
The Alignment of Arbitrary Contours Using
Area Difference Distance Measurement

Jessica De Silva, Karen Murata, and Jung-ha An, Ph.D.

Department of Mathematics
California State University Stanislaus

One University Circle, Turlock, CA 95382, USA
jdesilva1@csustan.edu, kmurata@csustan.edu, jan@csustan.edu

Abstract. Advancements in medical imaging have allowed for analyz-
ing the anatomy of the human body without the risks of surgery. One can
use the methods in this paper to determine the health of a patient’s brain
or heart by comparing the anatomical contour to its ideal shape. Reg-
istration is an approach towards imaging which determines an optimal
alignment between multiple images. In particular, the Area Difference
Distance measurement is applied towards image registration to numer-
ically determine an optimal alignment between arbitrary contours. The
purpose of this paper is to propose the proof that the Area Difference
Distance measurement[4] is a metric, illustrate optimal alignment using
the Area Difference Procrustes method[2], and to show numerical sim-
ulations. This distance function takes into account two sets containing
data points which represent their respective contours. The Area Differ-
ence Procrustes method is applied by aligning the arbitrary contour to a
fixed contour. This optimal alignment requires minimizing the distance
function in terms of rotating, scaling, and translating the arbitrary con-
tour. The succeeding proof presented validates that these values, which
optimize the distance between two contours, can be found with the sets
of data points representing each contour. Once aligned, we can calculate
the optimal Area Difference Distance between the contours. Through the
use of MATLAB, synthetic data is applied to test the effectiveness of the
optimization of the Area Difference Distance measurement.

Keywords: distance, Area Difference Distance, Area Difference Procrustes method

1 Introduction

Various metric functions representing a distance measurement can be im-
plemented towards quantifying the difference between two shapes. The Area
Difference Distance measurement presented can be utilized for determining dif-
ferences between two arbitrary contours. The Euclidean distance formula is use-
ful for measuring distances between two points. But in order to calculate the
difference between two contours in real life, the finite sum of the Euclidean
distance between corresponding points will not cover the entire area of the dif-
ference. The Area Difference Distance measurement calculates the area between

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

204

two subsequent points on one contour and those corresponding points on the
other contour. By utilizing the Area Difference Distance measurement, the en-
tire distance between any two arbitrary contours can be calculated with a finite
sum.

In order to ensure that the distance between two arbitrary shapes is a min-
imum, the shapes must be optimally aligned with respect to the distance mea-
surement. When working with arbitrary contours, this alignment can be difficult
without a systematic approach. We can use Procrustes superimposition, also
referred to as the Procrustes method, together with with the Area Difference
Distance measurement as an efficient approach to this alignment problem. The
method of using the Procrustes method to minimize the Area Difference Dis-
tance is called the Area Difference Procrustes method[2]. Before applying the
Area Difference Procrustes method, a fixed and floating contour must be de-
fined. The Area Difference Procrustes method then scales, rotates, and positions
the floating contour to ensure optimal alignment relative to the fixed contour
[1]. The results from this registration process will allow for the calculation of the
minimum Area Difference Distance between these contours. In this paper, a for-
mal proof is developed to validate the optimization of Area Difference Distance
measurement by means of the Area Difference Procrustes method. Section 2 de-
fines Area Difference Distance measurement and introduces the proof that this is
a metric, Section 3 presents an optimization of this measurement and introduces
a proof for the optimization, and Section 4 provides numerical implementation
in MATLAB to illustrate the effectiveness of the distance optimization.

2 Distance Functions

In this section we define distance and prove its validity. An example which illus-
trates the distance definition is also provided.

Definition: Distance represents the amount of space between two objects. The
distance function, referred to as the metric, defines the distance between ele-
ments of a set. A distance function on a set M is a function d:M×M→ R, which
satisfies the following properties ∀(x, y) ∈ M×M:

i) d(x, y) ≥ 0
ii) d(x, y) = 0 if and only if x = y
iii) d(x, y) = d(y, x)
iv) d(x, y) ≤ d(x, z) + d(z, y)

2.1 Absolute Value Distance Function

Definition: Let d(x, y) := |x− y|.

Proposition 1: Show that d(x, y) := |x− y| is a distance.

Proof : i) d(x, y) = |x− y|.

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

205

Then |x− y| ≥ 0 by the definition of absolute value.

ii) d(x, y) = |x− y| = 0
Then x− y = 0 by definition of absolute values.
Therefore x = y.

Let x = y.
Hence x− y = 0.
Furthermore, |x− y| = 0.

∴ d(x, y) = |x− y| = 0 if and only if x = y.

iii) d(x, y) = |x− y|
|x− y| = | − (y − x)|

= | − 1||y − x|
= |y − x|
= d(y, x)

∴ d(x, y) = d(y, x).

iv) d(x, y) = |x− y|.
|x− y| = |x− z + z − y|

≤ |x− z|+ |z − y| by triangle inequality
= d(x, z) + d(z, y).

∴ d(x, y) ≤ d(x, z) + d(z, y).

∴ d(x, y) = |x− y| is a distance function. ut

2.2 Area Difference Distance Measurement

Definition: Area Difference Distance refers to the symmetric difference between
two sets; each set holds data points of a distinct contour. Specifically, Area
Difference Distance is the difference between the union of the two sets and their
intersection. For any two sets, A and B, representing distinct shapes, the Area
Difference Distance measurement is defined as:

d(A,B)=Int(A4B) =Int((A∪B) \ (A∩B))

where Int is the interior, or area, of the set[2, 4].

Proposition 2: Show that d(A,B)=Int(A4B) =Int((A∪B) \ (A∩B)) is an area
difference distance.

Proof of Area Difference Distance:
Let d(A,B) := Int(A 4 B).

i) d(A,B)=Int(A4B)

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

206

=Int((A∪B)\(A∩B)).
Notice that (A∩B)⊂(A∪B).

Then, (A∪B)\(A∩B)⊃∅.

So, Int(A4B)≥ 0.
∴ d(A,B)≥ 0.

ii) ⇒Assume A=B and A6= ∅.
Then, (A4B)=(A∪A) \(A∩A)=(A\A)= ∅.
Furthermore, Int(∅)= 0.
∴ if A=B, then d(A,B)= 0.
⇐Assume A6=B and d(A,B)= 0.
Then, without loss of generality, ∃ x∈R2 3 (x∈A ∧ x/∈B).
Hence, (A∩B) (A∪B).
Therefore, Int(A4B)6= 0 and it follows that d(A,B)6= 0.
Thus we have reached a contradiction.
∴ if d(A,B)= 0, then A=B.
∴ d(A,B)= 0 if and only if A=B.

iii) d(A,B)=Int(A4B)
=Int((A∪B)\(A∩B)).

Notice that (A∪B)=(B∪A) and (A∩B)=(B∩A).

Thus, Int((A∪B)\(A∩B))=Int((B∪A)\(B∩A))
=Int(B4A)
=d(B,A).

∴ d(A,B)=d(B,A).

iv) d(A,C)=Int(A4C)
=Int((A4B)4(B4C))
≤Int(A4B)+Int(B4C)
=d(A,B)+d(B,C).

∴ d(A,C)≤d(A,B)+d(B,C)

∴ d(A,B) = Int(A 4 B) is a metric. ut

3 Alignment of Two Arbitrary Contours Using Area
Difference Distance Measurement

The purpose of this section is to find an optimal alignment of two contours using
Area Difference Distance measurement. Optimizing the Area Difference Distance
between two data sets determines parameters for aligning these data sets. These
parameters can then be used to determine the contours of optimal alignment.

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

207

3.1 Alignment of Two Arbitrary Contours

Proposition 3: Determine an optimization of the Area Difference Distance mea-
surement by means of the Area Difference Procrustes method and show that this
method is valid.

The goal is to find Ã such that d(Ã, B) is minimized. In other words, align A
onto B. We try to find the best µ,R, T which solves the following optimization
problem:

min
µ,R,T

d(Ã, B) , where Ã := µRA+ T

and d(Ã,B) := Int(Ã4B)
=Int((Ã∪B) \ (Ã∩B)).

Here, R=

[
cos θ − sin θ
sin θ cos θ

]
, T=

[
t1 t1 . . . t1
t2 t2 . . . t2

]
, and µ is a scaling constant.

Let Si =

[
t1
t2

]
, ∀Si∈ T, i= 1, 2,..., n.

Now define Ã= µRA+ T

Then ãi ∈ Ã, ãi =

[
ãi,1
ãi,2

]
=

[
a −b
b a

] [
ai,1
ai,2

]
+

[
t1
t2

]
.

=

[
aai,1 − bai,2 + t1
bai,1 + aai,2 + t2

]
.

So bi+1 = (bi+1,1 bi+1,2),
bi = (bi,1 bi,2),

ãi = (ãi,1 ãi,2),
and ãi+1 = (ãi+1,1 ãi+1,2).

3.2 Solving the Optimization Problem

Furthermore, the Area Difference Distance between any two points of each set
A and B can be defined as:

di(A,B) = {(ai,1 − bi,1)2 + (ai,2 − bi,1)2}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

to solve the optimization problem of min
a,b,t1,t2

d(Ã, B), where

di = {(aai,1 − bai,2 + t1 − bi,1)2 + (bai,1 + aai,2 + t2 − bi,2)2}{(bi+1,1 − bi,1)2 +
(bi+1,2 − bi,2)2}.

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

208

In the process of determining values for a, b, t1, and t2 which best optimize
min

a,b,t1,t2
d(Ã, B), we first must find the critical points of our distance equation.

These critical points are calculated by taking partial derivatives of di with re-
spect to each variable in our optimization problem, and then setting the deriva-
tives equal to zero. The following equations represent partial derivatives of the
distance function, di, with respect to a, b, t1, and t2:

∂di
∂a

= {2ai,1(aai,1 − bai,2 + t1 − bi,1) + 2ai,2(bai,1 + aai,2 + t2 − bi,2)}{(bi+1,1 −
bi,1)2 + (bi+1,2 − bi,2)2}

= {2a(ai,1)2−2bai,1ai,2 +2ai,1t1−2ai,1bi,1 +2bai,1ai,2 +2a(ai,2)2 +2ai,2t2−
2ai,2bi,2}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

= {2a((ai,1)2 + (ai,2)2) + 2t1(ai,1) + 2t2(ai,2)− 2ai,1bi,1− 2ai,2bi,2}{(bi+1,1−
bi,1)2 + (bi+1,2 − bi,2)2}

∂di
∂b

= {2ai,2(aai,1 − bai,2 + t1 − bi,1)− 2ai,1(bai,1 + aai,2 + t2 − bi,2)}{(bi+1,1 −
bi,1)2 + (bi+1,2 − bi,2)2}

= {2aai,1ai,2−2aai,1ai,2−2b(ai,2)2−2b(ai,1)2 +2t1ai,2−2t2ai,1−2ai,2bi,1 +
2ai,1bi,2}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

= {−2b((ai,1)2 + (ai,2)2) + 2t1ai,2 − 2t2ai,1 − 2ai,2bi,1 + 2ai,1bi,2}{(bi+1,1 −
bi,1)2 + (bi+1,2 − bi,2)2}

∂di
∂t1

= {2(aai,1 − bai,2 + 2t1 − 2bi,1)}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

= {2a(ai,1)− 2bai,2 + 2t1 − 2bi,1)}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

∂di
∂t2

= {2(bai,1 + aai,2 + t2 − bi,2)}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

= {2aai,2 + 2bai,1 + 2t2 − 2bi,2}{(bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2}

The partial derivatives above are only taking into account the set of points at a
particular value i. In order to reach the total distance, we must take the sum-
mation of all partial derivatives from i = 1, 2, ..., n.
For simpler notation, let ci = (bi+1,1 − bi,1)2 + (bi+1,2 − bi,2)2,

C1 =
n∑
i=1

ci((ai,1)2 + (ai,2)2),

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

209

C2 =
n∑
i=1

ci(ai,1),

C3 =
n∑
i=1

ci(ai,2),

and C4 =
n∑
i=1

ci.

Now we can rewrite the partial derivatives for our optimization problem as fol-
lows:

∂d

∂a
= 2a(C1) + 2t1(C2) + 2t2(C3)−

n∑
i=1

(2ai,1bi,1 + 2ai,2bi,2)ci,

∂d

∂b
= 2b(−C1) + 2t1(C3) + t2(−C2)−

n∑
i=1

(2ai,2bi,1 − 2ai,1bi,2)ci,

∂d

∂t1
= 2a(C2) + 2b(−C3) + 2t1(C4)−

n∑
i=1

(2bi,1)ci,

and
∂d

∂t2
= 2a(C3) + 2b(C2) + 2t2(C4)−

n∑
i=1

(2bi,2)ci .

Next, we set this partial differential equation equal to zero:

∂d

∂a
= 0 :

2a(C1) + 2t1(C2) + 2t2(C3)−
n∑
i=1

(2ai,1bi,1 + 2ai,2bi,2)ci = 0

a(C1) + t1(C2) + t2(C3)−
n∑
i=1

(ai,1bi,1 + ai,2bi,2)ci = 0

a(C1) + t1(C2) + t2(C3) =
n∑
i=1

(ai,1bi,1 + ai,2bi,2)ci.

For simpler notation, set B1 =
n∑
i=1

(ai,1bi,1 + ai,2bi,2)ci

=⇒ B1 = a(C1) + t1(C2) + t2(C3).

∂d

∂b
= 0 :

2b(−C1) + 2t1(C3) + 2t2(−C2)−
n∑
i=1

(2ai,2bi,1 − 2ai,1bi,2)ci = 0

b(−C1) + t1(C3) + t2(−C2)−
n∑
i=1

(ai,2bi,1 − ai,1bi,2)ci = 0

b(−C1) + t1(C3) + t2(−C2) =
n∑
i=1

(ai,2bi,1 − ai,1bi,2)ci.

For simpler notation, set B2 =
n∑
i=1

(ai,2bi,1 − ai,1bi,2)ci

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

210

=⇒ B2 = b(−C1) + t1(C3) + t2(−C2).

∂d

∂t1
= 0 :

2a(C2) + 2b(−C3) + 2t1(C4)−
n∑
i=1

(2bi,1)ci = 0

a(C2) + b(−C3) + t1(C4)−
n∑
i=1

(bi,1)ci = 0

a(C2) + b(−C3) + t1(C4) =
n∑
i=1

(bi,1)ci.

Let B3 =
n∑
i=1

(bi,1)ci

=⇒ B3 = a(C2) + b(−C3) + t1(C4).

∂d

∂t2
= 0 :

2a(C3) + 2b(C2) + 2t2(C4)−
n∑
i=1

(2bi,2)ci = 0

a(C3) + b(C2) + t2(C4)−
n∑
i=1

(bi,2)ci = 0

a(C3) + b(C2) + t2(C4) =
n∑
i=1

(bi,2)ci.

Let B4 =
n∑
i=1

(bi,2)ci

=⇒ B4 = a(C3) + b(C2) + t2(C4).

Matrix Display of System
We will then use matrices to better display the system of four equations derived
from the partial derivatives of d in terms of a, b, t1, and t2[4, 2]:

(C1)a+ (C2)t1 + (C3)t2 = B1
(−C1)b+ (C3)t1 + (−C2)t2 = B2
(C2)a+ (−C3)b+ (C4)t1 = B3
(C3)a+ (C2)b+ (C4)t2 = B4
C1 0 C2 C3
0 −C1 C3 −C2
C2 −C3 C4 0
C3 C2 0 C4



a
b
t1
t2

 =


B1
B2
B3
B4


4 Numerical Implementation

Optimization of the Area Difference Distance measurement is numerically tested
through the generation of contours in MATLAB. This testing requires code which

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

211

outputs a matrix of coordinates representing any desired shape, such as an el-
lipse, triangle, or rectangle. Since the rigid registration process is a point-based
system, these matrices must be well-ordered. They then become inputs for the
following code, which aligns the contours they represent.

Proposition 4: Create code in MATLAB which uses two well-ordered matrices,
representing fixed(B) and floating contours(A), for the optimal alignment and
distance calculation between the two contours.

function Newcontour = AligningContours(A,B)
hold on;
ci=[size(100,1)];
for i=1:100
ci(i,1)= (B(i+1,1)-B(i,1))ˆ2+ (B(i+1,2)-B(i,2))ˆ2;
end
c1matrix=[size(101,1)];
c2matrix=[size(101,1)];
c3matrix=[size(101,1)];
c4matrix=[size(101,1)];
for i= 1:100
c1matrix(i,1)= ci(i,1)*(A(i,1)ˆ2+A(i,2)ˆ2);
c2matrix(i,1)= ci(i,1)*(A(i,1));
c3matrix(i,1)= ci(i,1)*(A(i,2));
c4matrix(i,1)= ci(i,1);
end
C1= sum(c1matrix);
C2= sum(c2matrix);
C3= sum(c3matrix);
C4= sum(c4matrix);
b1matrix=[size(101,1)];
b2matrix=[size(101,1)];
b3matrix=[size(101,1)];
b4matrix=[size(101,1)];
for i=1:100
b1matrix(i,1)= ci(i,1)*(A(i,1)*B(i,1)+A(i,2)*B(i,2));
b2matrix(i,1)= ci(i,1)*(A(i,2)*B(i,1)-A(i,1)*B(i,2));
b3matrix(i,1)= ci(i,1)*B(i,1);
b4matrix(i,1)= ci(i,1)*B(i,2);
end
B1= sum(b1matrix);
B2= sum(b2matrix);
B3= sum(b3matrix);
B4= sum(b4matrix);
C= [C1, 0, C2, C3; 0, -C1, C3, -C2; C2, -C3, C4, 0; C3, C2, 0, C4];
J= [B1;B2;B3;B4];

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

212

if det(j)∼=0
V=C \ J; % C*inv(J)
rotatescale= [V(1,1), V(2,1); -V(2,1), V(1,1)];
T= [size(101,2)];
for i=1:101
T(i,1)=V(3,1);
T(i,2)=V(4,1);
end
Newcontour= A*rotatescale+T;
hold off;
plot(Newcontour(:,1), Newcontour(:,2));
hold on;
plot(B(:,1),B(:,2),’r’);
Diff=[size(100,1)];
for i=1:100
Diff(i,1)=((Newcontour(i,1)-B(i,1))ˆ 2 + (Newcontour(i,2)-B(i,2))ˆ2)ˆ(1/2)
end
Distance=sum(Diff);
Distance
end
end
4.1 Experimental Results

The following figures represent various test runs in MATLAB of the alignment
procedure. The graphs have plotted Ã (3.1) in blue, and B in green in the final
image of each figure.

(a) (b) (c)

Fig. 1: A Circle(a) Aligned with a Circle(b)

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

213

(a) (b) (c)

Fig. 2: A Circle(a) Aligned with an Ellipse(b)

(a) (b) (c)

Fig. 3: An Ellipse(a) Aligned with a Rectangle(b)

(a) (b) (c)

Fig. 4: A Triangle(a) Aligned with an Ellipse(b)

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

214

(a) (b) (c)

Fig. 5: A Triangle(a) Aligned with a Rectangle(b)

(a) (b) (c) (d)

Fig. 6: http://mouldy.bic.mni.mcgill.ca/cgi/brainweb1?alias=subject04 csf
Brain Contour, Brain Contour Scaled(x3) and Rotated(π/6) [3]

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

215

(a) (b) (c)

Fig. 7: Brain Contour aligned with Brain Contour Scaled(x3)

(a) (b) (c)

Fig. 8: Brain Contour aligned with Brain Contour Rotated(π/6)

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

216

Figure Floating Contour Fixed Contour

1 circle; radius: .5, center:(-4,3) circle; radius: .5, center: (9,1)

2 circle; radius: .5, center:(5,3) ellipse; radii: (.5,.3), center:(9,10)

3 ellipse; radii: (.5,.2857),
center:(0,0)

rectangle; length: 5, width: .3,
center:(0,8)

4 triangle; vertices: (-.4876,-.3317),
(.5124,-.3317), (.0124,.6683)

ellipse; radii: (.1667,.5),
center: (-1,0)

5 triangle; vertices: (-1.0569,-.2475),
(.0681,.3775), (1.0681,-.1225)

rectangle; length: .5, width: .375,
center: (2,1)

7 Brain Contour Scaled Brain Contour

8 Brain Contour Rotated Brain Contour

Figure R̃ Si Distance

1

[
1 0
0 1

]
[13 -2] 1.7395e-30≈ 0

2

[
.8101 0

0 .8101

]
[5.217 7.745] 0.0124

3

[
1.2066 0
1.2066 0

]
[.0071 8] 0.0084

4

[
.8301 .002
.8301 −.002

]
[-1.0277 9.7243e−4] 0.0258

5

[
1.0986 .0721
1.0986 −.0721

]
[2.0295 .9885] .1440

7

[
3 0
0 3

]
[0 0] 5.0295e-27≈ 0

8

[
0.8660 −0.5

0.5 0.8660

]
[0 0] 5.2592e-26≈ 0

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

217

5 Conclusion

This paper illustrates an optimization of the Area Difference Distance measure-
ment. We can numerically interpret the minimum difference between any two
arbitrary contours after translating, rotating, and scaling a floating contour in
relation to the fixed contour. Figures 1-5 and 7-8 show promising results of opti-
mal alignment between two contours, with relatively small outcomes of distance.
Our future focus will be applying the alignment method with various brain con-
tours. By calculating the minimum distance between a fixed and floating contour,
classification of these shapes, relative to their difference to the fixed contour, will
be represented more accurately. Prior anatomical shape information in medical
imaging can be generated through the application of this metric function. For
example, abnormalities of the contour in certain areas of a brain may suggest
serious defects. Advancements such as this, which rely on the Area Difference
Distance metric, will be the focus of our future work.

References

1. F. Rohlf. Shape Statistics: Procrustes Superimposition and tangent Spaces, Journal
of Classification 16, pp. 197-223 (1999).

2. J. An, Y. Chen, M. Chang, D. Wilson, and E. Geiser. Generating Geometric Models
through Self-Organizing Maps, Multiscale optimization methods and applications,
Nonconvex Optim. Appl., 82 pp. 241-250, (2006).

3. McConnell Brain Imaging Center. BrainWeb: Simulated Brain Database,
http://mouldy.bic.mni.mcgill.ca/brainweb/.

4. Y. Chen, D. Wilson and F. Huang. A New Procrustes Methods for Generating
Geometric Models, Proceedings of World Multiconference on Systems, Cybernetics
and Informatics, pp. 227-232, (2001).

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

218

