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Abstract. Consider the eigenvalue problem QAQ~x = λ~x, where A is an n×n matrix and Q is projection
matrix onto a subspace S⊥ of dimension n−k. In this paper we construct a meromorphic function whose
zeros correspond to the (generically) n−k nonzero eigenvalues of QAQ. The construction of this function
requires only that we know A and a basis for S, the orthogonal complement of S⊥. The formulation of
the function is assisted through the use of the Frobenius inner product; furthermore, this inner product
allows us to directly compute the eigenvalue when k = 1 and n = 2. When n = 3 and k = 1 we carefully
study four canonical cases, as well as one more general case.
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Finding eigenvalues

1. Introduction

Consider the eigenvalue problem
A~x = λ~x,

where A is an n × n matrix with real-valued coefficients. From one physical perspective, the eigenvalue
problem arises when considering the stability of critical points for Hamiltonian systems: in this case A is
symmetric, so that all of the eigenvalues are real-valued. In this context, if all of the eigenvalues are positive,
then the critical point is energetically stable (i.e., the critical point is a local minimum of the energy surface)
and is a stable (local) minimizer for the Hamiltonian flow. If some of the eigenvalues are negative, then it is
expected that since the critical point is energetically unstable (i.e., the critical point is now a saddle point of
the energy surface), then the critical point is actually unstable for the Hamiltonian flow. As it turns out, it
is a little more complicated than that, as Hamiltonian flow on the energy surface may still allow the critical
point to still be stable relative to the flow (e.g., see [3, 6–9] for more details). It is important to find the
sign of the eigenvalues.

Now suppose that the Hamiltonian system has k conserved quantities associated with it (e.g., linear
momentum, angular momentum, etc.), and for the moment further suppose that the critical point is a saddle
point. Is the critical point really still energetically unstable? For example, it may be the case that if a
solution were to travel along the energy surface in one of the unstable directions, then one or more of the
conserved quantities would no longer be conserved. Since this is impossible, the presence of the conserved
quantities does not allow a solution to access that particular unstable direction, which means that particular
unstable direction on the energy surface does not really count as far as the flow is concerned. On the other
hand, it may be the case that no conservation law is violated by a trajectory moving along an unstable
direction. In order to understand the manner in which these conserved quantities affect the Hamiltonian
flow near the critical point, one must then study a different, but related, eigenvalue problem, which is related
to a Lagrange multiplier problem. This new eigenvalue problem will have associated with it a matrix which
is related to A of dimension (n− k)× (n− k), and the eigenvalues for this new eigenvalue problem will give
information regarding the nature of the Hamiltonian flow in the presence of the conserved quantities. If for
the new eigenvalue problem all of the eigenvalues are positive, then the critical point is stable in the presence
of the conserved quantities. If some of the eigenvalues are negative, then it is still the case that the critical
point is a saddle point, and hence (possibly) unstable.

The mathematical formulation of this new eigenvalue problem is a specific example of the following more
general problem. Let S be a real subspace of dimension k. Let P represent the (orthogonal) projection matrix
onto S, and let Q = In−P be the projection matrix onto S⊥, the subspace perpendicular to S (Rn = S⊕S⊥).
Here In is the n× n identity matrix. The eigenvalue problem to be studied in this paper is given by

QAQ~x = λ~x, ~x ∈ S⊥. (1.1)

Since QAQ : S⊥ 7→ S⊥ and dim(S⊥) = n− k, this eigenvalue problem is equivalent to an induced problem

(with Ã = QAQ)

Ã~y = λ~y, ~y ∈ Rn−k (1.2)

(e.g., see [4]). The eigenvalues for (1.2) (or equivalently, (1.1)) can then be found by finding the zeros of the
(n− k)th-order characteristic polynomial pÃ(λ), where

pÃ(λ) = det(Ã− λIn−k).

In addition to the context provided above, eigenvalue problems of the form (1.1) also arise when looking for
the so-called “Ritz values” of the matrix A (e.g., see the discussion in [1, Chapter IV.2.2]). The question to

be considered in this paper: is it necessary to explicitly compute Ã in order to find the n−k zeros of pÃ(λ)?
An inverse form of this question was recently considered by Malamud [10] (also see the references therein).

He considered the following problem: given a sequence of n eigenvalues λj and another sequence of n − 1
eigenvalues µj , does there exist a matrix A and a projection Q such that the λj ’s are the eigenvalues for
A and the µj ’s are the eigenvalues for QAQ? He showed that under certain conditions between the two
sequences that there is indeed a unique quasi-normal Jacobi matrix A and a subspace S for which this is
true [10, Theorem 3.7]. This result is a generalization for what was known for symmetric matrices [5].
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In this paper we will consider the eigenvalue problem (1.1) without going through the process of computing

the induced matrix Ã. Since we then cannot compute pÃ(λ), we must determine other ways and construct
different functions to find the eigenvalues. In Section 2 we define the Frobenius inner product. In Section 3
we use the Frobenius inner product to directly solve (1.1) when k = 1 and n = 2. In Section 4 we solve
the eigenvalue problem by first constructing a meromorphic function, say E(λ), which has the property that

its zeros correspond to eigenvalues. The construction of E(λ) does not require us to directly compute Ã;
instead, all that is necessary is A and a basis for S. We then use E(λ) to study the eigenvalue problem in
detail when k = 1 and n = 3. We close in Section 5 with some conclusions. The Appendix gives the details
associated with some of the calculations presented in Section 4.

Acknowledgments. This work was supported in part by the National Science Foundation under grant
number DMS-0806636. Special thanks to Professor Todd Kapitula for his guidance throughout this research
project.

2. The Frobenius inner product

The Frobenius inner product is defined as the component-wise multiplication of two matrices with real-
valued coefficients, calculated as if finding the dot product of vectors:

〈A,B〉 =
∑
i

∑
j

AijBij ;

for example,

〈
(
a b
c d

)
,

(
e f
g h

)
〉 = ae+ bf + cg + dh.

We may also note that 〈A,B〉 is equal to the trace of ABT. With this notion we have a different way of
calculating inner products where matrices are involved, an original result based upon our research:

Theorem 2.1. For any n× n matrix B and n-dimensional vector ~s, B~s · ~s = 〈B,~s~sT〉.

Proof: For

B =

 B11 . . . B1n

...
...

Bn1 . . . Bnn

 ,

we have

B~s =


B11s1 +B12s2 + . . .+B1nsn
B21s1 +B22s2 + . . .+B2nsn

...
B(n−1)1s1 +B(n−1)2s2 + . . .+B(n−1)nsn

Bn1s1 +Bn2s2 + . . .+Bnnsn

 .

Consequently,

B~s · ~s = (B11s1 +B12s2 + . . .+B1nsn)s1+

(B21s1 +B22s2 + . . .+B2nsn)s2 + · · ·
(B(n−1)1s1 +B(n−1)2s2 + . . .+B(n−1)nsn)sn−1+

(Bn1s1 +Bn2s2 + . . .+Bnnsn)sn.

In other words, using the definition of the Frobenius inner product gives

B~s · ~s = 〈B,


s1s1 s1s2 . . . s1sn
s2s1 s2s2 . . . s2sn

...
...

sns1 sns2 . . . snsn

〉 = 〈B,~s~sT〉.
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Remark 2.2. Although we will not prove it here, it can be shown that in general

A~x · ~y = 〈A, ~y ~xT〉.

3. The eigenvalue problem: n = 2

Before studying the eigenvalue problem (1.1) in detail when n = 2, we need the following preliminary
original results discovered during our research, which are valid for any n:

Corollary 3.1. For any n× n matrix B and vector ~v, for C = ~v ~vT the solution to CBC = αC is given by
α = ∠B,C〉.

Proof: The form of C yields that

CBC = ~v(~vT)B~v(~vT) = ~v(~vTB~v)~vT = ~v(B~v · ~v)~vT.

Since by Theorem 2.1 B~v · ~v = 〈B,C〉, we then note that

CBC = ~v〈B,C〉~vT.

Since 〈B,C〉 is a constant this in turn implies that

CBC = 〈B,C〉~v ~vT = 〈B,C〉C,

which is the desired result.

Corollary 3.1 can be used to solve the eigenvalue problem (1.1) (or equivalently (1.2)) in the case that
dim(S⊥) = 1. In this case there will exist a unit vector s⊥ such that Q = ~s⊥(~s⊥)T, and consequently the
eigenvalue can be given as λ = 〈A,Q〉.
Lemma 3.2. Suppose that in (1.1) that the matrix Q is given by Q = ~s⊥(~s⊥)T. The eigenvalue for (1.2) is
given by λ = 〈A,Q〉, with eigenvector equal to any multiple of ~s⊥.

This lemma is true for any n, and when n = 2 we may easily compute the eigenvalue for the case
S = span{~s}, where

~s =

(
cos θ
sin θ

)
.

This necessarily implies that S⊥ = span{~s⊥}, where

~s⊥ =

(
− sin θ

cos θ

)
=⇒ Q = ~s⊥(~s⊥)T =

(
sin2 θ − cos θ sin θ

− cos θ sin θ cos2 θ

)
.

If

A =

(
a b
c d

)
,

then by Lemma 3.2 the eigenvalue is given by

λ = 〈A,Q〉 = a sin2 θ + d cos2 θ − (b+ c) cos θ sin θ.

Thus, in the case of n = 2 the eigenvalue may always be explicitly found and is always real (assuming that
the values in our matrix A are real).
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4. The eigenvalue problem: n = 3

4.1. Reformulation of the eigenvalue problem for n ≥ 3

First let n ≥ 3 be arbitrary, and suppose that S ⊂ Rn is a subspace of dimension k. Write S =
span{~s1,~s2, . . . , ~sk}, where {~s1,~s2, . . . ~sk} is an orthonormal set. Any vector ~v ∈ Rn can be written as
~v = ~s+ ~s⊥, where ~s ∈ S, ~s⊥ ∈ S⊥, with

~s =
k∑
i=1

(~v · ~si)~si, ~s⊥ = ~v − ~s.

Setting P~v =
∑k
i=1(~v ·~si)~si to be the projection of ~v onto S, and Q~v = ~v−P~v to be the projection onto S⊥,

we can note that P~s = ~s for ~s ∈ S and Q~s⊥ = ~s⊥ for ~s⊥ ∈ S⊥. Note that k = 1 implies P = ~s1~s
T
1 , k = 2

implies P = (~s1 ~s2) (~s1 ~s2)
T
, and so on.

The following idea can be found in [2, 8]. If ~v = ~s⊥, then our eigenvalue problem (1.1) is of the form
QA~s⊥ = λ~s⊥, because Q~s⊥ = ~s⊥. Now,

QA~s⊥ = Q(A~s⊥) = A~s⊥ − P (A~s⊥) = A~s⊥ −
k∑
i=1

[(A~s⊥) · ~si]~si.

Letting ci= [(A~s⊥) · ~si] for i = 1, . . . , k then gives

QA~s⊥ = A~s⊥ −
k∑
i=1

ci~si.

The eigenvalue problem QA~s⊥ = λ~s⊥ is then given by

A~s⊥ −
k∑
i=1

ci~si = λ~s⊥ =⇒ (A− λIn)~s⊥ =
k∑
i=1

ci~si.

Before going further, it must be noted that if λ is an eigenvalue of not only QA but also our matrix A, then
(A− λIn) is not invertible. This affects our later analysis in Section 4.2. However, this is not a problem in
the formulation, for in this case the system can be solved by setting ci = 0 for i = 1, . . . , k. Assuming that
λ is not an eigenvalue, we invert to get

~s⊥ = (A− λIn)−1

[
k∑
i=1

ci~si

]
=

k∑
i=1

ci(A− λIn)−1~si.

Now suppose that k = 1, so that S = span{~s1} and dim(S⊥) = n− 1. From the above equation we have

~s⊥ = c1(A− λIn)−1~s1. (4.1)

In order for the above to be true it must be the case that c1(A− λIn)−1~s1 ∈ S⊥, which is true if and only
if this vector is orthogonal to S. Thus, the dot product with ~s1 must be 0, so that

c1(A− λIn)−1~s1 · ~s1 = 0.

Set
E(λ) = (A− λIn)−1~s1 · ~s1.

The eigenvalues of QAQ in the case that k = 1 are solutions to the secular equation E(λ) = 0. Note that if
we use Theorem 2.1, then we can rewrite E(λ) as

E(λ) = 〈(A− λIn)−1, P 〉, P = ~s1~s
T
1 .
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Theorem 4.1. Let A be an n× n matrix, let P = ~s~sT be the projection matrix onto S = span{~s}, and let
Q = In − P be the projection matrix onto S⊥, the (n− 1)-dimensional space perpendicular to S. Set

E(λ) = 〈(A− λIn)−1, P 〉.

The eigenvalues for problem (1.2) are realized either as

• the zeros of the function, or

• a removable singularity of E(λ).

Remark 4.2. The poles of the rational function E(λ) are realized as the eigenvalues of the matrix A. The
standard theory associated with rational functions reveals that near a simple pole λ0 the function E(λ) will
have associated with it the Laurent series

E(λ) =
r

λ− λ0
+
∞∑
j=0

ej(λ− λ0)j

[11]. The number r is known as the residue, and the singularity is said to be removable if r = 0. If λ0 is
an eigenvalue of A, then the expression (A − λ0In)−1~s for ~s ∈ S may make sense in the following manner.
Suppose that A is symmetric. By the Fredholm alternative the system

(A− λ0I)~x = ~s, ~s ∈ S

has a unique solution ~x ∈ S⊥ (compare with (4.1)) if ~s · ~a = 0, where A~a = λ0~a. Thus, if for a given
eigenvalue λ0 with associated eigenvector ~a it is true that ~a ∈ S⊥, then by the construction of E(λ) the
function will have a removable singularity at λ0.

Now suppose that A = BDB−1. Since

A− λIn = B(D − λIn)B−1 =⇒ (A− λIn)−1 = B(D − λIn)−1B−1,

we can rewrite E(λ) as

E(λ) = B(D − λIn)−1B−1~s · ~s = (D − λIn)−1B−1~s ·BT~s.

Using the remark after Theorem 2.1 then gives us that

E(λ) = 〈(D − λIn)−1, (BT~s) (B−1~s)T〉.

Let ~x = BT~s and ~y = B−1~s. Since ~s = B~y, it is then true that ~x = BTB~y, so

E(λ) = 〈(D − λIn)−1, ~x ~yT〉 = 〈(D − λIn)−1, (BTB~y) ~yT〉.

The matrix H = BTB is symmetric, so one can finally rewrite E(λ) as

E(λ) = 〈(D − λIn)−1, (H~y) ~yT, H = HT〉.

Corollary 4.3. In Theorem 4.1 suppose that A = BDB−1. Then for

H = BTB, ~y = B−1~s,

we have

E(λ) = 〈(D − λIn)−1, (H~y) ~yT〉.
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4.2. Case study: n = 3

We will now focus on the case that n = 3. We will use the formulation of E(λ) in Corollary 4.3 to study
the eigenvalue problem (1.1), with A = BDB−1, so that D will be quasi-upper triangular. Note that this
diagonalizes A, with the columns of matrix B being (generalized) eigenvectors and matrix D is in Jordan
canonical form, allowing us to identify the four different canonical diagonalized cases for the matrix D. We
will primarily focus on the case when H = I3, so that (H~y) ~yT = P , where P is given in Theorem 4.1. In
particular,

~s =

 p
q
r

 =⇒ P =

 p2 pq pr
pq q2 qr
pr qr r2

 ,

with p2 + q2 + r2 = 1. We will conclude by looking again at Case 1 for a special case of H 6= I3.

4.2.1. Case 1: A = D =

 λ1 0 0
0 λ2 0
0 0 λ3


In this case

E(λ) = 〈


1

(λ1 − λ)
0 0

0
1

(λ2 − λ)
0

0 0
1

(λ3 − λ)

 , P 〉 =
p2

(λ1 − λ)
+

q2

(λ2 − λ)
+

r2

(λ3 − λ)
.

From this formulation we can see that the positive/negative values of our elements of ~s do not matter,
as they are squared. There are vertical asymptotes at λ1, λ2, λ3, and because our numerators are always
positive, then the denominators control the signs of each term, and thus where the zeroes exist. We can
state λ1 < λ2 < λ3 without loss of generality, thus allowing us to note that the graph follows the form of
Figure 1. Thus our zeros are always between our asymptotes, or with our generalization, our zeroes exist in
the regions λ1 < λ < λ2 and λ2 < λ < λ3 (see Appendix for full analysis). We should also note that these
results follow from the Cauchy Interlacing Theorem.

Figure 1: (color online) A plot of E(λ) for Case 1 when λ1 < λ2 < λ3 and H = I3.
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4.2.2. Case 2: A = D =

 λ1 1 0
0 λ1 0
0 0 λ2


In this case

E(λ) = 〈


1

(λ1 − λ)
− 1

(λ1 − λ)2
0

0
1

(λ1 − λ)
0

0 0
1

(λ2 − λ)

 , P 〉 =
p2 + q2

(λ1 − λ)
− pq

(λ1 − λ)2
+

r2

(λ2 − λ)
.

As seen in Figure 2, the plot of E(λ) has four possible general forms (full analysis in Appendix). The zeroes
are dependent upon whether pq < 0 or pq > 0, and whether λ1 > λ2 or λ1 < λ2. It is possible for complex
roots to exist in this canonical case, e.g., the graph of the function in the case of pq < 0 and λ1 > λ2 may
be completely above the x-axis, thus causing E(λ) to have no real roots.

pq < 0 pq > 0

λ1 < λ2 λ1 ≈ −2.5, λ2 ≈ 2.75 λ1 ≈ 0, λ2 ≈ 2.27

λ1 > λ2 λ1 ≈ 1.9, λ2 ≈ −2 λ1 ≈ 0, λ2 ≈ −3.2

Figure 2: (color online) A plot of E(λ) for Case 2 when H = I3. Although we have not demon-
strated it here, it is possible in the top left panel and bottom right panel for E(λ) = 0 to have no
real-valued solutions.

4.2.3. Case 3: A = D =

 λ1 1 0
0 λ1 1
0 0 λ1


In this case

E(λ) = 〈


1

(λ1 − λ)
− 1

(λ1 − λ)2
1

(λ1 − λ)3

0
1

(λ1 − λ)

−1

(λ1 − λ)2

0 0
1

(λ1 − λ)

 , P 〉

=
p2

(λ1 − λ)
− pq

(λ1 − λ)2
+

pr

(λ1 − λ)3
+

q2

(λ1 − λ)
− qr

(λ1 − λ)2
+

r2

(λ1 − λ)
.
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Upon using the fact that p2 + q2 + r2 = 1, this expression can be reduced to

E(λ) =
1

(λ1 − λ)
− pq + qr

(λ1 − λ)2
+

pr

(λ1 − λ)3
.

This canonical case has three different general forms for a graph (see Figure 3), dependent upon whether
pr > 0 or pr < 0 as well as the sign of q with respect to p and r (this case only changes the general form
of the graph if pr > 0, full analysis in Appendix). We do know for a fact that if pr < 0, then there exist
two real roots, one in each of the regions λ > λ1 and λ < λ1. Otherwise, it is entirely possible that two
imaginary roots exist.

sign(q)=sign(p&r) sign(q)6=sign(p&r)

pr < 0

pr > 0

Figure 3: (color online) A plot of E(λ) for Case 3 when H = I3. Although we have not demon-
strated it here, it is possible in the bottom two panels for E(λ) = 0 to have no real-valued solutions.

4.2.4. Case 4: A = D =

 λ1 0 0
0 a b
0 −b a


In this case

E(λ) = 〈


1

(λ1 − λ)
0 0

0
(a− λ)

(a− λ)2 + b2
− b

(a− λ)2 + b2

0
b

(a− λ)2 + b2
(a− λ)

(a− λ)2 + b2

 , P 〉

=
p2

(λ1 − λ)
+

(q2 + r2)(a− λ)

(a− λ)2 + b2
.

Using the fact that p2 + q2 + r2 = 1, we can rewrite the above as

E(λ) =
p2

(λ1 − λ)
+

(1− p2)(a− λ)

(a− λ)2 + b2
.

This case only has two general forms for graphs, dependent upon whether a > λ1 or a < λ1 (see Figure 4).
Definitive conclusions (see Appendix for details) include that there could exist two imaginary roots, but if
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two real roots exist then they must be either both less than λ1, or both greater. Also of note is the fact that
in the case that

0 > λ1E(0) = p2 +
(1− p2)aλ1
a2 + b2

,

then we know that there exist two real roots, one positive and one negative.

a > λ1 a < λ1

Figure 4: (color online) A plot of E(λ) for Case 4 when H = I3. Note that in the left panel
λ1E(0) > 0, so that it is possible to have no real-valued solutions to E(λ) = 0, while in the right
panel λ1E(0) < 0, so that there will necessarily be two real-valued solutions.

4.2.5. Case 1, H 6= I3

Suppose that D is given as in Case I, and further suppose that

B =

 b1 b2 0
b3 b4 0
0 0 b5

 =⇒ H =

 b21 + b22 b1b3 + b2b4 0
b1b3 + b2b4 b23 + b24 0

0 0 b25

 .

Set
a = b21 + b22, b = b1b3 + b2b4, d = b23 + b24, f = b25,

and note that a, f, ad − b2 > 0, so that H is a positive-definite symmetric matrix (note also that since
H = BTB for a real, invertible B, H will always be symmetric and positive-definite, i.e., all of the eigenvalues
of H will be positive). Letting ~y = (y1, y2, y3)T then yields from Corollary 4.3 that

E(λ) = a
y21

(λ1 − λ)
+ d

y22
(λ2 − λ)

+ f
y23

(λ3 − λ)
+ by1y2

(
1

(λ1 − λ)
+

1

(λ2 − λ)

)
.

This equation is similar to the equation presented in Case I, except for the existence of b. In particular, if
b = 0 and a, d, f > 0, then there is no difference in the conclusion. However, it is possible to choose values
for a, b, d, and f such that no real roots exist, thus breaking the definitive result found in canonical Case 1
(see Figure 5).

Remark 4.4. Since Case 1 can be altered in this way, it is logical that the other canonical cases can also be
altered via this method to break their definitive results as well. Note that this alteration in B also allows the
eigenvectors to no longer be orthogonal, and thus A is no longer a normal matrix and the Cauchy interlacing
result no longer applies.

5. Conclusion

We have discovered methods of finding the eigenvalues for the eigenvalue problem (1.1) in the case that
dim(S) = 1. We examined in some detail the problem when n = 2, 3. As of yet, there are still cases where we
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Figure 5: A plot of E(λ) for Case 1, H 6= I3, when (λ1, λ2, λ3) = (−3, 0, 3), (y1, y2, y3) =
(1/2, 1/4, 3/4), a = 2,and d = f = b = 1.

do not know a simple technique of analyzing in detail the problem for n ≥ 4 and/or dim(S) ≥ 2. However,
this research is a beginning towards understanding these problems, and perhaps future research will reveal
these still-hidden methods.

Appendix

Case 1

Here

E(λ) =
p2

(λ1 − λ)
+

q2

(λ2 − λ)
+

r2

(λ3 − λ)
.

Recall that we are assuming λ1 < λ2 < λ3. It is clear that asymptotes exist at λ1, λ2, λ3. Since the
numerators are positive, we also have

lim
λ→λ±

j

E(λ) = ∓∞, j = 1, . . . , 3.

It is clear that
lim

λ→±∞
E(λ) = 0.

If −∞ < λ < λ1, then (λj − λ) > 0 for j = 1, . . . , 3 implies that E(λ) > 0, and if λ3 < λ < ∞, then
(λj − λ) < 0 for j = 1, . . . , 3, so that E(λ) < 0. Finally,

E′(λ) =
p2

(λ1 − λ)2
+

q2

(λ2 − λ)2
+

r2

(λ3 − λ)2
> 0,

so that the function is always increasing. This analysis produces the graph of Figure 1. Since the only
asymptotes are at λ1, λ2, λ3, then E(λ) moves from −∞ to∞ in the intervals λ1 < λ < λ2 and λ2 < λ < λ3;
thus, the zeros are in these same intervals.

Case 2

Here

E(λ) =
p2 + q2

(λ1 − λ)
− pq

(λ1 − λ)2
+

r2

(λ2 − λ)
.
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Asymptotes clearly exist at λ1 and λ2, with

lim
λ→λ±

2

E(λ) = ∓∞.

Regarding the behavior for large real λ we have

lim
λ→±∞

E(λ) = 0;

furthermore, E(λ) > 0 for λ� −1, and E(λ) < 0 for λ� 1, because for large |λ| the dominant terms in the
sum have positive numerators.

Case 2-a: λ1 < λ2 and pq < 0

We have

lim
λ→λ±

1

E(λ) = +∞,

since the dominant term in the sum for λ near λ1 is −pq/(λ1 − λ)2 > 0. This analysis yields the conclusion
that if there do exist real zeros, then they exist in the interval λ1 < λ < λ2.

Case 2-b: λ1 < λ2 and pq > 0

We have

lim
λ→λ±

1

E(λ) = −∞,

since the dominant term in the sum for λ near λ1 is −pq/(λ1 − λ)2 < 0. Since E(λ) > 0 for λ � −1,
by continuity it must then be true that E(λ) = 0 has at least one real-valued solution in the interval
−∞ < λ < λ1. Furthermore, because of continuity another zero exists in the interval λ1 < λ < λ2.

Case 2-c: λ1 > λ2 and pq < 0

As in Case 2-a we have

lim
λ→λ±

1

E(λ) = +∞.

Using the same analysis as for Case 2-b, this then implies that E(λ) = 0 has at least one solution in the
interval λ2 < λ < λ1. Since E(λ) < 0 for λ� 1, this implies that E(λ) = 0 has at least one solution in the
interval λ1 < λ < +∞.

Case 2-d: λ1 > λ2 and pq > 0

As in Case 2-b we have

lim
λ→λ±

1

E(λ) = −∞.

Using the same analysis as for Case 2-a, we can conclude that any real zeros for E(λ) must occur in the
interval λ2 < λ < λ1. Case 2-c and 2-d may also be seen to follow from 2-a and 2-b by replacing A with −A.
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Case 3

Here

E(λ) =
1

(λ1 − λ)
− pq + qr

(λ1 − λ)2
+

pr

(λ1 − λ)3
.

We have that
lim

λ→±∞
E(λ) = 0;

furthermore, for large |λ| the first term in the sum is dominant, so that E(λ) > 0 for λ� −1 and E(λ) < 0
for λ� 1.

An asymptote exists only at λ = λ1.

Case 3-a: pr < 0

For λ near λ1 the third term in the sum will be dominant; hence,

lim
λ→λ±

1

E(λ) = ±∞.

Because E(λ) is continuous there must then exist at least one zero in each of the intervals (−∞, λ1) and
(λ1,∞).

Case 3-b: pr > 0

For λ near λ1 the third term in the sum will be dominant; hence,

lim
λ→λ±

1

E(λ) = ∓∞.

Now if sign(q) = sign(p&r) (p and r must have the same sign since pr > 0), then pq > 0 and pr > 0, which
implies that pq + qr > 0. Then in the interval λ1 < λ < ∞ each term in the sum will be negative, so that
E(λ) < 0. Thus, if real zeros exist, they must exist in the interval −∞ < λ < λ1.

If sign(q) 6= sign(p&r), then pq < 0 and pr < 0, which implies that pq + qr < 0. Then in the interval
−∞ < λ < λ1 each term in the sum will be positive, implying that E(λ) > 0 in this interval. Thus if real
zeros exist, they must exist in the interval λ1 < λ <∞.

Case 4

Here

E(λ) =
p2

(λ1 − λ)
+

(1− p2)(a− λ)

(a− λ)2 + b2
.

An asymptote exists only at λ = λ1, with

lim
λ→λ±

1

E(λ) = ∓∞.

In addition, we have that
lim

λ→±∞
E(λ) = 0;

furthermore, since p2 ≤ 1 we have that E(λ) > 0 for λ� −1 and E(λ) < 0 for λ� 1.

Case 4-a: a > λ1

In this case each term in the sum, and hence E(λ) itself, is positive for λ < λ1. Thus, if zeros exist then
they must exist in the interval λ1 < λ <∞.
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Case 4-b: a < λ1

In this case each term in the sum, and hence E(λ) itself, is negative for λ > λ1. Thus, if zeros exist then
they must exist in the interval −∞ < λ < λ1.

Case 4-c: λ1E(0) < 0

We also note that if λ1E(0) < 0 then some conclusions may be drawn. Since

λ1E(0) =
p2(a2 + b2) + (1− p2)λ1a

(a2 + b2)
,

we have that λ1E(0) < 0 if and only if

λ1a < −
p2

1− p2
(a2 + b2) < 0.

If λ1 < 0 and E(0) > 0, then there exist an odd number of zeros in the interval λ1 < λ < 0. Since E(λ) < 0
for large positive λ, there also exist an odd number of zeros in the interval 0 < λ < +∞. Since there are
only two zeros, there is then precisely one zero in the interval λ1 < λ < 0, and one zero in the interval
0 < λ < +∞. On the other hand, if λ1 > 0 and E(0) < 0, then applying the same argument gives one zero
in the interval −∞ < λ < 0, and another zero in the interval 0 < λ < λ1. In conclusion, in this case there
will always be two real-valued zeros.
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