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Abstract. We present a dynamical system model to show the Potsdam, NY campus of Clarkson University
is 100% renewable with the university’s new contract as of 2019 with Brookfield Renewable. The
model creates periodic functions simulating energy inputs which can be used to generate alternative
past and future scenarios. Clarkson University changed their source of electrical energy to Brookfield
Renewable in July 2019 as they moved towards their 2025 goal of being 100% renewable. To claim
that a MWh of electricity used by campus is renewably generated, a Renewable Energy Credit
(REC) has to be purchased or generated and applied to it. The new contract with Brookfield
Renewable provides each supplied MWh with its own REC. Combined with Clarkson University’s
other renewable energy sources, 95% of electricity consumed by campus can be certified as renewable.
To model the remaining portion of electricity consumed by off-campus properties, we rely on data
that accounts for consumed and delivered electricity, prices for that electricity, and monetary credits
generated by local energy sources. Our developed dynamical system models the monetary credit
generation, debt accumulation, and REC accrual over 34 months using real university data. As
not all data parameters were explicitly available, we explore estimating parameters in three ways:
directly from the data as time-varying functions, as constants, and stochastically, as random variables
with distributions consistent with the provided data. We validate the alternative models against the
data and estimate sensitivity to parameters.

1. Introduction. In July 2019, Clarkson University switched their main energy provider
from a local energy service company to Brookfield Renewable, believing this would be cheaper
for the university long-term and help them reach their goal of supplying the campus with 100%
renewable energy by 2025. Through the contract with Brookfield Renewable and the existing
partnership with the New York Power Authority (NYPA), 95% of the campus’s electricity
needs could be provided from local renewable energy sources. Further, each MWh of energy
provided by Brookfield Renewable has a renewable energy credit (REC) attached to it, and
since NYPA’s energy supply comes to campus as 100% renewable hydropower, with these two
sources 95% of the campus is considered to be supplied with certified renewable energy. This
led to the question of whether or not the last 5% of the energy used by the Potsdam campus
was covered by enough RECs as well. Each MWh of electricity used by the campus needed
to have a REC applied to it if the campus was to be considered 100% renewable.

The main campus of Clarkson University is in the town of Potsdam, located in northern
New York state, and has the majority of student housing and academic buildings. Outside of
the main campus, Clarkson University owns other buildings around Potsdam, and operates
a satellite campus in Schenectady, NY, and the Beacon Institute for Rivers and Estuaries
in Beacon, NY. In this paper only the properties in Potsdam, NY are analyzed as they all
obtain electric energy from the same local sources, including renewable solar and hydro energy
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facilities.
The renewable energy credits (or renewable energy certificates), also referred to as RECs, 

described in this paper are associated with every MWh produced from a renewable energy 
source that is sent to the electricity grid [2]. These RECs can be generated locally or purchased 
from the market in order for an institution to claim they run on renewable energy. In our 
paper, the RECs Clarkson University brings in will have to cover all MWh of electricity 
brought to campus to ensure the campus is running fully on renewable energy. For ease of 
understanding and transferring data into the model, units of electricity in this paper will be in 
units of kWh instead of MWh since the dataset records electricity purchased and delivered in 
kWh. RECs cannot be applied to any bills as they are not any form of currency and while in 
some situations RECs may have a monetary value, this is not the case for those supplied to the 
university from Brookfield R enewable a nd C larkson S olar. Therefore C larkson University’s 
RECs cannot be sold for any monetary value and can only be applied to offset electricity 
brought to campus.

Clarkson University also receives monetary credits each month from Potsdam Hydro and 
Clarkson Solar in exchange for using actual dollars to help with maintenance costs of each 
source. When Clarkson University pays to help upkeep each electricity source, at the end of 
the month the monetary credits that are generated from each source at individual rates are 
given back to the university. In some cases, Clarkson University gets back more in monetary 
credits than they originally paid (usually from Potsdam Hydro) and in some cases they get 
back less (usually from Clarkson Solar). These monetary credits act as a type of rebate that 
the university can apply to National Grid bills to offset any costs they owe and the amount 
can accumulate indefinitely (until applied to a  b ill). Whatever bills are owed to sources other 
than National Grid must be paid using actual dollars from the university’s funds. Further, 
whatever is owed to National Grid that cannot be covered by the monetary credits generated 
monthly from these two sources must also be paid using money from the university’s accounts.

The model developed in this paper uses data obtained from Clarkson University’s various 
electricity sources to determine the % renewability of the campus and simulate past and 
future electricity use for the university. To understand the variability of the data used and 
the likelihood of fluctuation i n t he r esults we c ompare t hree d ifferent ve rsions of  th e model:
(a) constant parameter model, (b) data-driven parameter model, where parameters are re-
estimated at every time step, and (c) stochastic model, where parameters are drawn from a 
probability distribution at every step. The comparison will allow us to understand the rates 
at which monetary credits and RECs are generated versus the rates at which they are applied, 
which can help the university predict its spending habits and renewability in yearly cycles. 
Understanding these cycles will allow Clarkson University to better allocate their resources 
as they balance renewability and cost. Further, with unknowns existing in the dataset, the 
model comparison is important as it addresses how we could best estimate and model the 
parameters to answer the question of renewability and visualize energy usage on campus.

This paper models the performance of the electricity purchasing portfolio at Clarkson Uni-
versity. Section 2 presents the problem description along with the assumptions and data used 
to create the model. Section 3 describes how state equations of the model, input functions, 
and parameters were determined. The purpose of the model was to evaluate if the proposed 
purchasing strategy results in a sustainable portfolio, and if the campus can be certified as
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fully renewable. This section also presents scenarios in which the model was evaluated, with
detailed discussion of outcomes given in Section 4. Future work for this model is presented in
Section 5 while conclusions are presented in Section 6.

A generalized version of the presented model can be used for other campuses or institutions
to help them reach renewabilitiy or financial goals as well. For an individual institution, data
on all electricity sources and transfer of resources must be available to apply a similar model.
By creating specific assumptions, developing parameters, and defining equations for resource
relationships, a facility could obtain similar results. These results can show historical trends
in energy usage or provide predictive modeling so that real-world steps can be taken to adjust
portfolio behavior and achieve a desired outcome.

2. Problem Description. Clarkson University works with many local electricity sources to
purchase and obtain energy to power the campus. These include a local solar farm (Clarkson
Solar), local hydro plants and renewable energy businesses (Brookfield Renewable, NYPA, and
Potsdam Hydro), and National Grid. With these local sources they transfer and exchange
electricity, money, monetary credits, and RECs. Table 1 provides a brief overview of each
of these sources and the commodities exchanged. Our model is based on understanding the
relationships between these agents and the exchanges they are a part of. Quantitative data
about these components was obtained from Clarkson University records.

Agent Description

Clarkson University University in upstate NY consuming electricity
Brookfield Renewable Power company operating hydroelectric plants
National Grid Electricity and gas utility and distribution company
NYPA New York Power Authority; provides renewable hy-

droelectric energy
Clarkson Solar Solar farm on university-owned land in Potsdam, NY
Potsdam Hydro Hydroelectric plant in Potsdam, NY

Resource Description

Electricity Generated by power plants, distributed through Na-
tional Grid to the campus

Money Real dollars spent by the University and National
Grid

Monetary Credits Generated by (some) power plants and used by the
University as a rebate to National Grid

RECs Generated by (some) power plants and used to certify
the renewability of campus

Table 1: Agents and resources involved in the electricity trade model.

Clarkson University pays each of the local sources separately for the electricity they produce 
except for Brookfield Renewable, which is paid by Clarkson University through National
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Grid. The university accumulates the monetary credits generated at Potsdam Hydro and
Clarkson Solar each month when they pay each site to help with monthly maintenance. These
monetary credits are useful because they can offset any bill given to Clarkson University by
National Grid and can be used the month they are generated or at a later time. All electricity
is delivered through National Grid; therefore all delivery fees can be paid for using monetary
credits. Further, the actual electricity purchased from Brookfield Renewable for consumption
is charged through National Grid so monetary credits can be used for this bill as well. These
exchanges of resources are demonstrated by Figure 1.

Brookfield
Renew-
able

National
Grid

NYPA

Potsdam
Hydro

Clarkson
Solar

Clarkson
University

(a) Electricity

Brookfield
Renew-
able

Clarkson
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National
Grid

Potsdam
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Clarkson
Solar

Clarkson
University

(c) Monetary Credits

Brookfield
Renew-
able

Clarkson
University

Clarkson
Solar

(d) RECs

Figure 1: Transfer of resources between local agents

Looking at REC flow i nto c ampus i s e ssential t o a nswer t he q uestion o f h ow renewable
the campus is right now and this exchange is shown by Figure 1d . Brookfield Renewable
and Clarkson Solar provide RECs that Clarkson University can use to offset non-renewable
energy brought to campus. RECs come from Brookfield Renewable a s t hey a re a ttached to
every MWh of electricity the university consumes under the Brookfield Renewable contract
and additional RECs are generated at a 1:1 ratio for the energy produced at the solar farm.
As the RECs from the solar farm no longer have monetary worth, the university is able to
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receive them in exchange for the cost they pay to the farm each month. This is an easy way 
for Clarkson to obtain more RECs that they can then apply to the non-renewable energy used 
by the campus.

2.1. Qualitative Modeling. To develop a model, we needed to create equations that would 
demonstrate how the transfer of money, monetary credits, and RECs were affected over time.

Assumptions underlying this model, explained in the previous section, can be summarized 
as follows:
(A1) Generation charges and/or upkeep charges are paid to NYPA, and local power plants

directly in real dollars.
(A2) Generation charges to Brookfield Renewable can be paid in monetary credits.
(A3) National Grid delivers all electricity, so all delivery costs can be paid by monetary

credits.
(A4) Clarkson is billed at the end of the month for the power used during that month.
(A5) Monetary credits are generated by Clarkson Solar and Potsdam Hydro.
(A6) Monetary credits can be used the same month they are generated or at a later time.
(A7) RECs are received from the solar farm and Brookfield Renewable at a  1:1 ratio for the

energy the farm produces.
These assumptions were essential in creating the model presented in this paper. It is 

important to understand the relationship between Clarkson University and the electricity 
sources as well as how payments are made via dollars or monetary credits.

Constraints we had to incorporate include:
(C1) Purchased electricity must match the consumed energy,
(C2) Minimize real-dollar spending (i.e. maximize use of monetary credits).

This model does not include any potential increases in production capacity or renovations 
in structures that would reduce their energy footprint.

2.2. Preparation of Data. The dataset used contains energy prices, consumption and 
delivery amounts for all local sources Clarkson University is working with, and monetary 
credits generated from the local solar farm and hydro plant between June 2014 and October 
2018. Since RECs are assumed to be generated at a 1:1 ratio with the energy produced by 
Clarkson Solar, this is sufficient to infer all relationships in  Figure 1.  All values in the dataset 
are monthly totals.

Since the obtained data was not complete, only the 34 month range of September 2015 to 
June 2018 could provide the record of variables needed to identify parameters in the model. 
The price parameters that were calculated using the dataset are presented in Table 2 along 
with their mean µ and standard deviation σ values. These parameters will be used in the 
model to help us better understand the relationships between monetary credits, dollars, RECs, 
and electricity.

To determine which off-campus properties b est r epresented Clarkson’s current situation, 
any accounts that were no longer present in 2019 were immediately disregarded as they would 
be unnecessary when modeling future spending. Accounts with inconsistent or seemingly 
inaccurate data were disregarded as well. After eliminating non-usable accounts, there were 
21 off-campus properties left to a nalyze. These smaller off-campus properties were aggregated 
to determine energy usage outside the main Potsdam campus. It was important to determine
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Price µ σ

Hydroelectric sale βh 11.74 0.9789
Hydroelectic purchase ρh 10.57 0.8810
Solar sale βs 11.55 0.9065
Solar purchase ρs 12.39 0.2072
NYPA purchase ρN 3.37 0.3052
Brookfield purchase ρB 6.18 0.2856
Energy delivery δ 2.05 0.1787

Table 2: Summary statistics (mean µ and standard deviation σ) for various prices in the
model. All quantities are in cents (10−2 dollars) per kWh.

both monthly and yearly sums for the energy consumed by the smaller accounts because
monthly values could be directly input into the model while yearly values could immediately
answer the question of whether or not the Potsdam section of Clarkson University’s campus
was 100% renewable (described in Section 4).

3. Mathematical model. The mathematical model of the energy portfolio specifies the
evolution of state variables based on relationships between accounts. The representation of
the input and output flows and the estimation of parameters were based on the available
historical data.

3.1. State equations. The state equations capture how monthly increments of state vari-
ables, that is monetary credit accumulation C[n], debt D[n], and REC accrual R[n], depend
on the values of these variables and on variation in energy production and consumption,
represented by time-varying functions derived from data.

For two of the input energy sources, Brookfield Renewable (EB) and NYPA (EN ), the
value used in the model is the energy the campus consumes from these sources each month.
For Potsdam Hydro (EH) and Clarkson Solar (ES), the value is the energy generated by these
sources each month. All energy values appear as E∗[n] in the model and they have units of
[kWh]. RECs are given units of energy, as they are applied in a 1:1 proportion to certify
renewability of each consumed kWh of power; however, RECs do not represent an additional
usable electricity, but only a certificate of renewability for a certain amount of energy. All
coefficients β∗, ρ∗, δ can be assumed to vary over time but brackets are omitted for brevity
until Subsection 3.4.

The monthly change in monetary credits is given by

(3.1) ∆C[n] = βHEH [n] + βSES [n]−ωδEN [n]− (µδ + γρB)EB[n]︸ ︷︷ ︸
bill payment using monetary credits

where the first two terms account for earnings f rom Clarkson-affiliated power plants and  the
last two terms indicate expenses toward power companies (NYPA and Brookfield Renewable).
Coefficients β∗  an d ρ∗  ar e pr ices of  en ergy (a ccounted as  monetary cr edits he re), wh ile δ is
the delivery cost of energy (which we assume to be the same for each source as all energy is
delivered through National Grid).
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This model assumes a payment strategy that first uses any available monetary credits
to pay eligible bills, therefore eliminating the carryover of credits between months. Such
modeling choice was made based on discussions with stakeholders at Clarkson University.
The time variations in ω[n], µ[n], and γ[n] may be used to determine any particular strategy
of portfolio management; optimization of these values is discussed in Subsection 3.2 and may
be the topic for any follow-up work.

The monthly value of debt (in real dollars) is given by

∆D[n] =− ρHEH [n]− ρSES [n]− ρNEN [n]

− (1− ω)δEN [n]− (1− µ)δEB[n]− (1− γ)ρBEB[n]
(3.2)

where the first three terms represent what is paid for the consumption of energy from NYPA
and what Clarkson pays to the local solar farm and hydro plant to help with monthly main-
tenance. Again, δ is the delivery cost for energy and ρ∗ values are prices of energy from the
different sources.

The last three terms in (3.2) represent the dollar cost to deliver energy from NYPA along
with the dollar cost to purchase and receive energy from Brookfield Renewable. The portion
of bills paid using monetary credits are

• ω for NYPA’s delivery cost,
• µ for Brookfield Renewable’s delivery cost, and
• γ for Brookfield Renewable’s consumption cost.

The portfolio is managed by the monthly choice of control parameters ω[n], µ[n], and γ[n]
that determine the portion of bills that are paid for by money vs. monetary credits. The
management strategy evaluated in this paper is described in Subsection 3.2, although the
model could certainly accommodate different strategies implemented in an analogous way.

The monthly increment of RECs is given by

(3.3) ∆R[n] = ES [n] + (EB[n]− EB[n])− ESA[n]

where the first term accounts for the energy gained from the local solar farm. The second
and third term represent that energy consumed from Brookfield Renewable is at a 1:1 ratio
with the RECs applied to that energy as stated in the contract between the provider and
Clarkson University. Therefore, the energy from Brookfield Renewable comes to campus
already completely renewable and thus (3.3) can be simplified to

(3.4) ∆R[n] = ES [n]− ESA[n].

This means there are no leftover RECs from Brookfield R enewable t hat c an b e a pplied to
energy purchased from other sources. The last term in (3.3) is the energy consumed by the
small off-campus properties associated with Clarkson University.

To determine if the campus is covered 100% by renewable energy, R[n] in (3.4) must be
positive at the end of each fiscal y ear. If R[n] is negative, the local solar farm does not generate
enough energy over the course of a year to provide campus with the RECs needed to cover the
energy consumed by the off-campus p roperties; the solution may b e to purchase RECs from
another local renewable source or on the open market (see Section 4 for further discussion).

95



S. PETER

As all state variables contain the same basic parameters and input, the system of equations
for our model can be written as:

(3.5)C[n+ 1]
D[n+ 1]
R[n+ 1]

 =

C[n]
D[n]
R[n]

+

∆C[n]
∆D[n]
∆R[n]


∆C[n]
∆D[n]
∆R[n]

 =

 βH βS −ωδ −(µδ + γρB) 0
−ρH −ρS −(ρN + δ(1− ω)) −(δ(1− µ) + ρB(1− γ)) 0
0 1 0 0 −1



EH [n]
ES [n]
EN [n]
EB[n]
ESA[n]


3.2. Control variables. Generated monetary credits from Clarkson Solar and Potsdam

Hydro can only be applied to bills that go through National Grid. In our model, these bills
are for delivery of energy purchased from NYPA and for the purchase and delivery of energy
from Brookfield Renewable to Clarkson University. This model determines control parameters
ω[n], µ[n], and γ[n] under the assumption that monthly generated monetary credits are first
applied to NYPA delivery costs (δEN ), then Brookfield Renewable delivery (δEB) and finally
to Brookfield Renewable consumption (ρBEB). Any reasonable strategy must ensure that all
bills are paid on a monthly basis; additionally, the considered strategies use as much monetary
credits as possible in each month.

In the analyzed period, the monthly income of monetary credits was always smaller than
the portion of the total bill that could be paid using these credits, that is

(3.6) βHEh[n] + βSES [n] ≤ δEN [n] + (δ + ρB)EB[n].

The actual portion of the bill paid using monetary credits is controlled by parameters ω, µ, γ
(see (3.1)).

The priority is always to apply the credits to the NYPA bill (δEN ), then Brookfield 
Renewable delivery (δEB) and then Brookfield R enewable c onsumption ( ρBEB). For the 
analyzed data, the monthly income was sufficient to  always cover th e NYPA bi ll (ω [n] ≡ 1)
but the remaining two variables fluctuate. W hen t he i ncome i s i nsufficient, γ =  0  a s in
realization shown in Figure 8.

To show that number of monetary credits generated must equal number of monetary
credits used we can write: βHEh[n] + βSES [n] = ωδEN [n] + µδEB[n] + γρBEB[n]. The 
parameters µ and γ can easily be determined based on the monetary credits available for
the month and the assumed order the monetary credits are applied (knowing ω = 1 for this
model). To determine what monetary credits do not cover and therefore what portion of
the National Grid bill must still be paid using dollars, we calculate: (1 − ω)δEN [n] + (1 − 
µ)δEB[n] + (1 − γ)ρBEB[n] which become the last three terms subtracted in (3.2). Note that 
since ω = 1, the first o f t he t hree t erms s ubtracted i n ( 3.2) i s a ctually 0 , meaning o nly the
µ[n] and γ[n] terms will contribute to the bill and affect results o f (3.2).

For a more general strategy, similar steps can be rearranged to align with adjusted model
assumptions. The three bill components that may be paid with monetary credits can be
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reordered and control parameters can be recalculated as needed. If monetary credits are
applied to Brookfield Renewable consumption (ρBEB) first, it may be the case that both ω[n]
and µ[n] are always 0, but this strategy would need to be explored to determine if that is true.
The model’s complexity would also increase if none of the three control parameters equaled
0 or 1 and all changed each month. Further, ω[n], µ[n], and γ[n] could be manually selected
(i.e. not determined from other parameters using code) to apply a specific strategy to manage
the portfolio.

The investigation of this model uses the monetary credit application strategy presented
in this section to determine how monetary credit accumulation C[n], debt D[n], and REC
accrual R[n], change over time.

3.3. Inputs: Energy Consumption and Generation. Flows in electrical energy tend to
have strong cyclic components. Energy production in solar plants is driven by the duration
and intensity of sunlight throughout the year and production in hydro plants is driven by the
consistency and strength of water flowing through the plant, both of which change with the
seasons in upstate New York. Similarly, consumption contains cyclic components due to need
for cooling in summer, heating in winter, and higher use of campus facilities while semesters
are in session.

Each of the five energy inputs (Potsdam Hydro, Clarkson Solar, Clarkson’s Small Ac-
counts, NYPA, and Brookfield Renewable) was modeled as a noisy periodic function that was
then used to create alternative histories and extrapolate from the data:

(3.7) x[n] = A0 +
K∑
k=1

[
Ak cos

2πn

Pk
+Bk sin

2πn

Pk

]
+N (µ, σ2)

where x stands in for any of the E∗[n] signals, Ak and Bk values are constant coefficients,
Pk values are periods, and N (µ, σ2) is a normally-distributed random number. In principle,
a linear term could be included to account for any prominent linear trends in the data, but
after evaluating this possibility, we found that results were not greatly affected if the term
was omitted.

In summary, the parameters in (3.7) for each signal E∗[n] were determined as follows.
First, the number of periodic components K and their periods Pk were determined based
on expected seasonal variation and on results of spectral analysis of the data. Second, the
coefficients Ak and Bk were determined by a linear least-squares regression of data onto the
chosen number of periodic components. Finally, the mean and the variance of the random
component were set to match the mean and the variance of the residual between the data and
the periodic component with the parameters chosen in the previous step.

Spectral analysis. Spectral analysis of a time trace can be used to identify dominant pe-
riodic components in the signal. Discrete Fourier transform (DFT) [1, §11.9] is the most
common transformation of the signal used for the purpose of spectral analysis. The input to
DFT is a function sampled at equally-spaced time intervals x[n]. The DFT x̂[k] is a complex-
valued sequence

(3.8) x̂[k] :=
1

N

N−1∑
n=0

x[n] · e−i 2π
NT

kn,
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where the index k indicates the integer multiples of the basic frequency 1/NT , where T =
1month is the sampling period of data. The importance of each frequency k/NT is measured
by the Power Spectral Density (PSD) |x̂[k]|2; we choose the periods associated with peaks
in PSD as those important for including in the model (3.7). To avoid x̂[0] overshadowing
nontrivial periodic components, we first manually remove the mean value of input time series.
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Figure 2: The record of Clarkson Solar energy input over 34 months visualized as (a) a time
trace, and (b) Power Spectral Density (PSD). The dominance of the component with the
yearly (12 month) periodicity is indicated by the maximum in the PSD.

As an example, the PSD for the solar power (Figure 2) shows that the yearly component,
corresponding to the maximum in the PSD, dominates the data, matching the expectations
about seasonal variation of the amount of sun in New York. Similar plots (see Figure 11
in Appendix A) were analyzed for all other time traces with results given in Appendix A.
Depending on the relative magnitude of peaks, one or more dominant periods were used for
each signal. When periods determined by spectral analysis were close to expected seasonal
variations or their integer fractions (higher harmonics), rounded periods were used to simplify
interpretation.

Linear least-squares. Once the most relevant periods were determined, they were used
in (3.7) to model periodic functions for each energy signal. The coefficients Ak, Bk are then
estimated by linear least-squares regression of parameters in (3.7), written in a matrix form
as

(3.9)

x⃗︷ ︸︸ ︷
x[0]
x[1]
x[2]
...

 =

S︷ ︸︸ ︷1 cos 2πt0
P1

sin 2πt0
P1

cos 2πt0
P2

sin 2πt0
P2

. . .

1 cos 2πt1
P1

sin 2πt1
P1

cos 2πt1
P2

sin 2πt1
P2

. . .
...

...
...

...
...

. . .


α⃗︷ ︸︸ ︷
A0

A1

B1
...


Since this equation is overdetermined (more time-series points than coefficients), it  typically 
has no exact solution. Multiplying by S⊤ from the left results in the normal equation S⊤x⃗ =
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(S⊤S)α⃗, which has a unique solution that amounts to a least-squares fit of the periodic model
to data. Commonly, the resulting solution is written as

(3.10) α⃗ = S†x⃗,

where S† := (S⊤S)S⊤ is the Moore–Penrose pseudoinverse.

(a) Fitted data overlaid on the original energy
signal for Clarkson Solar (ES). Residual values
between the curves are also graphed

(b) Comparison of distribution of residuals: his-
togram, normal density estimate and nonpara-
metric kernel density estimate. Estimated mean
µ = −4.6652 · 10−11 and standard deviation σ =
4.08× 104.

(c) Alternate history of Clarkson Solar energy
trace generated using (3.7).

Figure 3: Demonstration of a periodic model for the time trace of the Clarkson Solar energy
output.

After computing coefficients, we  use the model (3.9) to  produce realizations of  models for
each time trace and compare them with data. An example of the created model for the case
of the Clarkson Solar farm is shown in Figure 3.

The original data (energy generated at the solar farm each month (ES )), the periodic 
fit, a nd t he r esidual ( the d ifference be tween th e da ta an d th e pe riodic fit ) are  dis played in
Figure 3a. A histogram showing the range of the residual values over all the time steps is
provided in Figure 3b, with a kernel density fit overlaid on t op. Mean µ and standard deviation
σ values of the residual were calculated as well so that a noise component could be included
in the model (see last term of (3.7)). This noise component is added to the original fitted
periodic curve of Figure 3a and the resulting fitted data w ith noise c urve i s p lotted against
the original data to compare similarities in Figure 3c.
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The resulting curve of fitted data with noise included follows the original data curve very
closely for Clarkson Solar (see Figure 3c). The other energy traces yielded similar analysis
with the number of terms that provided a best fit for them, yet the solar farm showed its
cyclical nature most clearly. A summary of the mean and standard deviation values of the
residual, along with the R2 values of the fitted curves compared to the original data for each
energy signal are provided in Table 5 in Appendix A.

3.4. Estimating prices and conversion rates. The following prices and conversion co-
efficients vary from month to month: energy to monetary credit conversion coefficients for
Clarkson Solar and Potsdam Hydro (β∗), the delivery price for energy by National Grid (δ),
and the price for energy consumed from Brookfield Renewable, NYPA, Clarkson Solar, and
Potsdam Hydro (ρ∗). Since we have access to all monetary data, we can compute values of
these parameters on a monthly basis (Data-Driven Model); however, it can be useful to model
the values of parameters as either constant-in-time (Constant Model), or as drawn randomly
from an estimated distribution (Stochastic Model).

These models were used for different purposes, as explained below.

3.4.1. Data-Driven Model. The data-driven model treats the parameters in (3.5) as time-
varying values, estimated from the available data at each time step. While some parameter
values were directly a part of the data set, others had to be inferred. For example, the prices
for the energy consumed (ρ∗) are determined by dividing the amount the university paid to
that source by the amount of electricity produced by that source. Also, the monetary credit to
$ conversion factors (β∗) are determined by dividing the monthly monetary credits generated
for a source by the kWh of energy produced by the source. The seven parameters are therefore
represented in the data-driven model by time-traces of 34 monthly values.

This model is the most accurate during the observed period, however it cannot be used to
extrapolate. Therefore, it was used to judge the quality of the other two parameter models.

3.4.2. Constant Model. The simplest model treated the seven parameters as constant
values, estimated as time-averages of their monthly values, resulting in a time-invariant matrix
in the model Equation (3.5). The average values used for the constant model can be found in
Table 2.

The constant model was used as the baseline for future projections of the energy portfo-
lio. Additionally, we used it to estimate the impact of the hypothesized change in price ρB
that Clarkson University pays to Brookfield Renewable for their electricity. This alternative
scenario models the renegotiation of the contract that occurred in July 2019; at the time it
was hypothesized that the average price of $0.0618 per kWh could be negotiated to be as low
as $0.055 per kWh.

3.4.3. Stochastic Model. The stochastic model treats the parameters in (3.5) as stochas-
tic processes, with values at each time step drawn independently from normal distributions
whose means and variances match means and variances of the corresponding values over the
available time period (Gaussian white noise). This model was used to generate alternative
historical scenarios, used to estimate whether the historical data and the constant model could
be considered outliers or not.

As before, we judged qualitatively whether each parameter was normally distributed or
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not during the observed time history by comparing the histogram and gaussian kernel density
estimate of the distribution with the normal distribution, An example of one of the histograms
is shown in Figure 4a for the βS parameter (energy to monetary credit conversion factor for
solar farm). All other parameters have similar estimates of their densities to that of βS with
the only slight deviation occurring for the δ parameter (price for energy delivery), shown in
Figure 4b.

(a) Solar sale price βS (b) Energy delivery price δ

Figure 4: Histograms of two time-varying parameters calculated during the 34 month period.
Overlaid is a Gaussian-kernel density estimate of the PDF. Other parameter distributions are
similar to βS , while δ is the parameter distribution with the strongest deviation from the
gaussian.

4. Results. A configuration of the energy portfolio model comprises the four components
(state equations, control variables, input time traces, and parameterization) described in
Section 3. Relationships between state equations and control variables are fixed; however,
for any particular simulation one can choose to use historic record for input time traces, or
traces simulated using (3.7). Similarly, historic values can be used for the price and conversion
parameters (Subsection 3.4.1), or we can use constant values (Subsection 3.4.2) or Gaussian
white noise (Subsection 3.4.3). In order to analyze the behavior of the electricity portfolio,
we have simulated the models in the following configurations over 34 months:

(a) 4 versions of the model with historic input traces and parameters represented by:
(i) time-varying historic values (1 run) (Subsection 3.4.1),
(ii) mean of historic parameter values (Subsection 3.4.2) and the energy price of

the old energy service provider (1 run),
(iii) mean of historic parameter values and the theoretical energy price of Brookfield

Renewable (1 run),
(iv) stochastically time-varying parameters (1000 runs) (Subsection 3.4.3),

(b) 1 version of the model with stochastically time-varying parameters and input traces
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(1000 runs).
The following subsections use these simulations to
• evaluate the potential for 100% renewability of the electricity portfolio and study
trends in REC accrual,

• analyze consequences of cyclic behavior in inputs on RECs and control parameters,
• compare quantitative models,
• evaluate the effect of randomness in inputs and parameters on monetary credit and
debt trends.

4.1. Determining Clarkson University’s Campus Renewability. To determine whether
or not the Potsdam portion of Clarkson University’s campus was 100% renewable we had to
look at REC usage over the course of the year (as month by month basis was unnecessary).
The automatic offsets of Brookfield Renewable energy, as modeled in (3.3), combined with
the 100% renewable hydropower purchased from NYPA meant that 95% of the campus energy
was certified renewable. To certify the remaining 5% of energy used, we needed to know if the
RECs associated with power generated at the local solar farm offset the amount consumed by
the remaining smaller, off-campus properties not part of the main campus in Potsdam, NY.

We point out again that only the Potsdam area campus for Clarkson University was
analyzed. We did not have data for the Capitol Hill Region and Beacon campuses so no
estimates were made for these areas. However, Clarkson University should be able to apply
any excess RECs from this model to energy used by these campuses to help offset that energy
and aid them in becoming more renewable as well. Without understanding the sources these
campuses exchange resources with, analogously to the flowchart in Figure 1, it is very difficult
to assess whether they can be classified as renewable.

Our model assumes that each kWh of power generated at the solar farm equated to a REC
which could be applied to certify each kWh consumed by the off-campus properties (“small
accounts”) as renewable. Therefore, we had to look at the yearly balance of RECs generated
by the solar farm (ES) compared to energy consumed by the smaller accounts (ESA), as
demonstrated by (3.4). Two full fiscal years worth of data are provided by the 34 month
range analyzed and two more 9 month and 6 month time periods could be used as well. The
results, showing R[n] RECs left at the end of each fiscal year (EOY), are presented in Table 3.

Generation [kWh] Consumption [kWh] Excess at EOY [kWh]

Sep ’15 to May ’16 1,637,950 1,017,149 620,801
June ’16 to May ’17 2,625,216 1,882,678 742,538
June ’17 to May ’18 2,334,150 2,205,082 129,068
June ’18 to Nov ’18 1,316,167 1,208,139 108,028

Table 3: Solar generated RECs (ES ), consumption by smaller accounts (ESA), and excess 
RECs (R[n])

This table shows an excess of RECs for each calculated year, which means the Potsdam
campus has enough RECs to apply to each kWh they use. We can now claim that with
Clarkson University in contract with Brookfield Renewable, the Potsdam campus is 100%
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renewable. This is equivalent to saying that the R[n] presented in (3.4) is positive at the end
of each fiscal year.

It is difficult to gauge long term trends from only 34 months of complete data. Obtaining
monthly energy consumption values for the small off-campus properties (ESA) was also difficult
because of inconsistencies and the potential for human error in transcribing the data. For this
reason, the presented information could serve to give credence, but not prove definitively that
Clarkson University is operating with complete renewability in Potsdam. Longer and more
reliable data would certainly improve the confidence in these results.

The REC surplus between 9/15 and 5/17 in Table 3 is relatively high, likely because not all
energy used in off-campus properties was accounted for in that period; it is therefore difficult
to estimate whether the trends discussed will continue or not.

Figure 5: Running sum of REC accrual R[n] over 34 months, accounting for how many are
generated and used each months.

The REC accrual R[n] is a running sum of the monthly surplus RECs ∆R[n] (3.4); it
demonstrates that more RECs are generated than needed to certify renewability of the off-
campus properties each month and that these RECs accumulate over time (shown in Figure 5).
It is easy to see in this figure that no changes in parameters of Table 2 affected the REC
accrual. All realizations of simulation Sim. (a) plot on the same line. This is because (3.4)
only depends on the energy produced by the solar farm (ES) and energy used by the smaller
accounts (ESA) and the energy input traces for all realizations of simulation Sim. (a) remained
unchanged for the modeling as the parameters were adjusted.

An increasing trend of REC accrual is seen when we look at the data on a month by
month basis in Figure 5. It appears Clarkson University will continue to gain excess RECs
if they are consistent with their energy usage on their Potsdam campus. However, Clarkson
University could see that while REC generation may appear to increase, consumption could
increase as well to balance this out and excess could be very minimal in the future. Further,
Table 3 appears to show a decreasing trend in excess RECs when looked at yearly and if there
were no excess RECs eventually, this could affect the portfolio management.

An extrapolation of the data presented in Figure 5 was accomplished by running a version
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of the model similar to Sim. (b). In this version, a stochastic model simulates what the value of
REC accrual could reach over the next 12 months past the original 34 month period. Though
previous factors discussed support that these results are not definitive, Figure 6 shows that
RECs will continue to increase rapidly. Note this graph only accounts for accrual values and
does not predict future consumption. With the limited data available we cannot confidently
anticipate the energy usage by the off-campus properties and therefore cannot foresee whether
or Clarkson University campus will remain renewable.

Figure 6: Simulated REC accrual R[n] extended 12 months

The histogram for this data indicates that the distribution of values at the end of the
extended 12 month period is symmetric and approximately normal. The REC accrual values
reach a mean of 177,196 total RECs accrued with a variability of 3.97%.

4.2. Effect of Cyclic Energy Signals on RECs and Control P arameters. The amount of
excess RECs the campus has at any given month (∆R[n]) in the analyzed time frame can be
viewed in Figure 7 (blue line). We can see how these excess RECs Clarkson University gains
each month vary as the energy inputs (orange lines of Figure 7) vary. It is easy to see that
some sources are largely cyclical over the course of a year, like Brookfield Renewable (EB) 
and Clarkson Solar (ES ), whereas others appear more steady.

Excess RECs ∆R[n] are strongly associated with solar production during the year. The
data indicates that the solar farm operates at a monetary loss of around $1600 per month. 
The expense is justified a s t he s olar f arm p rovides e ducational o pportunities f or Clarkson
University and the opportunity for campus to reach its 100% renewability goal.

The cyclic nature of energy sources drives the cyclic nature of RECs. It is therefore
expected that the portfolio parameters µ and γ, which control the portion of the Brookfield
Renewable’s bill paid by monetary credits vs. money, could likely have a cyclic nature. To
check this, we graphed the inputs with strongest cyclic nature, the Brookfield Renewable EB 
and Clarkson Solar ES energy, along with parameters µ and γ on a plot in Figure 8.

The third control parameter ω was assumed to be consistent at ω = 1, although an
alternative management strategy may allow ω to change. Figure 8 shows that the majority of
the time µ ≈ 1. Since µ and ω both control the portion of the delivery cost paid by monetary
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Figure 7: Comparing cyclic nature of excess RECs ∆R[n] to the cycles of the energy input
signals E∗[n]

Figure 8: Visualization of the change in control parameters µ and γ over the 34 month time
period. Energy signals from Brookfield R enewable E B a nd C larkson S olar E S i ncluded to 
compare cyclic trends in control parameters with that of inputs

credits, it would likely be possible to simplify this model by setting both ω = µ = 1.
On the other hand, the parameter controlling the consumption cost γ remains largely

cyclic due to the cyclic nature of energy production. As described in Subsection 3.2, further
research could be done showing how these control parameters can be manually adjusted to
align bill payment and monetary credit usage with a particular portfolio.

4.3. Comparing Quantitative Models. The results of the different r ealizations o f the
simulation with historic energy inputs, but different choices of parameter models Sim. (a) are
shown in Figure 9. The figure describes the trends for accumulation of monetary credits C[n]
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(a) Running sum of credit generation C[n] (as-
sumes monetary credits not applied to any bills
during 34 mo. time period)

(b) Running sum of debt accumulation D[n] (as-
sumes no bills paid off during 34 mo. time period)

(c) Histogram showing distribution of values at
month 34 (C[34]) from each of the 1000 random-
ized runs from Figure 9a

(d) Histogram showing distribution of values at
month 34 (D[34]) from each of the 1000 random-
ized runs from Figure 9b

(e) Monetary credits generated each monthly in-
crement (∆C[n])

(f) Debt accumulated each monthly increment
(∆D[n])

Figure 9: Monetary credit generation C[n] and debt accumulation D[n] trends
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and debt D[n] with three subfigures providing details of the analysis for each.
To look at the differences in credit and debt accumulation over time more closely, running

sums were graphed with the assumption no monetary credits were used and no bills were
paid. These graphs are shown in Figures 9a and 9b. The running sum of monetary credit
accumulation C[n] in Figure 9a plots (3.1) but without including the negative terms that
would take away from the growth (the terms containing EN and EB). This allowed us to 
actually see how the parameters were affecting t he o utcomes. To model t he g rowth o f debt
D[n] as if it was never paid off, we p lotted ( 3.2) a s i t i s p resented on F igure 9 b. I n reality,
at the end of each monthly credit cycle, Clarkson University pays the bills to National Grid
and other partners. However, the resulting zeroing-out of the balances masks the difference
between model alternatives.

All realizations of simulation Sim. (a) align closely with one another as can be seen on the
running sum plots, Figures 9a and 9b. The gray band in the figures is the result of the stochas-
tic model Sim. (a.iv) which treats the values of each parameter as a normal distribution and
generated random variables using the same calculated mean and variance for each parameter.
This essentially generated a new historical dataset for the seven parameters of thirty-four
unique monthly values to be used in the model. The range produced by simulations with
stochastically-varied parameters Sim. (a.iv) tells us the existing history, simulation Sim. (a.i),
is not an outlier based on its position within the range of randomized outcomes. Further, the
simulation with mean historic values (Sim. (a.ii)) appears centered in the randomized band
from the stochastic model Sim. (a.iv) in both Figures 9a and 9b. This is to be expected as
the stochastic model uses normal distributions centered around historic means and simulation
Sim. (a.i) uses essentially averages of those values.

A clearer view of the distribution of the randomized data from simulation Sim. (a.iv) can
be seen in Figures 9c and 9d. These graphs take the final value o f e ach r andomized curve
(month 34) plotted in Figures 9a and 9b, respectively, and plot them on a histogram to show
where the distribution could lay. Also, known values from the other versions of simulation
Sim. (a) are graphed and labeled to see how they compare in the theoretical range.

The variability in the outcomes of the model in the final month of the simulation (month
34) is only about 1% as shown by the histograms of Figures 9c and 9d. This small variability
can also be seen by how thin the gray band formed by stochastic simulation Sim. (a.iv) is
on Figures 9a and 9b. With such a consistency of energy usage and prices, we can claim
the low variability in the parameters is not enough to significantly a ffect mo netary credit
generation C[n] and debt accumulation D[n]. Also, we can now clearly see that with the
lower suggested price for Brookfield R enewable ( simulation S im. ( a.iii)), a s o pposed t o the
average price previously paid to the energy service company (simulation Sim. (a.ii)), there
is a clear savings in overall price paid for energy. From the historical data, the debt would
be at least $300,000 less at the end of this specific 34 month range than with the o ld energy
provider as shown by the green Brookfield Price vertical l ine in Figure 9d.

Lastly, to demonstrate how monetary credits are generated and debt is accumulated month
to month (∆C[n] and ∆D[n], respectively), the 4 versions of simulation Sim. (a) are plotted
at monthly n increments. These monthly increments do not take into account the monetary
credit and debt values of the previous month so no running sum values are used. Again, the
gray band is the range at which the curves are likely to appear at each monthly increment
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and are generated using the stochastic simulation Sim. (a.iv).
Based on current energy usage and agreements, Clarkson University gains monetary cred-

its from local sources every month. This will continue indefinitely u nless a greements with
local partners change. The credits generated each month during the 34 month timeframe of
this model are presented in Figure 9e for all realizations of Sim. (a). We can see that mone-
tary credit generation occurs in cycles and that some times of the year have high variability
compared to others. This is similar to the bills Clarkson University must pay each month as
well. Energy usage changes over the year and some months have more variability than others
as shown by Figure 9f. As previously described for the running sum plots, the monthly incre-
ment plots also demonstrate that the historical data simulation Sim. (a.i) is not an outlier and
the simulation with mean historic values Sim. (a.ii) is centered in the stochastically generated
range.

To summarize, Figure 9 displays that with Clarkson University’s current energy usages,
monetary credits are constantly being generated for the university to apply to National Grid
bills and with Brookfield Renewable as a  new, cheaper power source, Clarkson University will
certainly be able to save money on bills moving forward.

4.4. Modeling Monetary Credit and Debt Trends Including Noise Components. We
began exploring the cyclic trends of the energy inputs by developing and modeling equa-
tions that describe the periodic nature of each signal and include an additional noise factor.
The stochastic modeling was repeated to determine how well the data was represented by
the simulated curves with a periodic model with noise, calculated for each energy input E∗ 
using (3.7). Parameters were still randomized, but using the simulated curves, the inputs
were now randomized as well. This resulted in simulation Sim. (b). The simulated plots of
monetary credit generation and debt accumulation incremented monthly (∆C[n] and ∆D[n])
were developed and are presented in Figure 10. These plots are calculated the same as those
shown in Figure 9e and Figure 9f, except the energy inputs are now estimated stochastically
using the periodic equation (3.9) instead of using values directly from the dataset.

The simulated curves appear to overestimate both the monetary credits generated and
debt accumulated over time in Figure 10. To try to account for this trend of overestimation,
a linear trendline was added to (3.7) (included as a B0t term). This additional coefficient 
was intended to improve the fit o f t he s imulated c urves b ut i t r esults i n o nly s light, i f any,
differences. Therefore, it was determined that the B0 coefficient was not significant in modeling 
the periodic trends of the energy signals. While the period and noise curves do similarly
represent the data, further work could be done to improve the model.

5. Future Work and Applications. While the results in this paper support that Clarkson
University’s Potsdam campus is 100% renewable, this work should be extended to account
for the Capitol Hill Region and Beacon campuses that Clarkson University runs as well. It
is important to apply this model to the current purchasing situation of these campuses to
be able to understand how much renewable energy each campus uses and how much of their
energy consumed does not yet have RECs applied to it. Any excess RECs that the university
can be certain will not be needed in Potsdam should be applied to the other campuses to help
them reach 100% renewability as well. More modeling will have to be completed to determine
which campus these RECs should be applied to first or if that answer changes based on other
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(a) Simulated credit generation for each
monthly increment ∆C[n]

(b) Simulated debt accumulation for each
monthly increment ∆D[n]

Figure 10: Simulated monthly behavior of credit and debt accretion using fitted periodic
curves with noise for energy inputs

factors. Further, if any of the campuses undergo renovations or additions this could affect
results positively or negatively and should be included in the model as well. For example,
only the west hydro plant that is a part of Potsdam Hydro is considered in this model. The
east hydro plant was still under renovation for the time period the data was collected so there
is no data for this plant. In the future, the monetary credits coming from Potsdam Hydro
will likely be much greater as both west and east plants come online full time.

Another aspect that could be explored in this model is the adjustment of the control
parameters ω, µ, and γ. In this model we assume any monetary credits gained must be used
before dollars can be applied to a bill. We also assume the order in which these monetary
credits are applied to bills (NYPA delivery, Brookfield Renewable delivery, and then Brookfield
Renewable consumption). Any changes in these assumptions would lead to developing different
strategies for redistribution of bill payment. This would allow one to explore many alternative
scenarios as ω, µ, and γ will change based on the model assumptions. This topic is briefly
explored in Subsection 3.2.

An interesting extension to this model would involve looking at the data seasonally. Solar
energy clearly varies on a seasonal basis, as shown in Subsection 3.3, and we determined the
other energy inputs behaved similarly, but it would be interesting to see exactly how much
seasonal changes affect t hese s ources. As we a re a ble t o model t he s olar e nergy production
as a periodic curve, we can expand into predictive modeling for our system. By developing
and showing periodic trends of the inputs, we can model and then predict and test future
possible scenarios. Understanding periodic trends will allow Clarkson University to better
manage their campus financially a nd a djust e nergy u sage t o c oordinate w ith p eak a nd low
times as well. In regards to the existing model, further sensitivity analysis could be performed
to better understand the influence of each parameter and the importance of each frequency in
the periodic functions. The significance of the 2.333 period could be explored as well. With
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this analysis we could determine which parameters affect outcomes the most or if any have
little to no effect, we can assume that they may be treated as constants or disregarded in the
model, leading to further simplification.

This model, or a similar one, could be replicated for other campuses or institutions as
well. Any institution attempting to reach 100% renewability could work to understand all of
their infrastructure that consumes energy. Then to reach renewability, they could look for
sources that may be able to supply energy with RECs applied or sources that could supply
RECs individually. To support local infrastructure and economy, it would be great to look
for these sources locally to the institution.

6. Conclusion. Based on yearly generation versus consumption values, the Potsdam area
campus for Clarkson University can truly be considered 100% renewable after the recent
switch to Brookfield Renewable as their main energy provider. Model outcomes demonstrate
little variability in parameters, providing predictable monetary credit and debt growth moving
forward. Accumulation of RECs appears to be increasing, but as the first seven months on
Figure 5 shows, if Clarkson University ever starts with no RECs in their ”bank” there may
be concern for a month or so that energy used is not covered by RECs they have. However, if
we continue to look at this data on a yearly level, enough excess RECs are generated during
summer months to minimize this concern as data shows each kWh at the end of the fiscal
year to be covered. As stated, the data used for this model was not taken over a long time
period and due to the lack of data, it is difficult to truly determine long term trends.

Constant, data-driven, and stochastic models all provided very similar outcomes for this
particular dataset and the equations used. There is limited variability in the data and figures
containing the modified Brookfield Renewable price support the claim that this will be a
cheaper energy provider long term for Clarkson University. Fitted periodic curves with noise
provide a reasonable, yet overestimated, look at model outcomes and further work could be
done to improve their fit with the model data.

A similar model could be completed for other campuses or institutions. If data were col-
lected on local agents for the transfer of electricity, money, monetary credits, and RECs for
the institution, assumptions could be applied similar to Subsection 2.1 and state equations
generated following the process of Subsection 3.1. Every facility is unique, and by adapting
the approach used in this model to a more generalized form, each facility could achieve indi-
vidually beneficial results. Adjustment of control variables, analyzation of renewability, and
comparison of quantitative models all can contribute to understanding historical and predic-
tive trends in a facility’s portfolio behavior. These results can help institutions adjust their
energy usage to reach renewability and financial goals.
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Appendix A. Energy Signal Data. Tables 4 and 5 contain information about each
of the five energy signals that serve as inputs in the model. Table 4 lists the values of the
top four periods seen for each energy input when performing Fast Fourier Transform on each
signal. These Fourier transform plots help determine the top periods because the most relevant
periods are those with the highest points on the graph. The plots are shown in Figure 11
and the most relevant periods are noted with vertical lines passing through each of the top
represented period values. Values are recorded and listed in order of relative importance from
left to right in Table 4.
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Figure 11: Fourier transforms of energy signals showing relevance of periods along with vertical 
lines showing top four most relevant periods of each signal (listed in Table 4)

Columns 2 through 5 of Table 5 present these same periods, but as rounded values instead 
of the raw estimated value. These rounded values are what are used in the model. This is 
because the R2 values are very similar when comparing rounded and non-rounded periods

111

https://www.epa.gov/greenpower/green-power-markets
https://www.epa.gov/greenpower/green-power-markets


S. PETER

Period 1 Period 2 Period 3 Period 4 R2

Potsdam Hydro EH 17.5 5.833 8.75 4.375 0.5782
Clarkson Solar ES 11.67 2.917 4.375 2.333 0.8655
CU Small Accounts ESA 35 5.833 2.333 4.375 0.6137
NYPA EN 11.67 2.333 2.692 5.833 0.5709
Brookfield Renewable EB 11.67 5.833 3.889 2.333 0.8635

Table 4: Top four periods associated with each energy signal E∗ (seen in Figure 11) and R2

values describing fit of periodic curve to original signal using raw data for periods. Period 1
is most represented by the data and Period 4 is least represented by the data out of the top
four periods listed.

and we assume some calculation error due to the small dataset used to determine outputs
for this model, so the simpler rounded values may be acceptable. The underlined values in
columns 2 through 5 of Table 5 are the periods deemed most well-represented by the signal
(from looking at the plots in Figure 11) and are used for simulating alternative histories as
periodic functions in Subsection 3.3. Of course, frequencies are needed in the actual model
equation, so the inverses of these periods are used in the actual calculations.

P1 P2 P3 P4 µ(10−10) σ(104) R2

Potsdam Hydro EH 18 6 9 4 -1.207 3.9863 0.5234
Clarkson Solar ES 12 3 4 2.333 -0.4665 4.0810 0.8868
Small Accounts ESA 35 6 2.333 4 -0.6078 1.3381 0.5845
NYPA EN 12 2.333 3 6 -1.1813 2.3874 0.5820
Brookfield Renewable EB 12 6 4 2.333 -3.5609 8.2981 0.8756

Table 5: Signal information about each of the five e n ergy i n puts E  ∗ . I n cludes f o ur most 
relevant periods (rounded values with most relevant listed as P1, least relevant listed as P4), 
which periods are actually used in the periodic modeling (underlined values), mean µ and 
standard deviation σ of residual for each signal, and R2 coefficient de sc ribing fit  of dat a to 
original signal using rounded values for periods.

While not all periods are used in the model, they are provided in this table for the 
possibility that someone may wish to perform additional modeling with them in the future. 
Columns 6 and 7 contain values of the mean and standard deviation of the residual for each 
energy signal and column 8 is the R2 coefficient, representing the overall fit of the data.
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