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Abstract. Mathematical modeling of biological systems is crucial to effectively and efficiently developing treatments for
medical conditions that plague humanity. Often, systems of ordinary differential equations are a traditional tool used to describe
the spread of disease within the body. We consider the dynamics of the Human Immunodeficiency Virus (HIV) in vivo during
the initial stages of infection. In particular, we examine the well-known three-component model and prove the existence, unique-
ness, and boundedness of solutions. Furthermore, we prove that solutions remain biologically meaningful, i.e., are positivity
preserving, and perform a thorough, local stability analysis for the equilibrium states of the system. Finally, we incorporate
random coefficients into the model, selected from uniform, triangular, and truncated normal probability distributions, and
obtain numerical results to predict the probability of infection given the transmission of the virus to a new individual.
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1. Introduction. The human body has been studied for hundreds of years, and the knowledge accu-
mulated to date includes intricate molecular level mechanisms that determine the ways in which a virus may
infect cells and replicate. This information is necessary to develop treatments for maladies ranging from
Hepatitis to the Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS).
An understanding of the accumulation of millions of these interactions across a timescale of medical relevance
permits the creation of better treatment methods. As recently as fifty years ago, this could only be done
via experiment and repeated trials. Today, through the advent of high speed computing, viral kinetics can
be simulated using mathematical models. Hence, one can utilize our current understanding of molecular
and cellular dynamics, describe them in mathematical terms, and simulate interactions within the body
to examine the course of a virus from initial transmission to a long-term infection. In this paper we will
consider the three-component model (3CM) for HIV [4, 5, 11, 14, 15]. We will study the infection within a
single human host using this system of differential equations, analyze the resulting dynamics of the model,
and simulate the behavior of solutions.

Generally speaking, HIV infection without the inclusion of anti-retroviral therapy (ART) is described
by a number of distinct phases [16]. In the early stages of HIV infection, symptomatic primary infection
yields high concentrations of virions within an individual’s blood or tissue. After several weeks, the flu-like
symptoms disappear and the viral density then declines rapidly within several days. This corresponds to an
increase in the amount of cytotoxic T lymphocytes and the subsequent appearance of anti-HIV antibodies in
the blood. For years afterward, the viral concentration deviates very little from this low level and the host
typically does not exhibit symptoms of HIV infection, but the concentration of CD4+ T cells measured in
blood slowly declines. Such a period can last as long as 10 years. Ultimately, the viral load increases, the
T-cell count drops below 200 cells per µL of blood, and the symptoms of AIDS appear.

Within the current study, we will focus on the initial stages of transmission and infection, detailing
the quick rise of the virion population within the body and the noted decrease in the number of CD4+ T-
cells. Mathematical models for HIV population dynamics have been used to understand the basic mechanisms
involved in the evolution of the infection at the microscopic level and to ascertain the effects of anti-retroviral
therapy [16,17]. To date, deterministic models of HIV dynamics have included at least two components: the
population of uninfected CD4+ T-cells and the density of virus-producing cells. However, in the construction
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of a model for early HIV dynamics one may consider several components as populations within the the blood
or lymphatic tissue, including latently-infected CD4+ T-cells, macrophages, and actively-producing infected
macrophages. As previously described, the time-dependent changes in the cytotoxic T-lymphocytes which
directly attack virus producing CD4+ T-cells could also be included within a model, but as previously stated,
this may not have significant impact within the earliest stage of infection. Similarly, effects of time delays
between infection of T-cells and active production of virions, or multiple compartment models, which couple
the dynamics of multiple infected regions of the body, may also play a role in later stages, but are omitted from
the current study. Nevertheless, some authors have found it useful to consider simple models which include
only the density of virions, the uninfected CD4+ T-cell population, and one class of (actively-productive)
infected CD4+ T-cells. This gives rise to three-component models as in [4, 11, 14]. We emphasize that the
current article focuses only on the early period, up to a couple of months after infection, and does not study
the later progression to the acquired immune deficiency syndrome (AIDS) which may follow without the use
of anti-retroviral therapy.

2. Background and Derivation of Mathematical Model. The general principle behind any sort
of mathematical model is to examine closely the interactions between the quantities being analyzed. We
begin with a small number of initial axioms, and then follow the implications thoroughly to their conclusion.
As a basis for our model, we utilize a general biological understanding of HIV dynamics, including infection,
replication, and clearance.

In this section we describe the three-component model that has been widely used in the study of HIV.
There are many biological operators involved in the interaction between HIV and cells within the human
body. The first group is a subset of the population of lymphocytes, which in turn are a type of white blood
cell. This subset is known as CD4+ T-cells, or helper T-cells. These T-cells have a variety of functions,
including secreting substances that stimulate the immune system, in addition to acting as memory agents
and regulating the immune response. In short, CD4+ T-cells detect and direct immune system responses
to invading bacteria and viruses. Without them, the body significantly suffers from opportunistic infections
that are greater in severity and duration than they would be if the CD4+ T-cells were otherwise not present.
HIV, which refers in this case to the virus, not the disease or symptoms associated with it, is a retrovirus
that infects helper T-cells. The virus, which is significantly smaller than the T-cell (120 nm in diameter
compared with 7 µm in diameter, respectively), breaches the cell wall and transports its RNA into the T-cell
nucleus, where it may remain dormant for a time. Upon activation, the T-cell ceases its function as part of
the immune system and instead produces additional copies of HIV. These infected T-cells, along with the
healthy T-cells and free floating HIV, are the populations with which we are concerned, and will appear
within the mathematical model.

The second aspect of the model’s creation involves incorporating the interactions between these pop-
ulations and deriving their corresponding mathematical representation. Healthy T-cells are created from
stem cells in the bone marrow, and mature in the thymus. While production of T-cells does decrease with
the aging of the human body, we shall consider it to be a constant process for two reasons. First, there
is no known method other than this production that can affect T-cell creation, and second, the time scale
of interest within the model is sufficiently small to consider the T-cell production rate as constant. When
considering removal of these cells, we note that T-cells do age and, in time, expire. Within the model, we
assume that each T-cell functions for roughly the same amount of time, and thus, the death rate does not
vary over the entire population. Instead, we assume the overall number of T-cells lost in a group over a cer-
tain period of time is proportional to the number of T-cells within the group. The other mechanism through
which the population of healthy T-cells may decrease is via infection. In considering such effects, we utilize
an interaction term that arises from the widely-used “mass action principle” to describe the transfer between
populations when the virus infects healthy T-cells. This mass action term represents the idea that the rate
of interaction, or infection, is directly proportional to the product of the participating populations, namely
those of virions (or virus particles) and healthy T-cells. This completes the interactions for the healthy
T-cells. We note that the only way to increase the population of infected T-cells is through HIV infection.
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Thus, our model will contain the same mass action term to describe the removal of the healthy T-cells and
the addition of infected T-cells. Similar to the healthy T-cells, infected T-cells die-off or are cleared by the
immune system at a rate proportional to the size of their current population. The virus, while produced
from the infected T-cells, does not cause the destruction of infected T-cells. Thus, such a transition is not
included within the model.

While the virus production rate does differ from cell to cell, we can assume that the aggregate rate is
proportional to the population of infected T-cells. This is the only mechanism by which the virus can be
created. In contrast, there are two manners in which the virus can be removed, or cleared, from the body.
The first is through viral infection of T-cells. The act of infecting a healthy T-cell must technically remove
a virus particle from the population of viruses that can infect further T-cells. However, when considering
the overall population quantities, the amount of viruses lost this way is minute compared to other methods
of creation and destruction. Hence, we will omit this mechanism. The second method of removal is known
as viral clearance. It is the removal by the body of individual virus particles, and is performed at a rate
proportional to the current amount of virus particles within the body.

We denote by T , I, and V , the number of healthy T-cells, infected T-cells and virions respectively. Based
on the biological description above we have the following system of three ODEs:

(3CM)



























dT

dt
= λ− µT − kTV

dI

dt
= kTV − δI

dV

dt
= pI − cV.

The parameters λ, µ, k, δ, p, c play an important role in our later results on viral persistence. Based on
biological considerations we assume that these constants are positive. Table 2.1 shows typical values for
these constants and the corresponding units. The values are the average values of these parameters from
[22].

Parameter Biological Process Minimum Mean Value Maximum Units

λ T-cell growth rate 0.043 0.1089 0.2 µL−1 day−1

µ T-cell death rate 0.0043 0.01089 0.02 day−1

k Infection rate 1.9× 10−4 1.179× 10−3 4.8× 10−3 µL day−1

δ Infected T-cell death rate 0.13 0.3660 0.8 day−1

p Virus production rate 98 1.427× 103 7.1× 103 day−1

c Viral clearance rate 3 3 3 day−1

Table 2.1: Parameter values for (3CM) as observed in [22]

The diagram (Fig 2.1) provides a brief visual representation of the mechanisms which govern the system
of differential equations. We see each of the populations within a circle, while the arrows running to and
from each circle describe their respective interaction.

3. Mathematical Analysis. We now answer some fundamental questions about 3CM. In particular
we will show that solutions to 3CM exist for all positive time, and are unique. Later we will show that
the solutions converge to one of two possible steady-states and that the solutions to 3CM remain positive
given positive initial conditions. This last property is important since it shows that the model is biologically
relevant.
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Fig. 2.1: Illustration of 3CM

3.1. Properties of Solutions. The first step in examining (3CM) is to prove that a solution to the
initial-value problem does, in fact, exist, and that this solution is unique.

Theorem 3.1. Let T0, I0, V0 ∈ R be given. There exists t0 > 0 and continuously differentiable functions
T, I, V : [0, t0) → R such that the ordered triple (T, I, V ) satisfies (3CM) and (T, I, V )(0) = (T0, I0, V0).

Proof. To prove the result, we utilize the classical Picard-Lindelöf Theorem (cf. [2]). Since the system
of ODEs is autonomous, it suffices to show that the function f : R3 → R

3 defined by

f(y) =





λ− µy1 − ky1y3
ky1y3 − δy2
py2 − cy3





is locally Lipschitz in its y argument. In fact, it is enough to notice that the Jacobian matrix

∇f(y) =





−µ− ky3 0 −ky1
ky3 −δ ky1
0 p −c





is linear in y and therefore locally bounded for every y ∈ R
3. Hence, f has a continuous, bounded derivative

on any compact subset of R3 and so f is locally Lipschitz in y. By the Picard- Lindelöf Theorem, there exists
a unique solution, y(t), to the ordinary differential equation y′(t) = f(y(t)) with initial value y(0) = y0 on
[0, t0] for some time t0 > 0.

Additionally, we may show that for positive initial data, solutions remain positive as long as they exist.
A fortunate byproduct of this result is that the solutions are also bounded.

Theorem 3.2 (Boundedness and Positivity). Assume the initial conditions of (3CM) satisfy T0 > 0,
I0 > 0, and V0 > 0. If the unique solution provided by Theorem 3.1 exists on the interval [0, t0] for some
t0 > 0, then the functions T (t), I(t), and V (t) will be bounded and remain positive for all t ∈ [0, t0].

Proof. We assume that T (t), I(t), and V (t) initially have positive values. From the previous theorem,
there exists a t∗ such that the solution exists on [0, t∗]. Let us denote by T ∗ the largest time for which all
populations remain positive, or more precisely

T ∗ = sup{t ∈ [0, t∗] : T (s), I(s), V (s) > 0 for all s ∈ [0, t]}.

Then on the interval [0, T ∗] we can estimate the population values.
Recall that all constants in the system are positive. Using this and the positivity of solutions on [0, T ∗],

we can place lower bounds on
dI

dt
and

dV

dt
since

dI

dt
= kTV − δI ≥ −δI
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and

dV

dt
= pI − cV ≥ −cV.

Using separation of variables, we rewrite these differential inequalities to find

I(t) ≥ I(0)e−δt > 0

and

V (t) ≥ V (0)e−ct > 0

for t ∈ [0, T ∗]. Similarly, we can place an upper bound on
dT

dt
so that

dT

dt
= λ− µT − kTV ≤ λ.

Solving for T yields

T (t) ≤ T (0) + λt ≤ C1(1 + t),

where the constant C1 satisfies C1 ≥ max{λ, T (0)}. We can sum the equations for
dI

dt
and

dV

dt
and place

bounds on this sum so that

d

dt
(I + V ) = kTV − δI + pI − cV ≤ kTV + pI.

Recall that we have a bound on T , so we can substitute

d

dt
(I + V ) ≤ kC1(1 + t)V + pI ≤ C2(1 + t)(I + V )

where C2 ≥ max{kC1, p}. Solving the differential equation yields

(I + V )(t) ≤ C3e
t2

for t ∈ [0, T ∗] where C3 > 0 depends upon C2, I(0), and V (0) only. Since I(t) is positive, we can place an
upper bound on V by

C3e
t2 ≥ (I + V )(t) ≥ V (t).

Additionally, since V (t) is positive it follows that I(t) must be as well, hence

C3e
t2 ≥ (I + V )(t) ≥ I(t).

With these bounds in place, we can now examine T (t) and bound it from below using

dT

dt
= λ− µT − kTV ≥ −µT − kTV ≥ −µT − kC3e

t2T

≥ −C4(1 + et
2

)T

for t ∈ [0, T ∗], where C4 ≥ max{µ, kC3}. Shifting that last term to the other side of the equation yields

dT

dt
+ C4(1 + et

2

)T ≥ 0.
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Since we know

d

dt
(T (t) + eC4

∫
t

0
(1+eτ

2

dτ)) ≥ 0,

we find that for t ∈ [0, T ∗]

(3.1) T (t) ≥ T (0)e−C4

∫
t

0
(1+eτ

2

dτ) > 0.

Thus, the values of T , I, and V stay strictly positive for all of [0, T ∗], including at time T ∗. By continuity,
there must exist a t > T ∗ such that T (t), I(t), and V (t) are still positive. This contradicts the definition of
T ∗, and shows that T (t), I(t), and V (t) are strictly positive on the entire interval [0, t∗]. Additionally, on
this same interval, all of the functions remain bounded, so the interval of existence can be extended further.
In fact, the bounds on T , I, and V derived above hold on any compact time interval. Thus, we may extend
the time interval on which the solution exists to [0, t0] for any t0 > 0 and from the above argument, the
solutions remain both bounded and positive on [0, t0].

With this, we have a general idea that the model is sound, and can say with certainty that it remains
biologically valid as long as it began with biologically-reasonable (i.e, positive) data. This also shows that
once infected, it is entirely possible that the virus may continue to exist beneath a detectable threshold
without doing any damage. Finally, we remark that the bounds obtained above ensure the global existence
of solutions:

Corollary 3.3. Let T0, I0, V0 > 0 be given. Then, for any t0 > 0 there exist continuously differentiable
functions T, I, V : [0, t0] → R such that the ordered triple (T, I, V ) satisfies (3CM) and (T, I, V )(0) =
(T0, I0, V0).

Thus, given positive initial data and any t0 > 0, we can be certain that the solution stays both positive
and bounded on the interval [0, t0].

3.2. Steady States. In order to fully understand the dynamics of the three component model, it is
necessary to first determine values of equilibria. An equilibrium point is a constant solution of (3CM) so
that if the system begins at such a value, it will remain there for all time. In other words, the populations

are unchanging; so, the rate of change for each population is zero. Setting
dT

dt
,
dI

dt
, and

dV

dt
equal to zero

and solving the resulting equations for T , I, and V , we find that there exist exactly two equilibria. From
a biological perspective, we can categorize these points to be when the HIV virus is either extinct from the
body, i.e., I = V = 0, or when the virus persists within the body (I 6= 0, V 6= 0) as t grows large.

We begin by solving for the nonlinear term in equation I of (3CM) and find kTV = δI. Additionally,

the final equation implies I =
c

p
V . Using the latter equation to substitute for I, we find

kTV =
δc

p
V

or

V

(

kT −
δc

p

)

= 0.

Thus, either V = 0 or T =
δc

kp
. In the former case, we find I = 0 and thus T =

λ

µ
. Hence, the ordered triplet

(T, I, V ) =

(

λ

µ
, 0, 0

)

is an equilibrium solution known as viral extinction, since there are no virus particles or infected cells. We
will refer to this point as PE .
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In the latter case, T =
cδ

pk
, and substituting this value of T into the first equation yields V =

pλ

cδ
−

µ

k

and further substitution shows I =
λ

δ
−

µc

kp
. Thus, a second equilibrium exists at the point

(T, I, V ) =

(

cδ

pk
,
λ

δ
−

µc

kp
,
pλ

cδ
−

µ

k

)

.

Since there are distinct presences of virus particles and infected T-cells, we refer to this point as viral

persistence and abbreviate the point as PP .
In terms of biology, we can say PE is the case in which an infection exists for a short period of time, then

is removed from the body by natural means. The virus does not persist. The second case, where the system
of equations tends to PP , denotes that situation where the body is unable to clear the infection by itself.
If this ends up being the case, than after a certain period of time, the Three Component Model loses its
applicability as the infection takes a deeper hold on the body. More complex models, which consider latent
infection, effects of macrophages, or cytotoxic immune response, are then required to describe the spread of
HIV within the body and its development towards AIDS.

3.3. Stability Analysis. For linear ODEs, it is well-known that the stability properties depend only
upon the eigenvalues of the system. However, our model (3CM) is nonlinear, and thus we must rely on
linearization and a theorem of Hartman & Grobman [8] to unify the local behavior of the linear and nonlinear
systems.

We will investigate the local stability properties of these equilibria by approximating the nonlinear system
of differential equations (3CM) with a linear system at the points PE and PP . Then, we locally perturb
the system from equilibrium and examine the resulting long time behavior. This is done by linearizing the
system about each equilibria, using the Jacobian for (3CM),

J3CM =





−kV − µ 0 −kT

kV −δ kT

0 p −c



 .

Then, by studying the linearized system

ż(t) = J3CM (P )z(t),

we can investigate the stability of each equilibrium point P = PE and P = PP . As we will see below, this
property depends only on a single number, referred to as the basic reproduction number, R given by

(3.2) R =
kpλ

cδµ
.

We now prove two theorems that demonstrate the relationship between the value of R and the local
asymptotic stability of equilibria. These results imply that one can simply examine the value of R to
determine whether viral persistence or viral extinction occurs in the limit of the system as t → ∞. This is
a remarkable result that allows for the estimation of the persistence of HIV upon initial infection solely by
Monte-Carlo simulations by generating different values of R, as in [24].

Theorem 3.4. The viral extinction equilibrium PE given by

(T, I, V ) =

(

λ

µ
, 0, 0

)

is locally asymptotically stable if and only if R ≤ 1.
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Proof. We begin by computing J3CM (PE) and determining its corresponding eigenvalues, since these
values are known to characterize the local asymptotic behavior of the associated linear system. Specifically,
if every eigenvalue possesses negative real part, then the equilibrium point will be stable. On the other hand,
if one or more of the eigenvalues possess positive real part, then small perturbations from equilibrium result
in magnifications of those disturbances, and the unstable manifold is nontrivial. We remark that in the rare
event that R = 1, the equilibria PE and PP are identical. Hence, we’ll focus on the case in which R < 1
since the asymptotic stability can been shown when R = 1 by using a Lyapunov function [12] instead of an
analysis of the linearized system.

Evaluating the Jacobian at PE =

(

λ

µ
, 0, 0

)

results in

J3CM (PE) =











−µ 0 −
kλ

µ

0 −δ
kλ

µ
0 p −c











.

The corresponding characteristic equation can be written as

det [xI− J3CM (PE)] = 0,

or

(x + µ)

(

(x+ δ)(x + c)−
kpλ

µ

)

= 0.

Thus, x = −µ < 0 is one negative eigenvalue of the system, The remaining quadratic equation is

x2 + a1x+ a2 = 0

where a1 = c+ δ and a2 = cδ −
kpλ

µ
. Thus, the other eigenvalues are

x± =
−(c+ δ)±

√

(c+ δ)2 − 4(cδ − kpλ
µ

)

2
.

Since the first term under the square root is nonnegative, these eigenvalues have negative real part if and
only if

4

(

cδ −
kpλ

µ

)

> 0

or

4cδ(1−R) > 0.

Since all parameters are positive, we see that all eigenvalues possess negative real part if and only if R < 1.
Thus, in this case the origin is a locally asymptotically stable equilibrium for the system

ż(t) = J3CM (PE)z(t).

Finally, by the Hartman-Grobman Theorem, the asymptotic behavior of (3CM) is equivalent to that of this
linear system for local perturbations, and the result follows. For a more detailed look at the transference of
stability properties from linear to nonlinear systems of ordinary differential equations, see [13].
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Now that R has been incorporated within the stability analysis, we can rewrite the viral persistence
equilibrium in terms of R, and notice that it possesses nonpositive population values for R ≤ 1. Hence, it
should not be surprising that solutions do not tend to the viral persistence equilibrium for such values of R.
However, as long as R > 1, we find that viral persistence is stable.

Theorem 3.5. The viral persistence equilibrium PP given by

(T, I, V ) =

(

λ

µR
,
λ

δR
(R− 1),

µ

k
(R− 1)

)

is locally asymptotically stable if and only if R > 1.
Proof. The analysis for PP is similar to that of PE . We first linearize (3CM) about PP and examine the

characteristic equation. The Jacobian is slightly more complicated in this case, but it is given by

J3CM (PP ) =













−k

(

pλ

cδ
−

µ

k

)

− µ 0 −k

(

cδ

pk

)

k

(

pλ

cδ
−

µ

k

)

−δ k

(

cδ

pk

)

0 p −c













=











−
kλp

cδ
0 −

cδ

p
kλp

cδ
− µ −δ

cδ

p
0 p −c











.

This results in the characteristic equation
(

x+
kλp

cδ

)(

(x+ δ)(x + c)− cδ)

)

+
cδ

p

(

kλp

cδ
− µ

)

p = 0,

with expanded form

x3 + a1x
2 + a2x+ a3 = 0

where

a1 = c+ δ +
kλp

cδ

a2 =
kλp

δ
+

kλp

c

a3 = kλp− cδµ.

In the case of (3CM), it is possible to determine the signs of the solutions to this equation using a
theorem of Routh and Hurwitz [10, 21]. According to the Routh-Hurwitz criteria, all roots of this cubic
equation possess negative real part if and only if a1, a2, a3 > 0 and a1a2 > a3. Hence, it is sufficient to show
that R > 1 if and only if the Routh-Hurwitz criteria are satisfied.

Let us first assume R > 1. Then, a3 = kλp− cδµ = cδµ(R − 1) > 0 and since all the coefficients in the
system are positive, a1, a2 > 0. Additionally,

a1a2 =

(

c+ δ +
kλp

cδ

)(

kλp

δ
+

kλp

c

)

> c ·
kλp

c
= kλp > kλp− cδµ = a3.

Thus, R > 1 implies that PP is a locally asymptotically stable equilibrium. The other direction follows
trivially since a3 > 0 implies R > 1. Hence, this is both a necessary and sufficient condition due to the form
of a3, and the proof is complete.
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Fig. 3.1: Graphs of solutions to (3CM) with illustrative coefficients. Parameter values yield either R ≤ 1 (top) or, for those
given in Table 2.1, R > 1 (bottom). In the latter case, R ≈ 15. Initial values are T0 = 1000 cells/µL, I0 = 0 cells/µL, and
V0 = 10−3 virions/µL. Time is measured in days.

Our analysis reveals one very important fact about the overall system: for starting values sufficiently
close to equilibrium, the long term behavior depends only on the value of R. If R > 1 then the system tends
towards an end state with a non-zero population of infected cells and virions (viral persistence), but if
R ≤ 1 then the final equilibrium is a state with no virus or infection (viral extinction). Figure 3.1 serves
as an example that illustrates solutions in the two different cases given by Theorems 3.5 and 3.4. Finally, we
also mention that global asymptotic stability of the equilibria can also be shown using a Lyapunov function
as in [12].

Unfortunately, our analysis has been restricted to a deterministic model, and hence limited to only
one possible solution, whereas in reality the systems under consideration may contain vast uncertainties,
especially with regards to the parameters previously described. In the next section, we incorporate chance
mechanisms for population coefficients in order to estimate the probability that a persistent infection develops
upon an initial viral load being transmitted to a new host.
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Fig. 3.2: A log plot of the virion population is shown (left) for a choice of parameters resulting in R = 2.03, yet the viral
load remains small, around 10−7 copies per µ L, up to time t = 60. For larger times, however, the result of Theorem 3.5 must
apply and hence the viral population rebounds and settles into equilibrium near 10 copies per µL by t = 600 (left inset). A log
plot of the virion population is shown (right) for a choice of parameters resulting in R = 0.74, yet the viral load remains large,
around 104 copies per µL up to time t = 60. For larger times, however, the result of Theorem 3.4 must apply and hence the
viral population sharply decreases to zero, with values around 10−8 copies per µL by t = 600 (right inset).

4. Numerical Simulations and the Probability of Persistence. Both mathematical and biological
results support the idea that contact with HIV does not automatically imply the development of a persistent
infection. Given factors such as the CD4+ T-cell growth rate λ, infection rate k, and viral clearance rate c,
among other coefficients, the theorems of the previous section display that it is possible to accurately predict
the end viral state in the model. While this is very useful, it does not take into account the variability
in parameter values amongst a group of individuals. To account for this, we now incorporate random
coefficients for the early stages of HIV infection into the model and examine the resulting behavior. If these
are introduced in a biologically meaningful fashion, we can estimate their contributions to the variability in
the early time course of the viral load, which is not possible with the deterministic coefficients of the previous
section. Furthermore, we can obtain predictions of the probability that HIV levels reach certain values as
a function of time since initial infection. Such levels can correspond to thresholds in various tests for the
detection of HIV in blood.

Another study [24] previously estimated the probability of viral persistence using the three-component
model with random variable coefficients by using values of the basic reproductive number. In this paper, the
authors assumed that each random variable, except for c which was assumed constant, possessed truncated
normal distributions with the mean and standard deviation given by a clinical study of 10 infected patients
[22]. Upon sampling from these distributions, the authors computed the value of R and used this to deter-
mine the asymptotic behavior of the system as t → ∞, thereby avoiding the need to directly simulate the
model itself. The results of their simulations estimated that the average probability of viral extinction was
approximately 1 − 7%. There are a few issues with this approach that we plan to remedy in the current
section. First and foremost, the validity of the model declines rapidly after several months [16,24] (approxi-
mately 100 days). Hence, determining viral persistence or extinction based solely on the asymptotic behavior
of the system as t → ∞ seems problematic. One can easily find solutions which possess large viral loads for
several weeks, but eventually tend to extinction as t → ∞. Another difficulty is that for certain coefficient
values, the virus population in the model may stay quite small for the first few months after transmission,
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Fig. 4.1: Sample paths of the healthy T-cell, infected T-cell, and virion populations. The red curves represent trial simulations
which result in viral persistence, while the blue denote sample paths for which the virus is cleared.

but then grow steadily to a persistent steady state over large times. These possible outcomes can be seen
more clearly within Figure 3.2. Thus, instead of using the conditions R ≤ 1 and R > 1 (which provide
information only about the behavior of (3CM) in the limit as t → ∞) to determine whether or not a viral
load has established a persistent infection, we will formulate and utilize new conditions which possess a finite
time horizon. Since many standard tests for HIV currently display a threshold of detection of 50 virions per
µL [18,20], we will set this as the barrier for viral persistence at the end time of the model’s validity. Namely,
the condition V (100) ≥ 50 will represent viral persistence, while V (100) < 50 will represent extinction.

With these issues now in context, we perform a similar computational study to estimate the probability
of persistence. To simulate the dynamics of the virus, we will employ a Monte-Carlo method along with a
traditional Runge-Kutta solver to compute solutions of the corresponding systems of ordinary differential
equations given by (3CM).

4.1. Sampling. We are interested in examining multiple definitions of viral persistence and allowing
for a different parameter distribution than that of [24]. Hence, we consider two different cases. In the
first case, we sample from truncated normal distributions as in [24] to determine the values of the random
variable coefficients λ, µ, k, δ and p, while keeping the parameter c = 3 constant throughout. The probability
of persistence is then estimated both using the time-asymptotic definition of viral persistence (i.e. R > 1)
and our new finite-time definition (i.e., V (100) ≥ 50). In the second case, we investigate the influence
of the distribution of parameters by sampling from uniform and triangular distributions, as previously
performed for this system while considering the additional effects of viral mutation [19]. Here, viral promoters
(i.e., those parameters which lead to large reproductive numbers) are sampled from uniform distributions,
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Parameter Distribution P (R ≤ 1) P

(

V (100) < 50
copies

µL

)

Truncated 0.0136 0.1510
Normal

Uniform & 0.0046 0.0859
Triangular

Table 4.1: Probabilities of virion extinction, using finite-time and time-asymptotic definitions of extinction, as well as different
parameter distributions (truncated normal and uniform/triangular, respectively). A total of 500, 000 trials were performed for
each case; for the time-asymptotic probabilities, initial conditions were varied over 50 combinations, with V (0) varying from
100-500 µL−1 and T (0) varying from 100-1000 µL−1, and I(0) set at 0. Hence, for each initial condition pair (T (0), V (0)),
10, 000 trials were performed.

while viral inhibitors (in this case, death rates) are sampled from triangular distributions, data for both
of which are taken from Table 2.1. In particular, the promoter k is sampled from a uniform distribution
over the interval (1.9 × 10−4, 4.8 × 10−3) µL/day similar to [19], and p is sampled from another uniform
distribution over the interval (98, 7100) day−1. As in [3], we assume an asymmetric triangular distribution
Tri(0.0043, 0.01089, 0.02) day−1 for µ, the death rate of uninfected T -cells, where 0.0043 is the minimum
value, 0.01089 is the peak (occurring at the mean recorded value in Table 2.1) and 0.02 is the maximum
value. The growth parameter λ is set to be 10µ as in [24], and the viral clearance rate c is held constant at
3 as in [22, 24]. Finally, the death rate of infected T -cells, δ is sampled from another triangular distribution
Tri(0.13, 0.366, 0.8) day−1. Then, as before, the probability of persistence is estimated separately using the
R definition of viral persistence and our finite-time horizon.

Of course, because our condition depends upon solving the ODEs until a specific time, our results may
now have a strong dependence on initial conditions. Thus, to generate a suitable range of initial data,
we estimate the probabilities of persistence and extinction considering a variety of initial conditions. In
particular, we choose values of T0 between 100 − 1000 cells/µL, initial viral loads V0 between 100 − 500
virions/µL, and fix the initial infected T -cell population at 0. These values are obtained from similar initial
conditions of previous studies [16, 17].

4.2. Results. According to the described computational methods, 500, 000 simulations were conducted
to determine the probability of persistence of a specific infection. Sample paths of associated trials are
displayed in Figure 4.1 and the results are summarized within Table 4.1. Notice that the proportion of
trials within our simulation that resulted in R ≤ 1 is much smaller - by a factor of ten or twenty - than
those which resulted in viral populations less than 50 virions per µL approximately three months after the
initial infection. Hence, a standard mathematical definition of extinction, namely lim

t→∞
V (t) = 0 which (by

Theorem 3.4) is equivalent to R ≤ 1, appears to be insufficient to accurately describe the behavior of the
viral population on the timescales of biological relevance, specifically during the time period up to a few
months after initial infection. Instead, a more precise determination of viral extinction can be made by
measuring whether the virus population will remain below the current detectable threshold of 50 virions
per µL, and under this measure, the probability of extinction is much larger. As can be seen by Table 4.1,
the probability of extinction by the former measure is only around 1 − 2%, while the probability jumps to
approximately 8− 15% under the latter notion that we have proposed. In some types of transmission, such
as passage of the disease from a mother to an unborn child or through needlesticks or blood transfusion, the
percentage determined by our finite time definition is much closer to current estimates of the probability of
extinction after initial infection than percentages generated by the criteria R ≤ 1 [1, 9].
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Fig. 4.2: Typical values of λ over 100, 000 draws using a truncated normal distribution (left), a uniform distribution (center),
and a triangular distribution (right).

Based on the results of our simulations, which have been consolidated in Table 4.1, the probability of
virus extinction using the finite time definition is significantly less than the extinction probability of the
time-asymptotic definition by more than an order of magnitude. This result marks the distinction between
the finite- and infinite-time results, and also alludes to the eventual breakdown of the model for t > 100 as
predicted results for (3CM) stray from clinical results [16, 24].

While the probability of viral extinction associated with the finite-time definition remained ten times
higher than the corresponding asymptotic-time probability for each distribution, the extinction probabilities
across the two distributions (i.e., truncated normal and uniform/triangular) also varied by almost a factor
of two. This demonstrates the system’s sensitivity to variations within the range of currently accepted
values. In Figure 4.2 the difference between parameter distributions is shown, providing a description of
how variations in parameter values can prompt a change in the model behavior. For instance, the the T-cell
growth rate λ’s truncated normal distribution is biased towards lower values, yielding lower R values than
the R values generated with the uniform distribution.

Lastly, it was expected that the initial conditions for T-cell and virus populations would have a significant
impact on the probability of virus extinction, but based on our simulations this is not the case. As seen
in Figures 4.3 and 4.4, for both distributions the initial conditions played little role: for each distribution,
when averaged over the initial T-cell and initial virion conditions, the probability of persistence varied less
than 5% from the mean value (averaged over all initial conditions). In addition, there is no clear pattern
in the residuals of the probability of persistence of each initial condition relative to the overall probability,
which suggests that the initial conditions have little to no effect on the disease’s end behavior. This same
phenomena occurs in the asymptotic-time horizon definition of persistence, where the initial conditions are
irrelevant to the probability of persistence of the virus.

5. Conclusions. Three main, novel accomplishments are noted within the current article. First, a
local mathematical analysis was performed and presented in complete detail. Theorems regarding global-in-
time existence, positivity, and boundedness of solutions were proved for the first time in order to justify the
viability and utility of the three-component model. Second, the local asymptotic stability of steady states was
proved and used to define mathematical notions for viral persistence and extinction. These conditions then
inspire ODE-free simulations of the in-host viral dynamics merely by sampling from distributions describing
the variation of parameters amongst a population of exposed individuals. Finally, we proposed alternative
definitions for the notions of viral persistence and extinction, which possess a finite time horizon, rather
than depending only upon the asymptotic limit as t → ∞. Simulations were performed to measure the
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Fig. 4.3: From parameters drawn from truncated normal distributions (as described in Section 4.1), these graphs show
probabilities of virus extinction over varying initial conditions. V (0) is varied from 100 to 500 while T (0) is held constant (top),
and T (0) is varied from 100-1000 while V (0) is held constant (bottom). I(0) is kept fixed at 0 for all trials. Throughout all
simulations, the variation in extinction probability remains small.
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Fig. 4.4: From parameters sampled from uniform and triangular distributions (as described in Section 4.1), these graphs show
probabilities of virus extinction over varying initial conditions. V (0) is varied from 100 to 500 while T (0) is held constant (top),
and T (0) is varied from 100-1000 while V (0) is held constant (bottom). I(0) is kept fixed at 0 for all trials.

differences in these criteria and their dependence on the probability distribution of parameters. We note
that the end viral population, V (100), could be less than the threshold of detectability permitted by modern
science much more often than predicted by the associated value of the reproduction ratio R. This indicates
that the methods used in [24] are not as accurate as could be hoped. Hence, it should be clear that a
full simulation of the model is required to obtain accurate results regarding the probability of developing a
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persistent infection.
With full simulation of the ordinary differential equations, we discovered that viral persistence occurred

at a rate of roughly ten times that suggested in [24]. This proves rather conclusively the finite time and
asymptotic limits conditions while related, do not yield identical predictions, and simulation is necessary to
realize the full implications of the model. In reality, persistence has been estimated to occur at a rate of up to
90%, if the virus is transmitted by blood transfusion, or around 1% if transmitted via sexual intercourse [6].
While [24] arrived at an average probability of persistence around 93− 99% and we approximated this figure
to be around 85 − 92%, recall that these coefficients were drawn from a biased population of HIV-infected
individuals because the data arose from people known to have already developed a persistent HIV infection.
Additionally, the previous estimates already account for the probability of transmission within them, while
our estimates of persistence and those of [24] specifically assume that transmission has occurred within a
new host.

Stochastic models, such as in [23], that utilize Brownian motion to incorporate additional random effects
stemming from factors outside of parameter estimation could provide additional improvement to our esti-
mates of persistence, and this could be the goal of a future project. Due to the lack of mathematical tools
to analyze stochastic differential equations, though, one would be forced to resort to a more computational
framework, rather than a mathematical or asymptotic analysis, in order to glean information from the model.
With the development of more descriptive models and more advanced analytical and computational tools,
the probability of HIV persistence after initial infection can be estimated with even greater precision.
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