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Abstract

This paper examines the fractal nature of the Narayana fractal, an
object defined by

N = {(i, j) ∈ N× N : N(i + j + 1, j + 1) = 1 (mod 2)}.

where

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
are the Narayana numbers. This object closely resembles a fractal
derived from Pascal’s triangle. This similarity is used to prove that
the Hausdorff dimension of the Narayana fractal is log 3/ log 2, and
the limit of the Narayana fractal converges to the union of Sierpinski’s
gasket with one additional point.

1 Introduction

For each integer n ≥ 0, let Cn = 1
n+1

(
2n
n

)
denote the nth Catalan number.

The Catalan numbers arise in a variety of combinatorial problems; indeed,
Volume 2 of Stanley’s Enumerative Combinatorics presents no less than 66
different manifestations of the these numbers. One such manifestation is this:
for each integer n ≥ 1, the number of lattice paths that step only northeast
and southeast from (0, 0) to (2n, 0) and do not stray below the x-axis is
Cn; see pages 220-229 of [13]. For fixed n ≥ 1, these Catalan paths can
be partitioned according to the number of peaks. Thus, given integers 1 ≤
k ≤ n, let N(n, k) denote the number of these paths that contain exactly k
peaks. For example, since there are 6 paths from (0, 0) to (8, 0) that meet the
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Figure 1: Here are the six paths from (0, 0) to (8, 0) that contain exactly two
peaks.

conditions outlined above and contain exactly 2 peaks, N(4, 2) = 6. These
6 paths are pictured in Figure 1. Although these numbers were introduced
by Percy MacMahon [11], they are presently called the Narayana numbers,
in honor of T.V. Narayana who rediscovered them and brought them to
prominence [15]. The Narayana numbers have a closed form given by

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
,

and they exhibit an obvious relationship with the Catalan numbers; namely,

n∑
k=1

N(n, k) = Cn.

The Narayana numbers have recently been an object of attention in math-
ematics and related fields. A 2011 paper by Barry provides two methods for
obtaining a generalized form of the Narayana triangle, one using properties
of trinomials and one using continued fractions [2]. Li and Mansour present
a multiplicative identity for the Narayana numbers [10]. In a subsequent
paper, Mansour and Sun show that the Narayana numbers can be written
as integrals of the Legendre polynomials [12]. The Narayana numbers have
also been used in recent research on MIMO (multiple input, multiple out-
put) communication systems [3]. Our work with the Narayana numbers ties
in nicely with a 2005 paper by Bóna and Sagan, in which they give necessary
and sufficient conditions for Narayana numbers to be divisible by a given
prime [4]. For purposes of self containment, we will not make direct use of
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Figure 2: The Narayana fractal (left) and the Pascal fractal (right) modulo
2 in [0, 63]× [0, 63]

their conditions, but their work could provide alternate proofs for the number
theoretic lemmas in Section 2.

In this paper, we are concerned with geometric aspects of the Narayana
numbers modulo 2. Others have done similar analysis for Pascal’s triangle
and other number triangles. For example, Wolfram shows that Pascal’s tri-
angle modulo 2 is a fractal with Hausdorff dimension log 3/ log 2 [16]. Sved
shows that this result is a special case of a general result for arithmetical
functions of two variables satisfying a certain type of recurrence relation[14].
Holte investigates, among other things, the fractal dimension of a set derived
from the generalized binomial coefficients modulo a prime [9], and Calvo and
Masqué provide a method for calculating the Hausdorff dimension of fractals
formed from Pascal’s triangle and reduced modulo powers of primes [5]. For
general references on fractals, see Edgar [6] and Falconer [7].

Let N denote the set of nonnegative integers. For each (i, j) ∈ N×N, let

γ(i, j) =

(
i+ j

j

)
and ν(i, j) = N(i+ j + 1, j + 1).

Let the Pascal fractal be given by

P = {(i, j) ∈ N× N : γ(i, j) ≡ 1 (mod 2)},
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and let the Narayana fractal be given by

N = {(i, j) ∈ N× N : ν(i, j) ≡ 1 (mod 2)}.

Portions of these fractals are pictured in Figure 2. While these two fractal
sets resemble each other on a largest scale, inspection reveals important fine
scale differences between them. We will show that despite these fine scale
differences, the two fractals are closely related: they have similar patterns of
self-propagation, nearly identical limits when re-scaled, and the same discrete
Hausdorff dimension as defined by M. T. Barlow and S. J. Taylor [1].

Following, but slightly modifying, the work of Barlow and Taylor, for
each n ≥ 0, let

Vn = {(i, j) ∈ N× N : i, j < 2n}.

We will henceforth refer to Vn as the window of size 2n.
Given A ⊂ Z × Z and and x ∈ Z × Z, let the translation of A by x be

given by A+ x = {a+ x : a ∈ A}. Hereafter let

Pn = P ∩ Vn and Nn = N ∩ Vn (1.1)

for each n ≥ 0. We are here describing finite portions of the Pascal fractal
and the Narayana fractal within a window of size 2n.

The propagation rule for the Pascal fractal can be stated as follows: for
n ≥ 1

Pn+1 = Pn ∪
(
Pn + (0, 2n)

)
∪
(
Pn + (2n, 0)

)
. (1.2)

In other words, Pn+1 can be formed by joining two copies of Pn to itself:
one copy is translated to the right and the other is translated up.

The propagation rule for the Narayana fractal is similar, but there is a
critical difference. For n ≥ 1, let

Mn = {(0, 2n − 1), (2n − 1, 0), (2n − 1, 2n − 1)}.

We will call the elements of this set mortar points, because they appear to
bind the fractal together. We also define

N −
n = Nn \Mn

Theorem 1.1. For n ≥ 1,

Nn+1 = Nn ∪
(
N −
n + (0, 2n)

)
∪
(
N −
n + (2n, 0)

)
∪Mn+1.
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It is here that the fine-scale differences between the Pascal fractal and the
Narayana fractal emerge. As in the Pascal fractal, Nn+1 is formed by joining
copies of Nn to itself. The essential difference is that the nth level mortar is
not copied up and over with the rest of the fractal, and new mortar is added
at level n+ 1.

Before we state our next theorem, we will need to introduce some addi-
tional notation and make some preparatory observations. As is customary,
let H([0, 1]2) denote the collection of nonempty, closed subsets of the unit
square, [0, 1]2, endowed with the Hausdorff metric. Let

M =

[
1/2 0
0 1/2

]
,

and, for x ∈ [0, 1]2, let F1(x) = Mx, F2(x) = Mx + (0, 1/2), and F3(x) =
Mx + (1/2, 0). Each function is a contraction on [0, 1]2 with ratio 1/2. For
A ⊂ H([0, 1]2), let

F (A) = F1(A) ∪ F2(A) ∪ F3(A),

which defines a function from H([0, 1]2) to H([0, 1]2). The function F has a
unique fixed point in H([0, 1]2), which we will denote by S and identify with
Sierpinski’s triangle. We will define the iterates of F in the usual way: let
F (1) = F and, for k > 1, F (k) = F (k−1) ◦ F . Then for any A ⊂ H([0, 1]2),
F (k)(A)→ S in the Hausdorff metric as k →∞; see, for example, Theorem
8.3 of [7]. In particular, if we set A = {(1/2, 1/2)}, then

1

2n
(
Pn + (1

2
, 1

2
)
)

= F (n−1)(A)→ S

in the Hausdorff metric as n→∞.
For the Narayana fractal, we have a slightly different result. Let S+ =

S ∪ {(1, 1)}.

Theorem 1.2. As n→∞,

1

2n
(
Nn + (1

2
, 1

2
)
)
→ S+

in the Hausdorff metric as n→∞.
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The presence of the point (1, 1) in the limit reflects the persistence of the
mortar.

We will use similarity of N and P and the work of Barlow and Taylor
to show that the discrete Hausdorff dimension of the Narayana fractal equals
that of the Pascal fractal.

Theorem 1.3. dimH(N ) = log 3/ log 2.

2 The self-propagation of the Narayana frac-

tal

In this section we will prove Theorem 1.1, which demonstrates how the
Narayana fractal propagates from one dyadic window to the next. Our ap-
proach emphasizes the geometric relationship between Nn and Nn+1. The
main tool of our analysis is Kummer’s theorem.

Theorem 2.1 (Kummer’s theorem, [8]). The power of the prime p that
divides the binomial coefficient

(
n+m
m

)
is the number of carries when adding

the p-ary expansions of m and n.

We will employ the following notation. Given 0 ≤ n < 2k, the binary
expansion of n is given by

(n)2 = εk−1εk−2 · · · ε1ε0 :
k−1∑
j=0

εj2
j = n

where εi ∈ {0, 1} for each 0 ≤ i ≤ k − 1. To avoid ambiguity, we will
refer to εj as the jth place of n. We will make frequent use of the following
observations: if 2k−1 ≤ n < 2k, then (n)2 has a 1 in position k − 1; if (n)2

has k trailing 0s, then 2k divides n.
For n ≥ 1, let

Ln = {(i, j) ∈ N× N : 0 ≤ i+ j ≤ 2n − 2}
Un = {(i, j) ∈ N× N : 2n − 1 ≤ i+ j, i ≤ 2n − 1, j ≤ 2n − 1}.

These sets partition Vn into a lower triangular set, Ln, and an upper trian-
gular set, Un. Our first three lemmas reveal the relationship between N and
the sets Ln and Un; they are number-theoretic in nature, leaning heavily on
Kummer’s theorem.
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Lemma 2.2. For each n ≥ 1, if (i, j) ∈ Ln, then

ν(i, j) ≡ ν(i+ 2n, j) ≡ ν(i, j + 2n) (mod 2).

Proof. Fix n ≥ 1 and let (i, j) ∈ Ln. We will show ν(i, j) ≡ ν(i + 2n, j)
(mod 2); the proof of ν(i, j) ≡ ν(i, j+2n) (mod 2) follows from the fact that
ν(i, j) = ν(j, i) for (i, j) ∈ N× N. Thus we need to show that

1

i+ j + 1

(
i+ j + 1

j + 1

)(
i+ j + 1

j

)
≡ 1

i+ 2n + j + 1

(
i+ 2n + j + 1

j + 1

)(
i+ 2n + j + 1

j

)
(mod 2). (2.3)

Let α, β, and γ be the powers of 2 that divide i + j + 1,
(
i+j+1
j+1

)
, and(

i+j+1
j

)
respectively, and let A, B, and C be the powers of 2 that divide

i + 2n + j + 1,
(
i+2n+j+1

j+1

)
, and

(
i+2n+j+1

j

)
respectively. We will show that

α = A, β = B, and γ = C. This shows that the same power of 2 divides
the left and right sides of equation (2.3), which demonstrates that these two
sides are congruent modulo 2. Note that since (i + (j + 1)) ≤ 2n − 1, and i
and j are nonnegative, i ≤ 2n − 2 and (j + 1) ≤ 2n − 1.

First we will show that α = A. Since (i, j) ∈ Ln, i + j + 1 ≤ 2n − 1. So
(i + j + 1)2 has a 0 in the nth place. Thus (i + 2n + j + 1)2 is the same as
(i + j + 1)2, but with an additional 1 in the nth place. Thus both have the
same number of trailing 0s, which shows that α = A.

We will now show that β = B. By Kummer’s theorem, there are β carries
in (i)2 + (j+1)2 and B carries in (i+2n)2 + (j+1)2. Note that (i)2, (j+1)2,
and (i+ j + 1)2 have 0s in place n. Thus (i+ 2n)2 is (i)2 with an additional
1 in place n. Thus (i)2 + (j + 1)2 and (i+ 2n)2 + (j + 1)2 have the same
number of carries from places 0 to (n−1). Since (i+ j+1) has a 0 in place n
and in all places greater than n, there is no carry from place (n− 1) to place
n in (i)2 + (j + 1)2; therefore, there cannot be a carry from place (n− 1) to
place n in (i+ 2n)2 + (j + 1)2. So there cannot be a carry from place n to
(n+ 1) in (i+ 2n)2 + (j + 1)2. Thus β = B.

Finally we will show γ = C. By Kummer’s theorem, there are γ carries in
(i+ 1)2 + (j)2, and C carries in (i+ 2n + 1)2 + (j)2. Note that both (i+ 1)2

and (j)2 have a 0 in place n. So (i+ 2n + 1)2 is (i+ 1)2 with an additional
1 in place n. Thus the same number of carries occur in places 0 to (n − 1)
in (i+ 1)2 + (j)2 as in (i+ 2n + 1)2 + (j)2. Since (i+ 2n)2 has a 1 in its nth
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place, and (j)2 has a 0 in its nth place, (i+ 2n + 1)2 + (j)2 does not create a
carry from place n to place (n+1). So the number of carries in (i+ 1)2 +(j)2

is the same as the number of carries in (i+ 2n + 1)2 + (j)2. So γ = C.
Summarizing our results, we have that the same power of 2 divides both

sides of equation (2.3), demonstrating that these two sides are congruent
modulo 2, as was to be shown.

Lemma 2.3. For each n ≥ 2, if (i, j) ∈ Un \Mn then ν(i, j) ≡ 0 (mod 2).

Proof. Fix an integer n, n ≥ 2. We will divide our proof into two different
cases: i+ j > 2n − 1 and i+ j = 2n − 1.

First assume that i+ j > 2n − 1 and let k denote the number of trailing
0s in (i + j + 1)2; we will show that 2k+1|

(
i+j+1
j

)
, which would show that

ν(i, j) ≡ 0 (mod 2). We will need to consider two subcases: k ≥ 1 and
k = 0. If k ≥ 1, then (i + 1 + j) ≡ 0 (mod 2), implying exactly one of i or
j is even. Assume, without loss of generality, that i is even. Consider the
binary addition (i+ 1)2 + (j)2. We know that (i+ 1 + j)2 has k trailing 0s.
However, since both (i + 1)2 and (j)2 are odd, they each have a 1 in place
0; thus, this place creates a carry. Since (i + 1 + j)2 has k trailing 0s, the
carried 1 generated in place 0 must carry through at least k places. Note
that since the first place is place 0, this implies that the last place to generate
a carry is place k − 1. If k = 0, then, trivially, (i + 1)2 + (j)2 has k carries.
We have thus far counted k carries. We will now prove there is at least 1
additional carry for a total of at least k + 1 carries. Since our constraints
imply 2n < i + 1 + j < 2n+1 − 1, we know that k is strictly less than n,
and thus we know all carries counted above occur before place n, with place
n− 2 being the last place that could have created one of our k carries. Note
that (i + 1)2 and (j)2 have a 0 in place n and (i + 1 + j)2 has a 1 in place
n, so there must exist a carry in from place n − 1 to place n. Therefore,
there exists k+ 1 carries in the binary addition (i+ 1)2 + (j)2 and Kummer’s
theorem implies that 2k+1 |

(
i+j+1
j

)
.

Next, let us assume that i + j = 2n − 1. We will show that 2n+1 |(
i+1+j
j

)(
i+1+j
j+1

)
, which would show that ν(i, j) ≡ 0 (mod 2). Arguing as

above, we can assert that 2n |
(
i+1+j
j

)
. However, since there exist n places

in (i+ j + 1)2, there can exist at most n carries. Note that (i, j) ∈ Un \Mn

implies i 6= 0 and j 6= 0. Now consider (i)2 + (j+ 1)2. Since neither i nor j is
zero, there must occur a 1 in some position of their binary representations.
Since both i and (j + 1) are less than 2n, and since (i+ j + 1) = 2n, the 1 in
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(i)2 must either be paired with a 1 in (j + 1)2 or a carried 1 in order to sum
to a 0. Therefore, there must exist at least one carry in (i)2 + (j + 1)2 and
thus, by Kummer’s Theorem, 2 |

(
i+j+1
j+1

)
, as was to be shown.

Lemma 2.4. N ∩Mn = Mn for n ≥ 1.

Proof. Recall that Mn = {(0, 2n − 1), (2n − 1, 0), (2n − 1, 2n − 1)}. We will
prove that ν(i, j) ≡ 1 (mod 2) for each (i, j) ∈Mn. By direct calculation,

ν(0, 2n − 1) = ν(2n − 1, 0) =
1

2n

(
2n

2n

)(
2n

2n − 1

)
= 1.

The argument for the third mortar point is more delicate. First note that

ν(2n − 1, 2n − 1) =
1

2n+1 − 1

(
2n+1 − 1

2n

)(
2n+1 − 1

2n − 1

)
.

Since the addition (2n)2 + (2n − 1)2 creates no carries, an application of

Kummer’s theorem shows that 2 does not divide
(

2n+1−1
2n

)
or
(

2n+1−1
2n−1

)
. Thus

ν(2n − 1, 2n − 1) ≡ 1 (mod 2). So N ∩Mn = Mn, as was to be shown.

Before we turn to the proof of Theorem 1.1, we will establish two corol-
laries.

Corollary 2.5. For each n ≥ 1,

N ∩ Ln+1 = Nn ∪
(
N ∩ Ln + (0, 2n)

)
∪
(
N ∩ Ln + (2n, 0)

)
Proof. First we will show that for each n ≥ 1,

N ∩ Ln + (0, 2n) = N ∩ (Ln + (0, 2n)) (2.4)

and

N ∩ Ln + (2n, 0) = N ∩ (Ln + (2n, 0)). (2.5)

We will prove only equation (2.4); the proof of equation (2.5) is similar. Let
(i, j) ∈ N ∩Ln+(0, 2n). Then ν(i, j−2n) ≡ 1 (mod 2) and (i, j−2n) ∈ Ln.
But, by Lemma 2.2, it follows that ν(i, j) ≡ 1 (mod 2), and, since (i, j) ∈
Ln + (0, 2n), we may conclude that (i, j) ∈ N ∩ (Ln + (0, 2n)); hence,

N ∩ Ln + (0, 2n) ⊂ N ∩ (Ln + (0, 2n)).
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A similar line of reasoning shows that N ∩Ln+(0, 2n) ⊃ N ∩ (Ln+(0, 2n)),
which verifies (2.4).

To finish our proof, observe that Ln+1 can be partitioned as

Ln+1 = Vn ∪
(
Ln + (0, 2n)

)
∪
(
Ln + (2n, 0)

)
.

It follows that N ∩ Ln+1 can be expressed as(
N ∩ Vn

)
∪
(
N ∩

(
Ln + (0, 2n)

))
∪
(
N ∩

(
Ln + (2n, 0)

))
.

By definition, Nn = N ∩ Vn; the rest of the proof follows from equations
(2.4) and (2.5).

Corollary 2.6. For each n ≥ 1, N ∩ Un = Mn.

Proof. Note that U1 = M1 = {(0, 1), (1, 0), (1, 1)}, and that ν(0, 1) ≡
ν(1, 0) ≡ ν(1, 1) ≡ 1 (mod 2). For n ≥ 2, observe that

N ∩ Un = [N ∩ (Un \Mn)] ∪ (N ∩Mn).

By Lemma 2.3, N ∩ (Un \Mn) = ∅ and, by Lemma 2.4, N ∩Mn = Mn,
which proves our claim for each n ≥ 2.

We will now prove Theorem 1.1.

Proof of Theorem 1.1. By Corollary 2.5 we have:

N ∩ Ln+1 = Nn ∪
(
N ∩ Ln + (0, 2n)

)
∪
(
N ∩ Ln + (2n, 0)

)
.

By Corollary 2.6, we have N ∩ Un+1 = Mn+1. Since

N ∩ Vn+1 = (N ∩ Ln+1) ∪ (N ∩ Un+1),

we can conclude that

Nn+1 = Nn ∪
(
N ∩ Ln + (0, 2n)

)
∪
(
N ∩ Ln + (2n, 0)

)
∪Mn+1.

Since N ∩ Ln = N −
n , it follows that

Nn+1 = Nn ∪
(
N −
n + (0, 2n)

)
∪
(
N −
n + (2n, 0)

)
∪Mn+1,

as was to be shown.
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N −
n

un

N −
n rn

dn

N −
n

Pn

PnPn

Pn

Pn Pn

N −
n

N −
nN −

n rn rn+1

dn+1

Nn+1 P+
n+1

N −
n+1 Pn+1

un+1 dn+1

un dn

Figure 3: This diagram shows how each of the four sets is related to its
constituent parts.

3 The convergence of the Narayana fractal

For each n ∈ N, let un = (2n−1, 0), dn = (2n−1, 2n−1), and rn = (0, 2n−1).
It is helpful to recall that these are the three elements of the set Mn. We
have used the labels u, d, and r to suggest the orientation of these points
within Vn: namely, up, diagonal, and right. For each n ∈ N, let

P+
n = Pn ∪ {(2n − 1, 2n − 1)} = Pn ∪ {dn}.

Our next theorem asserts that the sets P+
n and Nn are close to each

other for each n ∈ N. Given sets A,B ⊂ Z × Z, we say that A and B are
proximal provided that for each a = (a1, a2) ∈ A there exists b = (b1, b2) ∈ B
such that |a1 − b1| + |a2 − b2| ≤ 1 and for each b = (b1, b2) ∈ B there exists
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a = (a1, a2) ∈ A such that |a1 − b1| + |a2 − b2| ≤ 1. We will write A ∼ B
whenever A and B are proximal.

Theorem 3.1. For each n ≥ 1, Nn ∼P+
n and N −

n ∼Pn.

Proof. We will proceed by induction on n. First observe that

N1 = P+
1 = {(0, 0), (1, 0), (0, 1), (1, 1)};

thus, N1 ∼P+
1 trivially. Likewise,

N −
1 = {(0, 0)} and P1 = {(0, 0), (1, 0), (0, 1)};

thus, N −
1 ∼P1 by inspection.

Let us assume that the claim is true for some n. We will show only that
Nn+1 ∼P+

n+1; the proof of N −
n+1 ∼Pn+1 is nearly identical.

Let the window Vn+1 be partitioned into 4 quadrants as follows:

Q1 = Vn, Q2 = Vn + (0, 2n), Q3 = Vn + (2n, 2n), Q4 = Vn + (2n, 0). (3.6)

We will examine the claim for Nn+1 and P+
n+1 within each of these quadrants.

In Figure 3, we have a diagram which shows how each of the four sets in
question is related within these quadrants to its constituent parts. The heavy
lifting in the proof of this theorem is done by the propagation rules for each
fractal, Theorem 1.1 and equation (1.2). By way of these propagation rules,
we have

Nn+1 ∩Qi ∼P+
n+1 ∩Qi for 2 ≤ i ≤ 4. (3.7)

The exceptional case is in Q1, owing to the fact that the point dn, which is
an element of Nn+1, is no longer present in P+

n+1.
Consider Nn+1 and P+

n+1 within the set Q1. By induction, Pn ∼ N −
n .

Since un, rn ∈ Pn, in fact N −
n ∪ {un, rn} ∼ Pn. At this point, we meet

an impasse, since there is no point in Pn which is adjacent to dn; however,
(2n−1, 2n) = dn+(0, 1) is an element of Pn+1; therefore, dn is adjacent to an
element of Pn+1. Consider Nn+1 and P+

n+1 within the set Q2. By induction,
the copy of N −

n in Q2 of Nn+1 is proximal to the copy of Pn within Q2 of
P+

n+1. Since un+1 ∈ Pn+1, in fact Nn+1 ∩ Q2 ∼ P+
n+1 ∩ Q2. The same

argument shows that Nn+1∩ Q4 ∼ P+
n+1 ∩ Q4. Since Nn+1 ∩ Q3 = P+

n+1 ∩
Q3 = dn+1, clearly Nn+1 ∩Q3 ∼P+

n+1 ∩Q3. In summary, Nn+1 ∼P+
n+1, as

was to be shown.
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Let ρH denote the usual Hausdorff metric; see, for example, page 71 of
[6]. We can easily recast Theorem 3.1 into the language of Hausdorff metric.

Corollary 3.2. For each n ∈ N, ρH(Nn,P+
n ) ≤ 1.

We are now prepared to prove Theorem 1.2.

Proof of Theorem 1.2. By the triangle inequality,

ρH

(
1

2n
(
Nn + (1

2
, 1

2
)
)
, S+

)
≤ ρH

(
1

2n
(
Nn + (1

2
, 1

2
)
)
,

1

2n
(
P+

n + (1
2
, 1

2
)
))

+ ρH

(
1

2n
(
P+

n + (1
2
, 1

2
)
)
, S+

)

By Corollary 3.2 and scaling,

ρH

(
1

2n
(
Nn + (1

2
, 1

2
)
)
,

1

2n
(
P+

n + (1
2
, 1

2
)
))
≤ 1

2n
.

Observe that

ρH

(
1

2n
(
P+

n + (1
2
, 1

2
)
)
, S+

)
≤ ρH

(
1

2n
(
Pn + (1

2
, 1

2
)
)
, S

)
+

1

2n

By the definition of S (see Section 1),

ρH

(
1

2n
(
Pn + (1

2
, 1

2
)
)
, S

)
→ 0

as n→∞. Summarizing our findings, as n→∞,

ρH

(
1

2n
(
Nn + (1

2
, 1

2
)
)
, S+

)
→ 0,

as was to be shown.
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4 The dimension of the Narayana fractal

Throughout this section we will follow Barlow and Taylor’s development of
the Hausdorff dimension of a discrete fractal; see [1]. Before entering into the
heart of the proof of Theorem 1.3, we will briefly review their work. It should
be noted here that Barlow and Taylor’s treatment of Hausdorff dimension is
more general, considering subsets of Zn; our presentation is an adaptation of
their work to subsets of N× N.

The definition of the discrete Hausdorff dimension requires some special
subsets of N × N, called shells and cubes. Let S0 = {(0, 0)} and, for n ≥ 1,
let Sn = Vn \Vn−1; each such set is called a shell. Given (x0, y0) ∈ N×N and
k ∈ N, the cube of width 2k anchored at (x0, y0), denoted by C((x0, y0), 2k),
is

{(x, y) ∈ N× N : x0 ≤ x < x0 + 2k and y0 ≤ y < y0 + 2k}.

Given a cube C, we will write |C| to denote its width, that is, the number of
points on its side. In particular, |C((x0, y0), 2k)| = 2k.

A covering of a set A ⊂ N × N is a collection of cubes, not necessarily
of the same width, whose union contains A. Let α > 0 and let the set of
cubes {C((xi, yi), 2

ki) : 1 ≤ i ≤ m} cover the set A ∩ Sn. The α-cost of this
covering is

m∑
i=1

(|C((xi, yi), 2
ki)|/2n)α =

m∑
i=1

(2ki/2n)α.

Let ηα(A, n) be the minimum α-cost taken over all coverings of the set A∩Sn
and set mα(A) =

∑∞
n=0 ηα(A, n). The (discrete) Hausdorff dimension of A

is
dimH(A) = inf {α > 0 : mα(A) <∞} .

Given a cube C = C((x0, y0), 2k), define the set C ′ of five cubes as follows:

C ′ = {C((x0, y0), 2k), C((x0 + 2k, y0), 2k), C((x0 − 2k, y0), 2k),

C((x0, y0 + 2k), 2k), C((x0, y0 − 2k), 2k)}.

Thus C ′ comprises the original cube plus four translations of that cube, one
in each of the four principle directions, up, down, right, and left. Given a set
of cubes R = {Ci : 1 ≤ i ≤ m}, define the set of cubes R′ as follows:

R′ = ∪mi=1C
′
i.
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A key observation regarding the collection of cubes R′ is given in our next
lemma. The proof follows trivially from the definition of proximal given in
Section 3 and will be omitted.

Lemma 4.1. Let A and B be proximal subsets N × N. If a set of cubes R
covers A, then the set of cubes R′ covers B.

We will now prove Theorem 1.3.

Proof of Theorem 1.3. Throughout we will use the fact that N ∩Sn = Nn∩
Sn and P ∩ Sn = Pn ∩ Sn; see equation (1.1).

The real work in our proof is to establish the following two bounds: let
α > 0 be fixed; for each n ≥ 0,

ηα(N , n) ≥ ηα(P, n)/5 (4.8)

and
ηα(P, n) ≥ ηα(N , n)/5− 1/2nα. (4.9)

The rest of the proof follows easily from this. From inequality (4.8), we can
conclude that mα(N ) ≥ mα(P)/5 hence dimH(N ) ≥ dimH(P). Likewise,
from inequality (4.9), we can conclude that

mα(P) ≥ 1

5
mα(N )− 2α

2α − 1

hence dimH(P) ≥ dimH(N ). It follows that dimH(N ) = dimH(P), which
proves our claim, since P has Hausdorff dimension log(3)/ log(2) [16].

To prove inequality (4.8), let n ≥ 0 be given and let R = {Ci : 1 ≤ i ≤ m}
be a covering of the set N ∩ Sn = Nn ∩ Sn by cubes. From equation (3.7),
it follows that Nn ∩ Sn ∼P+

n ∩ Sn; thus, by Lemma 4.1, R′ covers P ∩ Sn.
Hence∑

Ci∈R

(|Ci|/2n)α =
1

5

∑
Ci∈R

5(|Ci|/2n)α =
1

5

∑
Γi∈R′

(|Γi|/2n)α ≥ ηα(P, n)/5.

This verifies inequality (4.8).
Likewise, to prove inequality (4.9), let n ≥ 0 be given and let {Ci : 1 ≤

i ≤ m} be a covering of P ∩ Sn = Pn ∩ Sn. Recall that P+
n = Pn ∪ {dn};
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thus the collection {Ci : 1 ≤ i ≤ m}∪{C(dn, 2
0)} yields a cover of P+

n ∩Sn.
This shows that

ηα(P+
n , n) ≤ (1/2n)α +

m∑
i=1

(|Ci|/2n)α.

Since this is true for every cover of P ∩ Sn, ηα(P+
n , n)− 1/2nα ≤ ηα(P, n).

Now let R = {Ci : 1 ≤ i ≤ m} be a covering of P+
n ∩Sn by cubes. Then,

arguing as above, R′ is a cover of Nn ∩ Sn; thus,∑
Ci⊂R

(|Ci|/2n)α =
1

5

∑
Ci⊂R

5(|Ci|/2n)α =
1

5

∑
Γi⊂R′

(|Γi|/2n)α ≥ ηα(N , n)/5.

From this we obtain ηα(P+
n , n) ≥ ηα(N , n)/5. In summary,

ηα(P, n) ≥ 1

5
ηα(N , n)− 1/2nα,

which gives inequality (4.9), completing our proof.
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