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Abstract

We investigate the parallel solutions to linear systems with the application focus
as the global illumination problem in computer graphics. An existing CPU serial im-
plementation using the radiosity method is given as the performance baseline where
a scene and corresponding form-factor coefficients are provided. The initial compu-
tational radiosity solver uses the basic Jacobi method with a fixed iteration count as
an iterative approach to solving the radiosity linear system. We add the option of
using the modern BiCG-STAB method with the aim of reduced runtime for complex
problems. It is found that for the test scenes used, the problem complexity was not
great enough to take advantage of mathematical reformulation through BiCG-STAB.
Single-node parallelization techniques are implemented through OpenMP-based multi-
threading, GPU-offloading using CUDA, and hybrid multi-threading/GPU offloading.
It is seen that in general OpenMP is optimal by requiring no expensive memory trans-
fers. Finally, we investigate two storage schemes of the system to determine whether
storage through arrays of structures or structures of arrays results in better perfor-
mance. We find that the usage of arrays of structures in conjunction with OpenMP
results in the best performance except for small scene sizes, where CUDA shows the
minimal runtime.

1 Introduction

We investigate various strategies to solve problems that contain multiple linear systems. The
global illumination computer graphics problem is chosen as the case study with the radiosity
method used as the solution approach. Illumination solutions are necessary in the rendering
timeline for applications in video games, animated movies, and CGI. A global illumination
approach was picked instead of a local illumination solution to allow light to reflect prior
to hitting the eyes of the viewer, giving a more realistic description of the environment.
Illumination solutions can be decomposed into tuples of red, green, and blue intensities for
full color visualization.

The basic Jacobi method with a fixed number of iterations is first used following the solver
provided [1]. We propose to use a modern iterative linear solver as an optimization to the
numerical solution. The BiCG-STAB method is chosen given the characteristics of the linear
system in question to decrease the iteration count needed for below tolerance solutions to
complex systems. Hybrid parallel computing approaches are adopted to significantly improve
performance of the solver. Specifically, we introduce a hybrid solution by fully utilizing
dual-socket multi-core nodes available through multi-threading techniques with the help of
the OpenMP API (application program interface), and exploit access to massively parallel
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hardware through GPU-offloading with CUDA, in which data are transfered (“offloaded”) to
the GPU for processing. The combination of GPU-offloading and CPU-threading is explored
through a hybrid CPU/GPU compute implementation.

Performance metrics are executed and compared through scalability studies and absolute
runtime results. By varying the patch count and scene complexity, we investigate memory
allocation and transfer times and the utility of mathematical reformulations.

The outline of the report is the following. Section 2 is devoted to explanation of back-
ground and problem statement. We will first introduce the desire for currently solving linear
systems and then discuss our case study, the radiosity method. Section 3 will explain the
computational methods and parallel techniques used. Results using array of structures and
structure of arrays will be discussed respectively in Section 4. Section 5 summarizes our
conclusions and motivates future work.

2 Background and Problem Statements

The global illumination problem in computer graphics involves solving for the steady-state
light distribution in a given graphical environment created previously in design software.
In other words, we are solving for the light intensity given off of each patch in a graphical
environment definition. Various methods exist for solving illumination problems, but the
radiosity method gives better results by allowing light to reflect off surfaces prior to hitting
the viewers eye. This makes the radiosity solution a global illumination solution.

The radiosity method (Cindy Goral et al. [2]) is given by one vector equation for each
patch (collection of pixels) of each color, indicated by ν = 1, 2, 3 for red, green, blue, respec-
tively:

B
(ν)
i = E

(ν)
i + ρ

(ν)
i

N∑
j=1

B
(ν)
j Fi,j for i = 1, 2,. . . , N, (2.1)

where

• B
(ν)
i (radiosity) is the total energy leaving the surface (radiosity) of the ith patch

(energy/unit time/unit area) of the νth color,

• E
(ν)
i (emission rate) is the inherent rate of energy leaving the ith patch (energy/unit

time/unit area) of the νth color (nonzero iff this patch is a light source),

• ρ
(ν)
i (reflectivity) is the reflectivity of the ith patch (unitless) of the νth color. The

reflectivity depends on the wavelength of light,

• Fi,j (form factor) is the fraction of energy emitted from patch j that reaches patch i
(unitless), and

• N is the number of patches.

Here, the values of ρ
(ν)
i are frequency dependent and general environmental illumination is

not monochromatic hence we see the need for multiple solutions to (2.1) over all patches for
each color needed.
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When a given system is discretized into N patches and realizing that Fi,j = 0 when i = j,
a system of linear equations results that can be written
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which can be written as a linear system

A(ν) b(ν) = e(ν) (2.3)

with A(ν) = I −G(ν) and
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An open-source program called Radiosity Renderer and Visualizer (RRV) [1] was used

as a base solver. RRV is a serial C++ and OpenGL global illumination solver that takes
xml files defining a scene and generates an xml file describing the lit scene. RRV along
with the scene files used are available at http://dudka.cz/rrv. Scenes were sized from low
thousands to tens of thousands of patches and were limited by the GPUs memory as we did
not consider problems large enough to require paging in and out data.

All code was written in C/C++ with NVIDIA’s and OpenMP’s language extensions.
The compilers used were Intel’s C++ compiler icpc and NVIDIA’s CUDA compiler nvcc.

3 Methodology and Parallel Implementation

3.1 Hybrid CPU/GPU Computing Methods

Hybrid CPU/GPU computing is one method of realizing performance gains independent
of the iterative method used. With hybrid CPU/GPU computing, we focus on separating
the computationally intensive portions of the program among several workers. From the
standpoint of solving multiple linear systems, hybrid CPU/GPU computing can achieve sig-
nificant speedup by using high-level OpenMP and CUDA library functions, therefore giving
a relatively simple implementation. The compute nodes available had multicore processors
and GPUs so both shared-memory CPU threading GPU-offloading were considered.

Here we pause and discuss considering the layout of data in memory and its affect on the
methods used. Two schemes can be used to map multi-dimensional data into memory called
arrays of structures (AOS) and structures of arrays (SOA). A visual representation for our
system can be seen in Figure 3.1. AOS means that each array entry is a tuple containing
an entry for each piece of information, which is the red, green, and blue color intensity in
the scope of this paper. Mathematically, the unknown vector b in the linear system Ab = e
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Figure 3.1: Example of structure of arrays vs. array of structures.

lists the entries of the B(ν), ν = 1, 2, 3, in interleaved ordering. The right-hand side e is
then also set up with interleaved ordering, and the system matrix A in Ab = e contains
the elements of A(ν), ν = 1, 2, 3, interleaved in both dimensions. By contrast, SOA means
that each piece of information is stored in its own array and the arrays are stored in a single
structure. In our case, these are the three arrays: red, green, and blue. Mathematically,
this means that the unknowns B(ν), ν = 1, 2, 3, are stacked on top of each other to form the
vector of unknowns b. Analogously, the right-hand side e is obtained, and the system matrix
A in Ab = e is a 3× 3 block matrix, whose diagonal blocks are the matrices A(ν), ν = 1, 2, 3.
In either case, we can consider the data as one object, either an array or a structure, for easy
passing between methods. When a structure of arrays is used for the data representation
the problem is simply a set a one-dimensional linear systems so linear solver packages like
BLAS and cuBLAS (BLAS CUDA kernels) can be used.

3.1.1 GPU Computing with CUDA

With access to NVIDIA GPUs we used offloading to leverage the massively parallel archi-
tecture of the GPUs with the CUDA architecture [5]. GPUs have their own memory and
clock and offloading refers to transferring relevant memory to the GPUs memory and run-
ning a kernel (function) on the data. GPUs are designed for single instruction multiple
data (SIMD) routines because each core follows the same program counter (PC) in its warp
(collection of cores). In this manner, the CPU code can be used for the basic operations
such as file manipulation, user I/O, and conditional heavy subroutines while the GPU does
simple computationally expensive tasks like the linear algebra routines used in solving linear
systems. All matrix and vector operations, including, but not limited to, matrix-vector mul-
tiplications, vector products, and vector scalings are handled on the GPU. The fundamental
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challenge of GPU offloading is that the computational work performed by the GPU needs
to be so fast that it overcomes the delay caused by the memory transfer.

The CPU handles kernel calls by executing a series of functions for the specific linear
solver and afterwards requests the current solution’s residual back with a cudaMemcpy call.
This residual is compared to the tolerance, constituting one iteration of the iterative method.
Prior to the solving procedure, all device memory is allocated and the matrix and initial
solution guess are copied to the device. Kernels, the functions on a GPU, are launched
in a so-called grid of thread blocks. We use 1D grid and block layouts. Each block has
512 threads, and an appropriate number of blocks per grid were calculated based on the
patch count with one thread created for each patch. For example, a scene with 2048 patches
would be placed on one 1D grid where the grid would have four blocks, each with 512 threads.
Additionally, the grid dimension was calculated to be the ceiling of the patch count divided
by the block size so that there would indeed be one thread per patch.

In the case of SOA memory, the cuBLAS library is utilized since the arrays map eas-
ily onto the matrix-vector product (cuBLASSgemv) and vector-vector product (cuBLASSdot)
routines [4].

When we used AOS memory, we used our own vector-vector product and matrix-vector
product kernels because cuBLAS is incompatible with the arrays of structures format.

3.1.2 CPU Computing with OpenMP

The serial version of both the AOS and SOA solvers were reimplemented with OpenMP [6] to
take advantage of available cores not utilized in serial execution. The form factor coefficient
matrix is large with respect to scene size (O(n2)) so the shared memory model of threading
with OpenMP was advantageous to avoid communication. We needed only to distribute
the computationally expensive routines, therefore only the linear algebra portions of the
solver were updated, including the matrix-vector product, dot product, axpby, and element-
wise vector scaling methods, with the appropriate #pragma parallel for and reduction

declarations.

3.1.3 Hybrid CPU/GPU Computing

When we use a solely GPU-offloading or CPU-threading solver, the full power of the hy-
brid CPU/GPU compute node is not leveraged. In order to utilize the entire node, we
implemented a hybrid solver by dividing the (in our case) faster Jacobi method to use both
OpenMP and CUDA routines. A distribution factor (between 0 and 1) is used to control the
splitting of the workload between the GPU and CPU where 0 is a completely CPU routine
and 1 is a complete GPU routine. After each step, there are two vectors whose lengths sum
to N . This requires one synchronization between the memory of the CPU and GPU per
iteration.

3.2 Iterative Methods

Another method to realize performance gains is to consider the mathematical method used
to solve the linear systems. Matrix inversion is an O(n3) operation and hence is not efficient
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when iterative methods requiring O(n2) operations per step can achieve a solution in much
fewer than n steps. This is true for our case study of the radiosity method for global
illumination solutions.

We first consider the original method of solving the combined linear system Ab = e, with
b either in AOS or SOA arrangement, with a Jacobi iterative method with a fixed-iteration
count of M iterations, as implemented in the original code [1]. We introduce G = I − A or
A = I −G, so that Ab = e becomes (I −G) b = e or

b = e+Gb. (3.1)

The fixed-iteration Jacobi method then iterates

b(k+1) = e+Gb(k) (3.2)

for k = 1, 2, . . . ,M − 1, where M is fixed. We decided to switch from element-by-element
updating to a series of function calls to matrix-vector and axpby methods to take greater
advantage of automatic loop-vectorization. Elements in the vectors e and b for the original
AOS implementation are tuples of color components (r, g, b) so use of existing functions
such as those in BLAS were initially out of the question.

Since the original Jacobi implementation ran for a fixed number of iterations, a residual
calculation is performed so solutions could be quantitatively analyzed. This also cut down
on unnecessary iterations for an acceptable solution being reached prior to the specified
iteration constant.

The Jacobi method is the simplest of the so-called basic iterative methods [7, Ch. 4] and
can be slow to converge for complex systems. So, another iterative method, the modern
BiCG-STAB (Biconjugate Gradient Stabilized) [7, Ch. 7], was added with the aim of faster
convergence and runtime. The BiCG-STAB method does take twice as much work per it-
eration because of the need for two matrix-vector products per iteration, but for complex
systems we hope that the iteration count for BiCG-STAB would be less than half the itera-
tions needed for Jacobi, where only one matrix-vector product is needed, resulting in shorter
runtimes.

4 Results and Discussion

4.1 Iterative Methods

The radiosity computation is solved with our proposed iterative methods. Four scenes of
varying complexity and patch count are used. Figure 4.1 presents the results in rendering
at different iteration counts using the Jacobi method for Scene 3. The initial image shows
the initial guess, which is only the light from light sources. Algorithmically, the iterations in
the radiosity calculation with the Jacobi method follow the light, as it bounces around the
scene, so that the final converged image shows the light, as it is attached to all objects in
the scene.

OpenMP multi-threaded versions of the Jacobi and the BiCG-STAB methods were com-
pared with a relative residual tolerance of 10−6, as shown in Table 4.1. BiCG-STAB ran
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Figure 4.1: Test scene rendering at different iterations for Scene 3.

Table 4.1: Iterative methods Jacobi vs. BiCG-STAB: timing results for OpenMP with run-
times in seconds.

Patch Jacobi BiCG-STAB
Scene ID count iter runtime iter runtime

1 1312 8 0.009 3 0.010
2 3360 28 0.045 16 0.058
3 9680 36 0.410 17 0.435
4 17128 32 0.993 17 1.157

slower in all cases, even with a lower iteration count. The slower runtimes are a result of
BiCG-STAB’s higher computational complexity per iteration relative to Jacobi. It seems
that our scenes were not complex enough to benefit from the reduction in iterations needed
for convergence upon switching from Jacobi to BiCG-STAB. Therefore, the change in com-
putational methods was ineffective in our project.
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Table 4.2: AOS Jacobi methods: timing results in seconds for all AOS implementations.

Scene ID Patch Count Original Serial CUDA OpenMP
1 1312 0.028 0.031 0.006 0.009
2 3360 0.857 0.677 0.115 0.045
3 9680 10.072 6.973 1.209 0.410
4 17128 27.855 19.394 3.415 0.993

Table 4.3: SOA Jacobi methods: timing results in seconds for all SOA implementations.

Scene ID Patch Count Original (AOS) Serial CUDA OpenMP
1 1312 0.028 0.040 0.128 0.014
2 3360 0.857 0.913 0.159 0.135
3 9680 10.072 8.821 0.493 0.975
4 17128 27.855 26.809 1.185 2.594

4.2 CPU and GPU Computing with Arrays of Structures

When we used an array of structures for the memory layout both CUDA (no cuBLAS) and
OpenMP showed marked improvements over the serial solver. Table 4.2 details our results
and we see that OpenMP showed better runtimes than CUDA with the exception of Scene
1. Our custom matrix-vector product CUDA kernal suffered for larger scene sizes because of
uneven data distribution across GPU cores. Because of this, reduced parallelism was present
with larger scenes, but improvement could be realized with better load balancing through
an improved reduction routine as shown by Harris [3].

4.3 CPU and GPU Computing with Structures of Arrays

CUDA (using cuBLAS libraries) and OpenMP showed marked improvements over our serial
code as seen in Table 4.3. CUDA was actually faster than OpenMP for larger problem sizes
but performed poorly on small problems. Surprisingly, CUDA does not trend like that in
the AOS case, showing better results for the larger two scenes compared with OpenMP.
Although this is the case, overall runtimes are still slower than those with the AOS memory
layout and OpenMP.

4.4 Hybrid CPU/GPU Computing

A hybrid CPU/GPU AOS Jacobi method was tested by varying the load distribution factor
from 0 (all CPU, no GPU) to 1 (all GPU, no CPU) by steps of 0.1. The execution times,
shown in Table 4.4, show favorable improvements when using load distribution factors be-
tween 0.2 and 0.4, but for our experiments the device-to-host and host-to-device transfer
times could not be overcome to make the hybrid version faster than a solely CPU or GPU
implementations. This can be seen plainly in the case of a 0 distribution factor since here
we are only opening connections and transferring data. Quantitatively we compare this on
Scene 4 from our non-hybrid AOS OpenMP results in Table 4.2, which takes 0.993 seconds
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Table 4.4: AOS hybrid Jacobi methods: timing results for Scene 4.
Distribution Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Runtime (s) 1.950 1.458 1.571 1.477 1.695 2.014 2.221 2.502 2.930 3.185 3.515

in a pure OpenMP case, but 1.950 seconds in OpenMP with communication with the GPU.

5 Conclusions

We used computational reformulations as well as hybrid CPU/GPU computing techniques
in the search of an optimal solution for a group of systems. Our case study was the radios-
ity method for solving the global illumination problem consisting of three systems. Given
the scenes we tested, OpenMP and CUDA both show substantial runtime improvements,
while the change from the Jacobi method to the BiCG-STAB method actually resulted in
increased runtime due to the method’s complexity, even while using fewer iterations. It
appears that global illumination problems are not in general best suited for mathematical
reformulations, though parallelization techniques are quite appropriate and give favorable
speedups compared to the initial serial code.

An array of structures memory layout was found to be faster, but one should be careful
if not using the entire structure for a solution as it will take up unnecessary space in cache.
OpenMP was found to be faster than CUDA with AOS, but following the trend in the SOA
case we believe that with a better reduction routine the CUDA AOS case could be made
faster following results shown by Harris [3].

A hybrid CPU/GPU AOS implementation was tested which involved distributing por-
tions of the matrix to the CPU and GPU. Communication was too much of a bottleneck to
achieve a solution faster than the OpenMP case.
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The open-source package RRV (Radiosity Renderer and Visualizer) [1] is a global illumi-
nation solving and visualizing suite written in C++ and OpenGL. The radiosity computation
engine uses a Jacobi iterative method with a fixed number of iterations. The RRV-compute

program is used in conjunction with an .xml scene description format of the geometric
components (i.e., primitives, such as polygons) that make up the scene, to compute the
global illumination for visualization with RRV-visualize. The radiosity algorithm solving
RRV-compute program is the focus. The source code for RRV is available for download at
http://dudka.cz/rrv.
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