so it has
two Lyapunov exponents. As n increases in Equation 9, we see that each
λ converges to a single value. The Lyapunov spectrum is found to be
{λ1 = 0, λ2 = −1.06}. Since both exponents are nonpositive, the system is
nonchaotic.

D. Attractors
The following definition of an attracting set is an

adaptation of the rigorous definition given by Milnor
[6]. While Milnor’s is very generalized and applies in
a wide varety of mathematical contexts, the one given
here has been simplified to deal only in Euclidean space
(i.e., Rn).

Definition II.5. A set A ⊂ Rn will be called an attracting
set if the following two conditions are true:

1) The basin of attraction B(A), consisting of all points
whose orbits converge to A, has strictly positive mea-
sure.

2) For any closed proper subset A′ ⊂ A, the set difference
B(A)\B(A′) also has strictly positive measure.

Since we are restricted to Rn, it should be easy to gain
an intuitive understanding of what the above definition
of an attracting set means. The first condition basically
states that our basin of attraction must be, in some
sense, tangible. It cannot be a single point or a set of
discontinuous points (sets whose measures are zero).
Our basin of attraction must consist of some sort of n-
dimensional interval. If we consider the space R2, the
first condition states that any basin of attraction must
have some positive area. If we consider the space R3,
any basin of attraction must have some positive volume.

The second condition is slightly more nuanced. It says
that if we were to change our attracting set at all, then
the measure of our basin of attraction would also change.
In R2, for example, if we were to remove a single point
from the attracting set, the basin of attraction would lose
area.

Alternatively, if we remove points from A by defin-
ing a new, closed set A′ ⊂ A, and it turns out that
the basin does not significantly change (the set differ-
ence B(A)\B(A′) has measure zero), then the implication

would be that the removed points were not actually
attracting a significant portion of the basin. In this case,
A would not be considered an attracting set.

Milnor gives the a nice explanation of the two condi-
tions for an attracting set [5]: ”the first condition says
that there is some positive possibility that a randomly
chosen point will be attracted to A, and the second says
that every part of A plays an essential role.”

In order for an attracting set to be considered an
attractor, it must satisfy a third condition [6]:

Definition II.6. An attractor is an attracting set that
contains a dense orbit.

The existence of a dense orbit on an attracting set
means that there is at least one orbit which either passes
through, or gets infinitely close to, every point in the
attracting set. This condition ensures that the attracting
set is not simply the union of two smaller attracting
sets. If the attracting set were the union of two smaller
attracting sets, then there could not possible exist a single
orbit that is dense on both smaller sets.

There are three known types of nonstrange attractors:
the fixed point attractor, the limit cycle attractor, and the
torus attractor [2]. These are nonfractal attractors, the
behavior of which can be accurately predicted. If we
were given the initial conditions of some orbit on one
of these simple attractors, we would be able to use that
information to predict the orbit with some degree of
confidence. We consider two nonstrange attractors in
Sections III-A and III-B.

Each of the three types of nonstrange attractor is as-
sociated with a specific type of orbit behavior. The fixed
point is associated with attractors whose orbits approach
an equilibrium state; the limit cycle corresponds to periodic
motion; and the torus corresponds to quasiperiodic motion
(almost, but not quite periodic) [7].

E. Strange Attractors

The term strange is most often used as a name for
attractors that exhibit chaotic behavior – i.e., sensitivity
to initial conditions. Though indeed true, this use of the
term is somewhat misleading. It is important to clarify
that strangeness is not dependent on the existence of
chaos. Though attractors showing extreme sensitivity to
initial conditions are indeed strange, strange attractors
need not be chaotic. Consider the following definition
of strangeness.

Definition II.7. An attractor is strange if its attracting set
is fractal in nature.

While the term chaotic is meant to convey a loss of
information or loss of predictability, the term strange is
meant to describe the unfamiliar geometric structure on
which the motion moves in phase space [7].

In a chaotic regime, orbits on an attractor are nonperi-
odic. Thus, any given point in the attracting set is never
visited more than once, and there are entire regions of

Copyright © SIAM 
Unauthorized reproduction of this article is prohibited

75



5

points that are never visited. Such sets of points are frac-
tal in nature and usually have non-integer dimension.
It follows that if an attractor exhibits chaotic behavior,
then it is a strange attractor. Refer to Crutchfield et. al.
for detailed figures that illustrate the differences between
several well-known chaotic strange and nonstrange at-
tractors [2]. In Section III-D we investigate the Lorenz
strange attractor.

Not all strange attractors are chaotic. There exist exam-
ples of strange nonchaotic attractors (SNA). These SNA’s
are distinguished from their chaotic counterparts by their
lack of sensitivity to initial conditions. As an example of
an SNA, consider the GOPY attractor in Section III-C.

III. Classifying an Attractor
In this section, we look at four distinct attractors and

consider the problem of identifying some of their prop-
erties. We are mainly interested in how to identify their
general classification: nonstrange, strange nonchaotic, or
strange chaotic. We use Lyapunov exponents to identify
chaotic behavior and we use what we know about
fractals to identify strangeness. Plots of the orbits in each
model also help us gain an intuitive feel for the type of
attracting set.

A. Buckling Column Model
The buckling column model is defined by the system

of differential equations [1]:

ẋ = y (11)

ẏ =
−1
m

(
ax3 + bx + cy

)
(12)

The buckling column system has the interesting prop-
erty in that under slightly different parameter conditions,
two different types of attracting set can appear. For
example, when a = 20, b = 10, c = 5, and m = 10, we find
a fixed point attractor (Figure 3). However, if we change
b = 10 to −10, then we get a two fixed point attracting set
– which is not a single attractor at all, since it consists of
two distinct basins of attraction, each being pulled by a
different attracting point (Figure 4).

By using the algorithm of Section II-C, we can easily
approximate the Lyapunov spectrum of the fixed point
attractor of the buckling column system (b = 10). We
find λ1,2 = −0.25 for displacements in both the ẋ-axis
and the x-axis. In fact, negative exponents should be
expected since all observable orbits in all directions seem
to be converging to a single point: the origin. Since
there are no positive Lyapunov exponents, the system
is nonchaotic.

Since the attractor seems to consist of a single point,
we would expect the fractal dimension of the attracting
set to be 0. Indeed,

DKY = 0.

Thus, the buckling column attractor is nonstrange, since
it does not exhibit a fractal structure.

Fig. 3. Phase portrait of the buckling column model with one fixed point
attractor at origin. In this case, a = 20, b = 10, c = 5, and m = 10 in
Equation 12. From this plot we can see a highly predictable structure, with
all orbits cycling toward the origin. This attractor is nonstrange.

Fig. 4. Phase portrait of the buckling column model with a two fixed point
attracting set. Notice that this is not a single attractor as there are two seperate
basins of attraction. In this case, a = 20, b = −10, c = 5, and m = 10 in
Equation 12. From this plot we can see a highly predictable structure, with all
orbits cycling toward one of the two points. This attracting set is nonstrange.

B. Rayleigh Model
The Rayleigh model is defined by the system of dif-

ferential equations [1]:

ẋ = y (13)

ẏ =
−1
cd

(
x + by3

− ay
)

(14)

When the parameters are set as a = b = c = d = 1, we
find ourselves a limit cycle attractor (Figure 5).
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Using the algorithm in Section II-C, we find that the
Lyapunov exponents are λ1 = 0 and λ2 = −1.06. This
particular calculation is illustrated by Figure 2. Since nei-
ther exponent is positive, we conclude that the Rayleigh
attractor is indeed nonchaotic. Using the Kaplan-Yorke
formula to find the attracting set’s fractional dimension,
we get

DKY = 1 +
0

| − 1.06|
= 1 (15)

We conclude that the Rayleigh attractor is nonstrange,
since it does not exhibit a fractal structure.

Fig. 5. Phase portrait of the Rayleigh model with a limit cycle attractor.
From this plot we can see a highly predictable structure, with all orbits being
pulled toward a ring-like attracting set. This attractor is nonstrange.

Fig. 6. A single orbit on the GOPY attractor. Notice the interesting structure
produced by this discrete mapping. Though it appears that the attracting set
consists of looping “curves”, it is completely discontinuous. It can be shown
that between any two points on the lower “curve” there exists a point on
the upper “curve”. Furthermore, since θn+1 is simply θn plus an irregular
number modulo 1, we know that the orbit is nonperiodic. These facts imply
a fractal structure.

C. GOPY Model

Grebogi et. al. were the first to show that strange
attractors need not be chaotic [4]. It can be shown that
the GOPY attractor (unofficially named after the authors)
has a fractal structure with nonpositive Lyapunov expo-
nents.

The GOPY system is defined by a discrete mapping in
two dimensions:

xn+1 = 2σ tanh(xn) cos(2πθn) (16)
θn+1 = θn + ω mod 1 (17)

We find that a strange attractor appears in the GOPY

system when σ = 1.5 and ω =

√
5 − 1
2

. Notice that ω is
defined as the golden ratio, an irrational number. In fact,
ω can be any irrational number – the strange attractor
will appear regardless.

We approximate the Lyapunov spectrum of the GOPY
attractor by using the algorithm of Section II-C. We find
λ1 = 0 for displacements in the θ-axis, and λ2 = −1.53 for
displacements in x-axis. Thus, the system is nonchaotic
because there are no positive Lyapunov exponents.

Here is the tricky part. Showing that the GOPY at-
tractor is fractal is not a simple matter of showing that
its fractional dimension is non-integer. Notice that the
Kaplan-Yorke dimension is an integer:

DKY = 1 +
0

| − 1.53|
= 1 (18)

We must find another way to show that the GOPY
attractor has a fractal structure.

When we consider Figure 6, the attractor’s fractal-
ness is not immediately obvious. It simply looks like an
interesting curve. But recall that the system is defined by
a discrete mapping, so the attractor we are seeing is not a
curve at all, but the plot of a collection of iterations. What
is more, for almost all of the interval 0 ≤ θ ≤ 1 there are
two distinct ”curves”: one above and one below.

Suppose that between any two points on the upper
”curve” there exists a point on the lower ”curve” (and
vice versa). Then the attractor would have a fine struc-
ture (detail at arbitrarily small scales). By demonstrating
this property numerically, we can argue that the GOPY
attractor has a fractal geometry and is therefore strange.

Since the value of x is bouncing back and forth be-
tween the curves for even the smallest of changes in
θ, we would expect the maximum slope dx

dθ between
any two points on the attractor to get arbitrarily large
as we continue to iterate and compare points. In other
words, as the number of iterations approaches infinity,
we should be able to find arbitrarily large slope values.

Pikovsky and Feudel apply this concept by introduc-
ing a phase sensitivity measure ΓN to characterize the
strangeness of the GOPY attractor [8]. The following is
an adaptation of their definition.
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Definition III.1. Let Λ be a set of arbitrary initial points in
the GOPY attractor. Define the phase sensitivity

ΓN = min
{
max

{∣∣∣∣∣ xn − x0

θn − θ0

∣∣∣∣∣ : 1 ≤ n ≤ N
}

: (x0, θ0) ∈ Λ
}

(19)

to be an approximate lower bound on the maximum slope dx
dθ

at any arbitrary point in the attractor after N iterations.

This definition is complex and requires some explana-
tion. Suppose N = 100 and Λ is a set of ten randomly
chosen initial points in the GOPY system. For each of
the ten initial points, we calculate N = 100 subsequent
points in its orbit and determine the maximum slope that
occurs between it and any of its iterations. This results in
a set of ten maximum values – the minimum of which is
ΓN, an approximate lower bound on the maximum slope
at any arbitrary point in the attractor after N iterations.

If ΓN grows indefinitely as N → ∞, then the attractor
has a fractal structure and is strange. Essentially, this
is because an unbounded ΓN indicates that for any two
points on the upper ”curve” there exists a point on the
lower ”curve”.

As an additional note, it has been theorized that ΓN
grows exponentially for strange chaotic attractors, while
for strange nonchaotic attractors, ΓN grows as a power,

ΓN = cNµ (20)

with µ typically greater than 1 and c a constant [9].
To show that the GOPY attractor is strange, we cal-

culate ΓN for 10 values of N, ranging from 10 to 106.
It is found that the coordinate pairs (N,ΓN) can be
approximated by ΓN = (2.1)N1.08. Since the growth of ΓN
seems to be unbounded, we have numerical evidence
that the GOPY attractor is strange.

Fig. 7. Ten calculations of ΓN for the GOPY attractor (Λ contains 100
randomly chosen initial points). These ten values are approximated by the
line ΓN = (2.1)N1.08. The divergence of ΓN shown here indicates that the
GOPY attractor has a fractal structure and is strange.

D. Lorenz Model

The Lorenz attractor is possibly the most famous
strange attractor and is characterized by its unique but-
terfly shape. It is defined in three dimensions by the
system of differential equations:

ẋ = σ(y − x) (21)
ẏ = x(ρ − z) − y (22)
ż = xy − βz (23)

When ρ = 28, σ = 10, and β = 8
3 , we find that orbits

take the general shape shown in Figure 8 below.

Fig. 8. The Lorenz attractor, possibly the most well-known strange chaotic
attractor. As orbits chaotically converge and diverge from one another, a
unique butterfly shape emerges. This shape has a fractal geometry.

In order for an orbit in the Lorenz model to exhibit
both convergence to the attracting set and exponential
divergence from other nearby orbits, it must undergo
a continual process of folding and stretching. Indeed,
something fundamental about the Lorenz model causes
orbits to simultaneously converge to and diverge from
each other. This tearing property is part of what causes
the attractor’s fractal nature, its strangeness.

Of the Lorenz attractor’s three Lyapunov exponents,
one is positive, one is negative, and one is zero. It
has been shown how the signs of the three exponents
correspond to the expansion and contraction of orbits
along the three axes. The existence of both positive
and negative exponents in the spectrum is an important
indicator of strangeness. It is further theorized that we
can classify attractors based on their Lyapunov spectrum
as follows: (+,0,–) strange; (0,0,–) two-torus; (0,–,–) limit
cycle; (–,–,–) fixed point. [11]

By usual method, we can calculate our own Lyapunov
spectrum for the Lorenz attractor: {λ1 = 0.81, λ2 =
0.02, λ3 = −14.50}. Although λ2 did not match up exactly
with its expected value of zero, we can still see the mix
of positive with negative exponents mentioned above.
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TABLE I
Properties and classifications of the four examples of attractors discussed in Section III.

Attractor Lyapunov spectrum Dimension Phase sens. Classification
Buckling λ1 = −0.25 λ2 = −0.25 DKY = 0 n/a nonstrange [fixed point]
Rayleigh λ1 = 0 λ2 = −1.06 DKY = 1 n/a nonstrange [limit cycle]
GOPY λ1 = 0 λ2 = −1.53 DKY = 1 ΓN = (2.1)N1.08 strange nonchaotic
Lorenz λ1 = 0.81 λ2 = 0.02 λ3 = −14.50 DKY = 2.06 n/a strange chaotic

From the Lyapunov spectrum, we can easily compute
the Kaplan-Yorke dimension.

DKY = 2 +
0.81 + 0.02
| − 14.50|

= 2.06 (24)

Notice that DKY is a non-integer. Thus, the attracting
set has a fractal structure – proof that the attractor is
strange. Since λ1 > 0, we know that the Lorenz attractor
must be both strange and chaotic.

IV. Discussion
The primary focus of this paper is to gain an un-

derstanding of what it means to be an attractor and
how this idea relates to chaos and fractals. In particular,
we explore the meaning of strangeness. It is a common
misconception that the term strange attractor is simply
another way of saying chaotic attractor. Though a chaotic
attractor is certainly a strange attractor, the reverse is not
necessarily true. Instead, the term strange actually refers
to the fractal geometry on which chaotic behavior may
or may not exist. Indeed, there exist examples of strange
attractors which are nonchaotic.

To investigate the connection between fractal geome-
try and chaotic dynamics, we have introduced several
mathematical tools. The Lyapunov spectrum is used
primarily to identify sensitivity to initial conditions in a
dynamical system. If sensitivity exists, then we say that
the system is chaotic. If the attractor in the system has
a fractal geometry – as indicated by the Kaplan-Yorke
dimension or the phase sensitivity measure ΓN – then
the attractor is strange. Since it is not always easy to
identify chaotic behavior and strangeness analytically,
we give special attention to how these tools are used
computationally.

To illustrate the various types of attracting behavior, as
well as to demonstrate the use of our mathematical tools,
several examples of attractors are provided in Section
III. Table I summarizes the properties found for the four
examples discussed in this section.

The first example is the 2-dimensional Buckling at-
tractor. It has two negative Lyapunov exponents and a
dimension of zero, indicating a fixed point attracting set.
It is interesting that when the parameters in Equation 12
are varied, two distinct attracting sets can be seen: Figure
3 shows a single fixed point attractor, while Figure 4
shows a two fixed point attracting set with two seperate
basins of attraction.

The second example is the 2-dimensional Rayleigh
attractor. Its Lyapunov exponents are zero and negative,

while its dimension is one. This information tells us that
the attractor is a limit cycle. Notice that the next example,
the 2-dimensional GOPY attractor, has the same proper-
ties. If it were not for the phase sensitivity measure ΓN,
one might classify it as a limit cycle as well. However,
since it can be shown that the GOPY attractor has a
fractal structure, we classify it as a strange nonchaotic
attractor.

The final example given in this paper is the 3-
dimensional Lorenz attractor. Our computations show
it to have a positive, a (near) zero, and a negative
Lyapunov exponent. The positive exponent tells us the
system is chaotic. According to Wolf et. al., the combina-
tion of positive, zero, and negative exponents is enough
to classify it as strange [11]. The non-integer Kaplan-
Yorke dimension further strengthens this claim. When
we study Figure 8, it is interesting to note that at the
two wings of the butterfly, orbits seem to be highly
predictable. But when the orbits reach the mid-region
of the butterfly, a chaotic mixing occurs. It is likely that
this tearing property plays a major role in the Lorenz
attractor’s strangeness.

Often times it is the case that complex mathematical
topics are best learned through example. It is for this
reason that the various attractors and their classifications
are provided in Section III. By investigating the distin-
guishing properties of nonstrange, strange nonchaotic,
and strange chaotic attractors, we have hopefully gained
some valuable insight into how chaotic dynamics and
fractal geometries are connected.
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