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Abstract

In 2011, Samsung Electronics Co. filed a complaint against Apple Inc.
for alleged infringement of patents described in US 7706348, which details
several embodiments of a TFCI (Transport Format Combination Indicator)
encoder for mobile communication systems. One of the primary embodi-
ments in question was a [30, 10, 10] non-cyclic code which was implemented
in many devices communicating on the 3-G network, including several Apple
products. However, the derivation of the basis for this code is left rather
vague in the patent documentation. In this paper, the explicit construc-
tion of a [30, 10, 10] cyclic code is detailed using methods described by
F.J. MacWilliams and N.J.A. Sloane in their well-known text, "The The-
ory of Error-Correcting Codes." We also give a construction of an optimal
[30,10,11] non-cyclic code, which is distinct from the conventional and well-
known construction involving manipulations of an extended BCH code.

1 Introduction

Error-correcting codes have a rich history dating back to the 1950’s and now
find their use in most devices capable of wireless communication and data storage.
Among the more notable uses of an error-correcting code was to transmit encoded
images of Mars taken by the Mariner 9 space probe. The reader is encouraged to
see [3, p. 419] for further details. In the context of mobile communications, error-
correcting codes are used to encode the TFCI (Transport Format Combination
Indicator), which informs the receiver how to decode, de-multiplex, and deliver
received messages over specified channels.
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Consider a binary string of length k, representable as a vector m ∈ F
k
2, sent

through a noisy channel with an undesirable amount of interference. It is possible
for the string to incur errors, i.e., various bits to be flipped. Error-correcting
codes encode messages in such a way that the recipient is able to correct bit errors
up to a certain threshold.

Seeing their wide usage in telecommunications, several patented codes have
been the subject of litigation over possible infringement by competing develop-
ers. One such complaint [6], filed by Samsung Electronics Co. on June 28, 2011
against Apple Inc. covered a host of alleged patent infrigements. In one of the
disputed patents were several versions (referred to as "embodiments" in the patent
documentation) of a TFCI encoder described in US 7706348 [2]. The primary em-
bodiment in question was a [30, 10, 10] non-cyclic error-correcting code, which we
will often refer to throughout this paper as the "Samsung code."

On June 4, 2013, the United States International Trade Commission (ITC)
determined that a variety of Apple products communicating on the 3G network
had infringed the Samsung patents, which effectively prohibited Apple from the
unlicensed importation and domestic sale of such products. However, in a histori-
cally rare display of executive power over the ITC, the Obama Administration, via
the U.S. Trade Representative, overturned the ITC’s decision. In [5], the Trade
Representative listed, among other factors, an interest in preserving "competitive
conditions in the U.S. economy."

The primary contribution of this paper is an accessible introduction to lin-
ear error-correcting codes for those familiar with basic abstract algebra. This is
motivated by the lawsuit described above, which finds relevance with the large
population of consumers who own smartphones, and who are familiar with such
patent disputes between technological giants, but find mainstream media reports
bereft of technical details. The first goal of this paper is to detail the construction
of a code with the same essential properties as the Samsung code, whose construc-
tion is left rather vague in the patent documentation. In doing so, we are partial
towards the crux of Apple’s original defense, which argues that the Samsung code
is not legally patentable, since the construction of a [30, 10, 10] code is not new,
nor is it nonobvious, per explicit methods described in [3]. The second goal is to
describe a method by which to produce an improved [30, 10, 11] non-cyclic code
through simple manipulations of our [30, 10, 10] cyclic code. Our method is dis-
tinct from the construction of a [30, 10, 11] code given in [4], which is a major
source of reference for the construction and parameters of optimal linear codes.

We begin with a survey of the general properties of linear error-correcting codes,
with a particular focus on the notions of length, dimension, and distance. An
exploration of a particular family of codes, known as cyclic codes, is then pre-
sented, with an emphasis on idempotent generators of cyclic codes. Using our
acquired theory, we end with the construction and optimization of a [30, 10, 10]

error-correcting code.
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2 Properties of Error-Correcting Codes

A basic familiarity of linear algebra and abstract algebra is assumed, especially
the notions of vector spaces and Galois (finite) fields. Although general properties
of error-correcting codes are covered, only a certain class of codes, cyclic codes,
are looked at in finer detail. For an extended treatment of cyclic codes and other
families of error-correcting codes, the reader is encouraged to see [3], from which
a bulk of the theoretical machinery in the paper is derived.

2.1 Linear Codes

Definition 2.1 Let q ∈ N be such that q is a prime power. Consider Fq, the field
containing q elements. A linear code C of length n is a k-dimensional subspace
of the vector space F

n
q where 0 ≤ k ≤ n. Each vector in the subspace is referred to

as a codeword.

Henceforth, the reader may assume "code" to mean "linear code." Binary codes
will eventually be the primary subject of discussion, which are codes over F2 =

{0, 1}.
If {v1, v2, . . . , vk} forms a basis of a code C over Fq, we may also represent the

code as the row space (over Fq) of a generator matrix G, where

G =

⎡
⎢⎢⎢⎣

v1
v2
...
vk

⎤
⎥⎥⎥⎦ .

Definition 2.2 The Hamming weight of a binary string x, denoted by wt(x),
is the number of coordinates (entries) with value 1. The Hamming distance
between two binary strings x and y, denoted by dist(x, y), is the number of coor-
dinates between which x and y differ.

Since 0 + 0 = 0 and 1 + 1 = 0 over F2, if a coordinate differs between two
strings, the resulting sum between both will yield a 1 at that coordinate. Hence,

dist(x, y) = wt(x+ y).

An important property of a code C is the minimum of all distances between
pairs of distinct codewords, which is denoted by d. Let C, let wtmin(C) denote the
minimum of all (nonzero) codeword weights. It is a basic fact that wtmin(C) = d.
To see this, consider two distinct codewords c1, c2 ∈ C between which distance is
minimized. We have that

d = dist(c1, c2) = wt(c1 + c2) = wt(c3),

where c3 ∈ C since any linear combination of two codewords is contained within
the code. This demonstrates that wtmin(C) ≤ d. To see the other direction, let c∗

be a codeword with minimum weight. Then wtmin(C) = wt(c∗) = dist(c∗,0) ≥ d,
where 0 is the codeword with all 0 coordinates. Thus, wtmin(C) = d.
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2.2 Encoding and Decoding

A binary code C of dimension k encodes a message v ∈ F
k
2 simply by multiplying

v with the generator matrix G, that is, vG. We will denote the encoded message as
m. Clearly, m is a codeword. The sender delivers m and what the target receives
will be denoted as m′, which may or may not be equal to m depending on whether
any errors were incurred.

Denote by distmin(m
′, C) the minimum of all distances between codewords in C

and m′. To decode m′, the recipient may adopt a maximum likelihood strategy
and assume the message to be a codeword c such that distmin(m

′, C) = dist(m′, c).
It is possible for m′ to be equally close to several codewords and in this case, there
are two different schemes of selection: either the recipient arbitrarily chooses one
of the equally close codewords, or the recipient ask for retransmissions of the mes-
sage until a unique c is found. The former scheme is known as complete maximum
likelihood decoding (CMLD), while the latter scheme is called incomplete max-
imum likelihood decoding (IMLD). It is important to note that the maximum
likelihood strategy is not desirable for many varieties of codes, especially for large
codes, and one of the goals of coding theory is to find codes which are suitable for
decoding strategies faster than maximum likelihood.

Once a unique c is found, the recipient solves for xG = c, for which the solution
is the original message v, assuming m′ is similar enough to m. There is a well-
known result on this threshold of similarity.

Theorem 2.3 A linear code C with minimum distance d ≥ 2t + 1 for t ≥ 0 and
decoding procedure obeying maximum likelihood can correct up to t errors.

Proof. Let C be a linear code with minimum distance d ≥ 2t + 1 where t ≥ 0.
Suppose a message v is encoded as m = vG, delivered, and received as m′. Suppose
m′ has at most t errors. Then, dist(m,m′) ≤ t and dist(m,u) ≥ d for any u ∈ C
not equal to m. Then by the triangle inequality1,

dist(m,u) ≤ dist(m,m′) + dist(m′, u).

Hence,
dist(m′, u) ≥ dist(m,u)− dist(m,m′) ≥ d− t ≥ t+ 1.

This indicates that under maximum likelihood, m′ will be closer in Hamming
distance to m than any other codeword. �

The length n, dimension k, and minimum distance d, are among the most im-
portant properties of a code and are often notated as [n, k, d]. The dimension
of the code will affect the number of strings/words/vectors assignable via code-
words, greater minimum distance ensures stronger error-correcting capabilities,
and shorter lengths require less memory capacity and less communication.
1The Hamming distance is a metric on binary vector spaces meaning it satisfies, among other
properties, the triangle inequality.
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3 Cyclic Codes

The [30,10,10] code which is constructed in this paper is within a family of error-
correcting codes known as cyclic codes. The reader is, once again, encouraged to
see [3] for a thorough treatment of the theory presented within this section.

3.1 Properties

Definition 3.1 A linear code C of length n is a cyclic code if

c = (a0, a1, a2, . . . , an−1) ∈ C,
then

c∗ = (an−1, a0, a1, . . . , an−2) ∈ C.
We refer to such a rightward shift as a cyclic shift. It is useful to associate

codewords with polynomials. For a code C of length n over Fq and

c = (a0, a1, a2, . . . , an−1) ∈ C,
we associate it with the polynomial

c(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 ∈ Fq[x]/(x
n − 1).

By Fq[x]/(x
n−1), we mean the set of congruence classes of Fq[x] modulo (xn−1).

We may represent r cyclic shifts of a codeword c as xrc(x) mod (xn − 1). Since
we will frequently switch between codewords and their associated polynomials, we
will allow either representation to denote the other where it is convenient, i.e.,
the use of code polynomial in a matrix is intended to denote a string with the
coefficients of the polynomial.

A cyclic code of length n is an ideal of Fq[x]/(x
n−1). This follows immediately

from the definition of an ideal, allowing the additive subgroup to be the code itself.
We have that Fq[x]/(x

n−1) is a principal ideal ring so from basic abstract algebra
this implies that for every cyclic code C there exists a unique monic polyonomial
g(x) of minimal degree such that 〈g(x)〉 = C. The polynomial g(x) is referred to
as the generator polynomial of C. The generator polynomial may be used to
construct a generator matrix for the code.

Theorem 3.2 (Theorem 1 in [3, p. 190]) Let C be a cyclic code of length n over
Fq, that is, an ideal of Fq[x]/(x

n − 1), and let g(x) be the generator polynomial of
C. If g(x) =

∑r
i=0 gix

i where r is the degree, then

G =

⎛
⎜⎜⎜⎜⎜⎝

g0 g1 g2 · · · gr · · · 0 0 · · · 0

0 g0 g1 · · · gr−1 gr · · · 0 · · · 0

· · · · · ·
· · · · · ·

0 · · · g0 g1 · · · · · · gr

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

g(x)

xg(x)

x2g(x)
...

xn−r−1g(x)

⎞
⎟⎟⎟⎟⎟⎠

is a generator matrix of C with n columns and n− r rows.
130



3.2 Idempotents

In this section, we only consider binary cyclic codes of odd length n, unless
stated otherwise.

Definition 3.3 A polynomial I(x) ∈ F2[x]/(x
n − 1) is an idempotent if

I(x) = I(x)2 = I(x2).

Idempotents are closed under addition. If I1(x) and I2(x) are idempotents, then

(I1(x) + I2(x))
2 = I1(x)

2 + 2I1(x)I2(x) + I2(x)
2 = I1(x)

2 + I2(x)
2 = I1(x) + I2(x)

Definition 3.4 A cyclotomic coset mod n over Fq where gcd(n, q) = 1 is any
set

Cs∈Z = {s, qs, q2s, . . . , qj−1s},
where j is the smallest positive integer such that qjs ≡ s mod n.

Definition 3.5 If f(x) = a0 + a1x+ . . .+ an−1x
n−1, define

f ∗(x) = a0 + an−1x+ . . .+ a1x
n−1.

Although not shown here, the exponents of the nonzero terms are a union of
cyclotomic cosets over F2, which we denote as

∑
s

∑
j∈Cs

xj.
If I(x) is an idempotent, then so is I∗(x). The following is a succinct argument

of this fact from [3, p. 219]: If

I(x) =
∑

s

∑
j∈Cs

xj

then
I∗(x) =

∑
s

∑
j∈C−s

xj.

As an example, we list the cyclotomic cosets mod 31 over F2, which will play
an important role in the construction of the [30, 10, 10] code:

C0 = {0}
C1 = {1, 2, 4, 8, 16}
C3 = {3, 6, 12, 24, 17}
C5 = {5, 10, 20, 9, 18}
C7 = {7, 14, 28, 25, 19}
C11 = {11, 22, 13, 26, 21}
C15 = {15, 30, 29, 27, 23}

For j ∈ Cs, we have that Cj = Cs, so we have listed all the distinct cosets.

Theorem 3.6 (Theorem 1 in [3, p. 217]) Any ideal or cylic code C contains a
unique idempotent E(x) such that C = 〈E(x)〉. We refer to such a generator as
the idempotent of C.
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Definition 3.7 If C is a minimal ideal, that is, not containing any smaller nonzero
ideals, then the idempotent of C is referred to as a primitive idempotent. The
cyclic code generated by this ideal is called an irreducible code.

Let C be cyclic code over Fq of length n relatively prime to q. This implies there
is a smallest natural number m such that n | qm − 1. We may accept without
proof that the roots of xn − 1 lie in Fqm and in no smaller field. These zeros are
called the nth roots of unity and there are, in fact, n of them, hence Fqm is a
splitting field of xn − 1. Furthermore, the roots of unity form a cyclic subgroup
and we refer to the generator α as the primitive root of unity.

Let Ms be a minimal ideal such that the nonzeros of its generator consist of
{αi : i ∈ Cs}. By Theorem 3.6, Ms has an idempotent generator, which we will
refer to as θs(x). Using these theta polynomials, we arrive at a theorem which will
produce a preliminary [31,11,11] code.

Theorem 3.8 (Corollary 17 in [3, p. 455]) Let m = 2t+ 1 where t ≥ 0, and let d
be any integer in the range 1 ≤ d ≤ t. Then the binary ideal of length 2m − 1 with
the idempotent

θ0 + θ∗1 +
t∑

j=d

θ∗lj

where lj = 2j +1 forms a [2m− 1,m(t− d+2)+1, 2m−1− 2m−d−1− 1] cyclic code.

3.3 The [30,10,10] Code

The first embodiment of the Samsung encoder, shown in Appendix A, is a
noncyclic [32, 10, 12] code. The motivation behind shortening to a length 30 code
is not entirely clear, beyond saving memory, but encoding with 10 information
bits (the number of basis vectors, and thus the length of messages which may be
encoded) is the TFCI standard in current coding schemes. The construction of
the encoder’s basis is rather complicated, so it will not be covered, but the reader
is encouraged to see [1] for an explanation. The second embodiment, a [30, 10, 10]

encoder,

S[30,10,10] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

101010101010101101010101010101

011001100110011011001100110011

000111100001111000111100001111

000000011111111000000011111111

000000000000000111111111111111

111111111111111111111111111111

010100001100011111000001110111

000000111001101110110111000111

000101011111001001101100101011

001110000110111010111101010001

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is created by puncturing the 1st and 17th coordinate from every basis vector in the
generator matrix for the first embodiment.
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By Theorem 3.8, if we set m = 5, t = 2, and d = 2, then the ideal in F2[x]/(x
31−

1) with idempotent E(x) = θ0 + θ∗1 + θ∗5 is a [31,11,11] cyclic code. A table in [3,
p. 222] gives us the following,

θ0 = 1111111111111111111111111111111

θ∗1 = 1001011001111100011011101010000

θ∗5 = 1110100010010101100001110011011.

The first 11 consecutive shifts (including the 0 shift) of E(x) will form an ordered
basis for this code. The generator matrix G[31,11,11] is shown in Appendix B. Rather
than taking this construction at face value, we will algebraically prove that this
code has a minimum distance of at least 11. We first give an important result on
lower bound of a cyclic code’s minimum distance.

Theorem 3.9 (The BCH bound, Theorem 8 in [3, p. 201]) Let C be a cyclic code
with generator g(x) and primitive root of unity α. If for some integers b ≥ 0,
δ ≥ 1,

g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0,

then the minimum distance of C is at least δ.

To see this theorem at work for our code, first notice that over F32 = F2(α)

where α5 + α2 + 1 = 0,

E(x) = θ0 + θ∗1 + θ∗5 = 1000000100010110000101100110100

= 1 + x7 + x11 + x13 + x14 + x19 + x21 + x22 + x25 + x26 + x28

has 10 consecutive roots: α, α2, α3, . . . , α10. Since every codeword c(x) is of the
form c(x) = h(x)E(x) for some h(x) ∈ F2[x]/(x

31 − 1),

c(α) = c(α2) = . . . = c(α10) = 0.

Thus, if c(x) = c0 + c1x+ c2x
2 + · · ·+ c30x

30, we have
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α2 · · · α30

1 α2 α4 · · · α29

1 α3 α6 · · · α28

...
...

... . . . ...
...

...
... . . . ...

1 α10 α20 · · · α21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
...
...
c30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Any 10 columns of the left matrix, the collection of which we will denote as the
matrix A, are linearly independent. To see this, notice that

det(A) =

∣∣∣∣∣∣∣∣∣∣∣

αj1 αj2 · · · αj10

α2j1 α2j2 · · · α2j10

α3j1 α3j2 · · · α3j10

...
... . . . ...

α10j1 α10j2 · · · α10j10

∣∣∣∣∣∣∣∣∣∣∣

= α(j1+···+j10)

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

αj1 αj2 · · · αj10

α2j1 α2j2 · · · α2j10

...
... . . . α2j10

α9j1 α9j2 · · · α9j10

∣∣∣∣∣∣∣∣∣∣∣
133



after factoring out ji from every ith column, which is a standard property of
determinants. The right-hand determinant is equivalent to that of a Vandermonde
matrix, for which the value is

∏
k �=l

(αjk − αjl). Thus,

det(A) = α(j1+···+j10)
∏
k �=l

(αjk − αjl) �= 0

which establishes the linear independence of any 10 columns of A. Thus, c(x) must
have at least 11 nonzero coefficients, establishing a lower bound on the minimum
distance. Once again, this calculation is only meant to explicitly illustrate a lower
bound on the distance. By Theorem 3.8, we know the cyclic code generated by
E(x) has a minimum distance of exactly 11.

To create a [30,10,10] code from 〈E(x)〉, simply delete any of the basis vec-
tors in G[31,11,11] and puncture any coordinate. A variation, shown in Appendix
C, is created by deleting the last basis vector x10E(x) and puncturing the first
coordinate.

3.4 The [30,10,11] Code

A third embodiment of the Samsung encoder, which was not actively pursued
for alleged infrigement was a noncyclic [30,7-10,11] encoder (the k value indicates
the encoder could be configured for 7-10 information bits). By Theorem 2.3, in
10 information bits, this is superior to a [30,10,10] encoder as it will correct up
to 5 errors, while the [30, 10, 10] encoder will only correct up to 4 errors. It is
not entirely clear in patent or court documentation why these encoders were not
implemented in Apple or Samsung products.

The existence of a [30,10,11] linear code has long been known, and according
to [4], a minimum distance of 11 is optimal for a code of length 30 and dimension
10. The only construction given in [4] of a [30,10,11] is the manipulation of an
extended BCH code (denoted XBC). BCH codes form an important class of cyclic
codes, but we do not discuss them here. A [32,11,12] XBC code is given in [1]
(referred to as C ′), from which there are a variety of methods of to produce a
[30, 10, 11] just by simple inspection.

In this section, we give a construction of a [30, 10, 11] code different from the
XBC method. Our construction relies on the manipulation of the code generated
by E(x) = θ0 + θ∗1 + θ∗5, which is a cyclic subcode of a punctured 2nd order
Reed-Muller code, another important class of linear codes not covered here. We
first replace the second basis vector of G[31,11,11], which is xE(x), with x12E(x),
producing the matrix:
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G∗
[31,11,11] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000000100010110000101100110100

1011001101001000000100010110000

0010000001000101100001011001101

1001000000100010110000101100110

0100100000010001011000010110011

1010010000001000101100001011001

1101001000000100010110000101100

0110100100000010001011000010110

0011010010000001000101100001011

1001101001000000100010110000101

1100110100100000010001011000010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The rows of G∗
[31,11,11] are linearly independent. To see this, first note that

x12E(x) = xE(x) + x3E(x) + x8E(x) + x9E(x) + x10E(x) and we have removed
the row corresponding to xE(x). If {E(x), x2E(x), x3E(x), . . . , x10E(x), x12E(x)}
was a linearly dependent set, we could express xE(x) as a linear combination of
vectors in {E(x), x2E(x), x3E(x), . . . , x10E(x)}, which is a contradiction.

We have that G∗
[31,11,11] generates a [31,11,11] code.2 The 9th column contains

only a single 1 which corresponds to x8E(x), so deleting this basis vector will
not affect the minimum distance and produces a column with all zeros –which is
precisely the coordinate we puncture.

The generator matrix of the resulting [30, 10, 11] code is

G[30,10,11] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

100000010010110000101100110100

101100111001000000100010110000

001000001000101100001011001101

100100000100010110000101100110

010010000010001011000010110011

101001000001000101100001011001

110100100000100010110000101100

011010010000010001011000010110

100110101000000100010110000101

110011010100000010001011000010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Appendix

A [32,10,12] Samsung Code

S[32,10,12] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01010101010101010101010101010101

00110011001100110011001100110011

00001111000011110000111100001111

00000000111111110000000011111111

00000000000000001111111111111111

11111111111111111111111111111111

00101000011000111111000001110111

00000001110011010110110111000111

00001010111110010001101100101011

00011100001101110010111101010001

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B [31,11,11] Cyclic Code

G[31,11,11] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000000100010110000101100110100

0100000010001011000010110011010

0010000001000101100001011001101

1001000000100010110000101100110

0100100000010001011000010110011

1010010000001000101100001011001

1101001000000100010110000101100

0110100100000010001011000010110

0011010010000001000101100001011

1001101001000000100010110000101

1100110100100000010001011000010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C [30,10,10] Non-Cyclic Code

G[30,10,10] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000000100010110000101100110100

100000010001011000010110011010

010000001000101100001011001101

001000000100010110000101100110

100100000010001011000010110011

010010000001000101100001011001

101001000000100010110000101100

110100100000010001011000010110

011010010000001000101100001011

001101001000000100010110000101

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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