
POOLING MATRIX DESIGNS FOR GROUP TESTING

Yong Hong Ivan Tan†

Project advisors: Delin Chu ‡, Timo Sprekeler §, Johannes J Brust ¶

Abstract. The main objective of this article is to find the group testing strategy which minimizes the number of groups
to test while identifying all positives. This manuscript explores the Hypercube Approach, the Kirkman
Triple and Polynomial Pools Algorithms which are used to design group testing strategies. This work
enhances the Polynomial Pools Algorithm with the Projective Geometry Design and proposes an algorithm
which returns an effective group testing strategy when compared to other well-known algorithms.

1. Introduction. Group testing is a method of identifying certain objects while minimizing the
number of tests. This is achieved by testing groups of objects rather than testing every object
individually. For instance, we have six light bulbs connected in a straight line and we know that
one of them is defective. We are interested in identifying the defective bulb while minimizing the
number of tests required. Suppose all the first three light bulbs light up, but all the first four light
bulbs do not light up. Then, we can conclude that the fourth light bulb is defective by two tests.

Figure 1: Arrangement of Light Bulbs in a Straight Line.

Therefore, with a large number of light bulbs, one can significantly narrow the search for the
defective bulb by testing half of the number of light bulbs first. Here, a defective bulb is taken
to be a positive sample while a non-defective bulb is taken to be a negative sample. By the light
bulb example, a group of samples will be tested negative if all samples in the group are negative.
Otherwise, the group will be tested positive. In group testing, due to the large number of N samples
to be tested individually, it can be advantageous to assign them into M groups instead. A pooling
matrix is a M ×N matrix where the (i, j)-entry is 1 if the jth sample is contained in the ith group,
and 0 otherwise. Given N samples and k positive samples, we will compare group testing strategies
by the number of tests required to identify the positives.

†National University of Singapore (ivantanyh@gmail.com).
‡National University of Singapore (matchudl@nus.edu.sg).
§National University of Singapore (timo.sprekeler@nus.edu.sg).
¶Arizona State University (jjbrust@asu.edu).

 Copyright © SIAM

 Unauthorized reproduction of this article is prohibited

 145

mailto:ivantanyh@gmail.com
mailto:matchudl@nus.edu.sg
mailto:timo.sprekeler@nus.edu.sg
mailto:jjbrust@asu.edu

YONG HONG IVAN TAN

2. Group Testing Strategies By Direct Decoding. Different from the light bulb example,
in reality the tester does not know the number of positive samples. Therefore, a typical group
testing strategy is as follows. A sample is decoded negative if it belongs to a negative group. A
sample is decoded positive if it belongs to a positive group and all other samples in the group
are decoded negative. Otherwise, the sample is undecodable and will be tested individually [12].
The following subsections will describe some group testing strategies. The Hypercube [11], see
subsection 2.2, Kirkman Triple [8, 6], see subsection 2.3, and Polynomial Pools Algorithms [1, 2],
see subsection 2.4, will be presented. Afterwards, given N samples and k positive samples, we will
compare the algorithms based on their ability to decode all samples while minimizing the number
of tests, see subsection 2.5.

2.1. Dorfman’s Two Stage Approach. Dorfman’s Two Stage Approach [10] encapsulates the
essential idea of group testing. In its simplest form, the approach pools all samples into one group.
Only one test is applied to the group at first. If the test is negative, one can conclude that all
samples must be negative. If the test is positive, all samples have to be retested individually. This
is a significant drawback. As an example, we will assume that we have 64 blood samples and two
samples are infected. A group of blood samples is tested positive if at least one of the blood samples
in the group is infected. Otherwise, the group will be tested negative. Suppose we are interested
in identifying the two infected samples. If we group all blood samples together, we will end up
having to do 65 tests. However, to minimize the additional tests for a positive group, we can pool
them into eight groups of eight samples each. Then, we test the eight groups. If both the two
infected samples are contained in the same group, the group testing results will be similar to the
left. Otherwise, the group testing results will be similar to the right. Here, a positive sample is
taken to be an infected sample while a negative sample is taken to be an uninfected sample.

Figure 2: Dorfman’s Two Stage Approach in Group Testing. Infected samples are in red.

If both infected samples are in the same group, we can identify the infected samples with 16 tests,
since we need to test all eight samples individually in the positive group four. Otherwise, we can
identify the infected sample with 24 tests, since we need to test a total of 16 samples individually
from groups two and four. Therefore, the expected number of tests is 16· 64·764·63+24·(1− 64·7

64·63) = 23.11.

146

POOLING MATRIX DESIGNS FOR GROUP TESTING

2.2. Hypercube Designs. Hypercube designs minimize the number of groups by arranging
samples in a D dimensional cube. Each D − 1 dimensional cube in it constitutes one group.

2.2.1. Two Dimensional Hypercube Design. The two dimensional hypercube design [7] ar-
ranges the 64 samples in an eight by eight square. Each row and column constitutes one group.
Hence, 16 groups will be tested first. A sample is decoded negative if either the row or column
containing it is negative. Otherwise, a sample is decoded positive if all other samples in the same
column or row as it are decoded negative. Else, the sample is undecodable. Suppose, the two pos-
itive samples are located in the same column four. Then, we can identify the two positive samples
directly in rows one and five without any further testings below. Here, samples which are decoded
negative are strike in blue.

Figure 3: 2D Hypercube when the infected samples are in the same column.

Suppose the two positive samples are neither in the same row nor column. We will be left with
four undecodable samples which have to be tested individually below.

Figure 4: 2D Hypercube when the infected samples are neither in the same column nor row.

Hence, 20 tests will be required to identify the two positive samples if the two positive samples are
neither in the same row nor column. Otherwise, 16 tests are sufficient. Therefore, the expected
number of tests required is 16 · 64·1464·63 + 20 · (1 − 64·14

64·63) = 19.11, which is lower than the expected
number of tests required in the approach from subsection 2.1.

147

YONG HONG IVAN TAN

2.2.2. Three Dimensional Hypercube Design. The three dimensional hypercube design [11]
arranges the 64 samples in a four by four by four cube and group them by slicing the cube hori-
zontally, vertically and sideways. The 12 groups will be tested first, where each group contains 16
samples. Suppose the two positive samples are in a straight line. We can identify them directly in
groups one and three without any further testings below.

Figure 5: 3D Hypercube when the infected samples are in a straight line.

Suppose the two positive samples are contained in a similar group, group one. We will be left with
four undecodable samples which have to be tested individually below.

Figure 6: 3D Hypercube when the infected samples are in a similar group but not in a straight line.

148

POOLING MATRIX DESIGNS FOR GROUP TESTING

Suppose the two positive samples are not contained together in any similar group. We will be
left with eight undecodable samples which have to be tested individually below.

Figure 7: 3D Hypercube when the infected samples are contained in different groups.

Hence, 12 tests will be required to decode all samples if both positive samples are contained in a
straight line. 16 tests will be required if both positive samples are contained in a similar group but
not in a straight line. Otherwise, 20 tests is sufficient. Therefore, the expected number of tests
required is 12 · 64·9

64·63 + 16 · 64·(36−9)
64·63 + 20 · (1 − 64·36

64·63) = 17.14, which is lower than the expected
number of tests in both the approaches from subsections 2.1 and 2.2.1.

2.2.3. General Hypercube Design. For N samples and k positive samples, a D dimensional
hypercube can be constructed in Algorithm 2.1 [11]. For simplicity, given N samples and k > 1
positive samples, we will choose the hypercube design which minimizes the number of tests required
when all positive samples are in different groups. This will be L(D−1)+h+min{1,m}+kD tests.
When k = 1, the positive sample can be directly identified without further tests.

Algorithm 2.1 D Dimensional Hypercube Design

Let L ≤ ⌊
√
N⌋ and D = ⌈ log(N)

log(L) ⌉. By Division Algorithm, there exist integers 0 ≤ h ≤ N
LD−1

and 0 ≤ m ≤ LD−1 − 1 such that N = hLD−1 + m. We can arrange the N samples in a D
dimensional cube. Each of the D − 1 dimensional cube within it constitutes one group. Hence,
L(D − 1) + h+min{1,m} groups will be tested first.

When D = 2 and L = ⌊
√
N⌋, by the Division Algorithm, there exist integers 0 ≤ h ≤ N

L and
0 ≤ m ≤ L − 1 such that N = Lh +m. From Figure 8, we can arrange the samples in a h by
(L+min{1,m}) grid. Each of the h rows constitutes one group and each of the L+min{1,m}
columns constitutes one group. Hence, L+ h+min{1,m} groups will be tested first.

When L ≤ ⌊
√
N⌋ and D = 3, by the Division Algorithm, there exist integers 0 ≤ h ≤ N

L2 and
0 ≤ m ≤ L − 1 such that N = hL2 +m. From Figure 9, we can arrange the N samples in a L
by L by (h+min{1,m}) cube and group them. 2L+ h+min{1,m} groups will be tested first.

149

YONG HONG IVAN TAN

Figure 8: 2D Hypercube. The blue grid is for the case when m = 0. L columns contain h samples
each and h rows contain L samples each. The red grid is for the case when m > 0. L columns
contain h samples each and the last column contains m samples. m rows contain L + 1 samples
each and the remaining h−m rows contain L samples each.

Figure 9: 3D Hypercube. m = aL+ b for integers 0 ≤ a ≤ L− 1 and 0 ≤ b ≤ L− 1

2.3. Kirkman Triple Algorithm. The Kirkman Triple Algorithm represents a group testing
strategy where each sample is contained in three groups and every pair of samples is contained in
one group. The strategy can exactly decode at most k = 2 positive samples. This is because all
negative samples in a positive group can be decoded as they belong to a negative group. The design
of the Kirkman Triple Algorithm is motivated by Theorems 5 and 6 of [6]. The algorithm works
in constructing Kirkman Triple Pooling Matrices, which represent the group testing strategies of
pooling N = (4t+1)pz samples into M = 2pz +1 groups and N = (9t+1)pz samples into M = 3pz

groups, where pz = 6t+1 is a prime power for some integer t, see Appendix B. Moreover, Tapestry
Pooling Matrices [9] allow us to pool N = 40 samples into M = 16 groups or N = 60 samples into
M = 24 groups, while ensuring similar properties as the Kirkman Triple Pooling Matrices.

2.4. Polynomial Pools Algorithm. The PPOL Algorithm [2] is the two dimensional case of the
Polynomial Pools Algorithm of arranging and grouping samples in a two dimensional rectangular
grid, see subsection 2.4.1. This can be extended to arranging and grouping samples in a multidi-
mensional grid, see subsection 2.4.2[1]. Then, the Projective Geometry Design can be implemented,
see subsection 2.4.3, to further reduce the number of groups to test while decoding all samples.

150

POOLING MATRIX DESIGNS FOR GROUP TESTING

2.4.1. PPOL Algorithm. PPOL stands for Packing the Pencil of Lines [2]. Suppose N = npz

samples are to be assigned into M = mpz groups, where 1 ≤ n,m ≤ pz for a prime power pz. We
require each group to contain n samples and each sample to be in m groups. The PPOL Algorithm
which achieves this property is described in Algorithm 2.2. For each 0 ≤ c ≤ m− 1, we can define
a collection of pz parallel groups to be {{hpz+[b

⊎
(h

⊙
c)]+1 : 0 ≤ h ≤ n−1} : b ∈ Fpz}. Here,

⊎
and

⊙
denote addition and multiplication respectively in Fpz , see Appendix A. Groups which are

parallel to each other do not contain any common samples. Each pair of non-parallel groups contains
exactly one sample in common, see Appendix C. To assign N = npz samples intoM = mpz groups,
we have to assign the samples into m collections of pz parallel groups by varying 0 ≤ c ≤ m − 1.
As an example, consider the prime power pz = 8. We want to assign N = 64 samples into M = 48
groups using the PPOL Algorithm, where n = 8 and m = 6. For each integer 0 ≤ c ≤ 5, we can
define a collection of eight parallel groups to be {{8h + [b

⊎
(h

⊙
c)] + 1 : 0 ≤ h ≤ 7} : b ∈ F8}.

Here,
⊎

and
⊙

denote the addition and multiplication respectively in F8 as described below.

Figure 10: Addition and Multiplication Tables in F8

For instance, 5
⊎
3 = 3

⊎
5 = 6 and 5

⊙
3 = 3

⊙
5 = 4. The assignment of N = 64 samples into a

collection of eight parallel groups is described in Algorithm 2.2 below, for c = 4.

Algorithm 2.2 PPOL Algorithm for pooling npz samples into a collection of pz parallel groups

Step A : Arrange the samples such that a row contains pz samples while a column contains n
Samples. The sample labelled (i− 1)pz + j is contained in the ith row and jth column.

Step B : For each of the n rows, relabel the samples from 0 to pz − 1. In each row, 0 denotes
the leftmost sample and pz − 1 denotes the rightmost sample.

Step C : For each integer 0 ≤ c ≤ m− 1, we are to determine a collection of pz parallel groups
where each group contains a sample in each row, see figure 11. For a fixed 0 ≤ c ≤ m−1, we will
achieve a collection of the pz parallel groups. Here,

⊎
and

⊙
denote addition and multiplication

respectively in Fpz . The first three parallel groups are listed below.
• Group 1 (In Green) = {hpz + h

⊙
c+ 1 : 0 ≤ h ≤ n− 1}

• Group 2 (In Blue) = {hpz + [1
⊎
(h

⊙
c)] + 1 : 0 ≤ h ≤ n− 1}

• Group 3 (In Pink)= {hpz + [2
⊎
(h

⊙
c)] + 1 : 0 ≤ h ≤ n− 1}

By fixing c = 4, the assignment of 64 samples into a collection of eight parallel groups is illustrated
in figure 12, where the eight samples to be assigned in each group are in black.

⊎
and

⊙
denote

the addition and multiplication operators respectively in F8.

151

YONG HONG IVAN TAN

Figure 11: Pooling npz samples into pz parallel groups.

Figure 12: Pooling 64 samples into 8 parallel groups for c = 4.

152

POOLING MATRIX DESIGNS FOR GROUP TESTING

2.4.2. Multidimensional Polynomial Pools Designs. Suppose the number of samples N is such
that (pz)d−1 < N ≤ (pz)d and pz|N , for prime power pz and d ≥ 2. By the Division Algorithm,
N = a1(p

z)d−1 + a2p
z, for some integers 1 ≤ a1 ≤ pz and 0 ≤ a2pz ≤ (pz)d−1 − 1. The Polynomial

Pools (PP) Algorithm, to pool the N samples into pz parallel groups, is described in Algorithm 2.3.
When d = 2, the PP Algorithm reduces to the PPOL Design, see subsection 2.4.1. For any d > 2, we
can fix c1, c2, · · · , cd−1 ∈ Fpz to construct a collection of parallel groups, {Group w : 1 ≤ w ≤ pz}.

Algorithm 2.3 General Polynomial Pools Design for pooling a1(p
z)d−1 + a2p

z samples into a
collection of pz parallel groups

Step A : The N samples are arranged in a cuboid where the first a1 vertical rows contain (pz)d−1

samples each. The (a1+1)th vertical row contains a2p
z samples. Suppose among the N samples,

we want to form pz parallel groups of a1(p
z)d−2+a2 samples each. Again, a collection of parallel

groups do not contain any samples in common.

Step B : Fix a c1 ∈ Fpz and in the frontmost face, group the (1 + a1)p
z samples there into pz

parallel groups by Algorithm 2.2. See figure 13.

Step C : Next, we can group the samples recursively, see figure 14. The first three parallel
groups are listed below.

• Group 1 (In Green)= A1 ∪B1

A1 = ∪a1−1
h=0 {h(p

z)d−1 + x : x ∈ group (h
⊙
c1 + 1) of (pz)d−1 samples }

B1 = {a1(pz)d−1 + x : x ∈ group (a1
⊙
c1 + 1) of a2p

z samples }
• Group 2 (In Blue) = A2 ∪B2

A2 = ∪a1−1
h=0 {h(p

z)d−1 + x : x ∈ group (1
⊎
[h

⊙
c1] + 1) of (pz)d−1 samples }

B2 = {a1(pz)d−1 + x : x ∈ group (1
⊎
[a1

⊙
c1] + 1) of a2p

z samples }
• Group 3 (In Pink) = A3 ∪B3

A3 = ∪a1−1
h=0 {h(p

z)d−1 + x : x ∈ group (2
⊎
[h

⊙
c1] + 1) of (pz)d−1 samples }

B3 = {a1(pz)d−1 + x : x ∈ group (2
⊎
[a1

⊙
c1] + 1) of a2p

z samples }

Here, Group w = A ∪B, where:
• A = {[

∑d−1
i=1 hi(p

z)d−i] + (w − 1)
⊎
[
⊎d−1

i=1 (hi
⊙
ci)] + 1 : 0 ≤ h1 ≤ a1 − 1, hi ∈ Fpz}

• B = {a1(pz)d−1 + x : x ∈ group ((w − 1)
⊎
(a1

⊙
c1) + 1) of a2p

z samples}

Figure 13: Grouping of Samples in Front Face.

153

YONG HONG IVAN TAN

Figure 14: Multidimensional Grouping of Samples

Assign ci = ai = a
⊙
a
⊙
· · ·

⊙
a, for 1 ≤ i ≤ d − 1 and a ∈ Fpz . Here,

⊎
and

⊙
denote

addition and multiplication respectively in Fpz . For each a ∈ Fpz , we define a collection of pz

parallel groups to be {Group apz + b+ 1 = A ∪B : b ∈ Fpz}, where:
• A = {

∑d−1
i=1 hi(p

z)d−i + [[
⊎d−1

i=1 (a
i
⊙
hi)]

⊎
b] + 1 : hi ∈ Fpz , 0 ≤ h1 ≤ a1 − 1}

• B = {α1(p
z)d−1 + x : x ∈ group (b

⊎
(α1

⊙
ad−1) + 1) of a2p

z samples}
Theorem 2.1. The following holds for the pooling of (pz)d−1 < N ≤ (pz)d samples intoM = mpz

groups via the Polynomial Pools Algorithm.
• Every group is uniquely represented by apz + b+ 1 for a, b ∈ Fpz .
• Two distinct groups containing a similar sample each belongs to a distinct collection of pz

parallel groups respectively.
• Any pair of distinct samples is contained in at most d− 1 groups, see Appendix D.
• The number of groups in the Polynomial Pools Pooling Matrix Design is at most p2z.

Suppose there are k positive samples. A negative sample has to be in k(d − 1) + 1 groups to be
decoded if it is assigned to k(d− 1) positive groups. Hence, pz(k(d− 1)+1) groups are sufficient to
decode the N samples. As an example, let there be N = 384 samples. We are to assign them into
M = 48 groups using the Polynomial Pools Algorithm. Here, pz = 8, d = 3, p2z ≤ N ≤ p3z and
m = 6. The Polynomial Pools Algorithm can decode k = 2 positive samples since m ≥ k(d−1)+1.
The pooling of N = 384 samples into 6 distinct collections of 8 parallel groups, see Algorithm 2.4.
For each 0 ≤ a ≤ 5, {Group w : 1 ≤ w ≤ 8} forms a collection of eight parallel groups, where
Group w = {(w− 1)

⊎
[h1

⊙
a]
⊎
[h2

⊙
a2] + 8h2 +64h1 +1 : 0 ≤ h1 ≤ 5, 0 ≤ h2 ≤ 7}. By varying

a, we can form another collection of eight parallel groups. This motivates the construction of the
48× 384 P-Best Matrix, see section 3.

154

POOLING MATRIX DESIGNS FOR GROUP TESTING

Algorithm 2.4 Polynomial Pools Design for pooling N = 384 samples into M = 48 groups

Step A : The ith vertical row, jth horizontal row and zth column entry, represents the sample
labelled 64(i − 1) + 8(j − 1) + z, see figure 15. Suppose we want to pool the N = 384 samples
into M = 48 groups, which consists of 6 distinct collections of 8 parallel groups

Step B : Fix a = 2 ∈ F8 and in the front face, group the 48 samples here into 8 parallel groups
by Algorithm 2.2, see figure 16. As highlighted in Black, {h

⊙
a + 64h + 1 : 0 ≤ h ≤ 5} is

contained in Group 1. In general, for 0 ≤ a ≤ 5 and 1 ≤ w ≤ 8, by grouping in the front face,
{(w − 1)

⊎
[h

⊙
a] + 64h+ 1 : 0 ≤ h ≤ 5} ⊂ group w

Step C : Next, we can group the samples in each vertical row. As highlighted in Black, see
figure 17, for a = 2, by applying Algorithm 2.2 on each vertical row with c = 4,
Group 1 = {[h1

⊙
a]
⊎
[h2

⊙
a2] + 8h2 + 64h1 + 1 : 0 ≤ h1 ≤ 5, 0 ≤ h2 ≤ 7}

Figure 15: Arrangement of the 384 Samples.

Figure 16: Grouping of Samples in Front Face

155

YONG HONG IVAN TAN

Figure 17: Grouping of Samples Recursively

2.4.3. Projective Geometry Design. The Projective Geometry Design serves to further mini-
mize the number of groupsM to identify the k positive samples via the Polynomial Pools Algorithm.
Let (pz)d−1 < N ≤ (pz)d and pz|N . By the Polynomial Pools Algorithm, see subsection 2.4.2,
(k(d − 1) + 1)pz groups are sufficient in decoding the N samples if k samples are positive. This
forms k(d − 1) + 1 distinct collections of pz parallel groups, where each parallel group contains
n = N

pz samples. Now, suppose we have N + h samples, where 1 ≤ h ≤ k(d − 1) + 1. For each
1 ≤ j ≤ h, among the jth collection of pz parallel groups, we can assign the (N + j)th sample into
all the pz parallel groups in addition to the n samples in each of them. Hence, among the first
h distinct collections of pz parallel groups, each parallel group contains n + 1 samples. However,
among the (h+1)th to (k(d− 1)+1)th distinct collection of pz parallel groups, each parallel group
contains n samples. By applying this design to pool N + h samples into (k(d − 1) + 1)pz groups,
we can directly decode the statuses of the N + h samples if we know that k samples are positive.
Such a design is known as the Projective Geometry Design [1]. The Projective Geometry Design
can be applied to the scenario when the number of samples N is large and we have to partition the
samples into smaller sets. Separate pooling designs are applied in each set [13]. This is described
in Algorithm 2.5 for a given number of samples N , number of positive samples k and prime power
pz. Here, the samples are tested in m1p

z(k(d− 1) + 1)+min{m2, (k(d− 1) + 1)pz} groups.

Algorithm 2.5 Effective Polynomial Pools Design by Prime Power

Let d be a nonnegative integer which satisfies k(d− 1) + 1 ≤ pz and d ≤ log(N)
log(pz) + 1.

Let N = m1((p
z)d + k(d− 1) + 1) +m2, where m1 ≥ 0 and 0 ≤ m2 ≤ (pz)d + k(d− 1)

Step 1 : We will first pool each of the m1 sets of (pz)d + k(d − 1) + 1 samples separately into
(k(d−1)+1)pz groups via the Projective Geometry Design. Each group has (pz)d−1+1 samples

Step 2 : Among the remaining m2 samples, we will pool them as follows.
• If 0 ≤ m2 < (k(d− 1) + 1)pz, we will test the remaining m2 samples individually.
• If (k(d − 1) + 1)pz ≤ m2 ≤ (pz)d, we will group the m2 samples accordingly via the
Polynomial Pools Method in into (k(d− 1) + 1)pz groups, see subsection 2.4.2.
• Otherwise, we will assign the m2 samples into (k(d− 1) + 1)pz groups via the Projective

Geometry Design described above.

156

POOLING MATRIX DESIGNS FOR GROUP TESTING

From Algorithm 2.5, we can vary d ≤ log(N)
log(pz) + 1 such that k(d − 1) + 1 ≤ pz, for each prime

power pz. This is to seek a Polynomial Pools Design which minimizes the number of groups to
decode all samples. The code in MATLAB to implement this algorithm is accessible here Effective
PP Matrix Design by Prime Power. An implementation of the code for N = 23 samples, k = 1
positive sample and prime power pz = 3 is described in Appendix E.

2.5. Comparison Of Direct Decoding Methods. Given N samples and k positive samples, we
want to deduce the minimum number of tests which are sufficient to identify all positives among the
algorithms in subsections 2.2 to 2.4. Algorithm 2.6 compares these algorithms by iterating through
each prime power pz ≤ N . Then, it returns the algorithm which minimizes the number of tests.
The code in MATLAB to perform Algorithm 2.6 is accessible through the link Effective Matrix
Design. An implementation of the code for N = 23 samples and k = 1 positive sample is described
in Appendix E. However, one has to acknowledge that the pooling design returned may not be
the most effective. There are other efficient methods to pool N samples into a smaller number of
groups while identifying all k positives. One of such methods is the P-Best Matrix which uses a
Compressed Sensing Method, see section 3.

Algorithm 2.6 Effective Matrix Design

Step 1 : For each prime power pz ≤ N , deduce the effective Polynomial Pools Design, see
Algorithm 2.5, which minimizes the number of groups to identify all k positives.

Step 2 : Suppose k ≤ 2. If pz obeys the criteria to construct a Kirkman Triple Pooling Matrix,
see subsection 2.3, then the Kirkman Triple Algorithm will be considered if M < N .

Step 3 : Lastly, consider pooling matrices constructed via the Hypercube Algorithms, see
subsection 2.2, by comparing the number of tests required in the worst case.

3. P-Best Pooling Matrix Design. The P-Best Pooling Matrix is constructed for specifically
384 samples and 48 groups, see Algorithm 2.4. However, it does not use the same direct decoding
method as a Polynomial Pools Pooling Matrix, see subsection 2.4.2, to identify positive samples.
Instead, the P-Best Matrix can detect up to five true positive samples and one false positive sample
via the Gradient Projection for Sparse Reconstruction (GPSR) Compressed Sensing Decoder [5].
Moreover, the P-Best Matrix incurs a lower cost for group testing as compared to the 114 × 348
Polynomial Pools Pooling Matrix for k = 5 positive samples [1]. The P-Best Pooling Matrix is
applicable in typical group testings as physical PCR assays have 384 sample spots. In this section,
we will briefly describe this pooling design which was implemented to screen healthcare workers [5].

157

https://drive.google.com/file/d/1IQXnsNERAFOvep89XH8qhCdoUkQUFvxB/view?usp=share_link
https://drive.google.com/file/d/1IQXnsNERAFOvep89XH8qhCdoUkQUFvxB/view?usp=share_link
https://drive.google.com/file/d/1yg1TO5Zyf3mrgCIT8-PYmLfUAaR7SdDj/view?usp=drive_link
https://drive.google.com/file/d/1yg1TO5Zyf3mrgCIT8-PYmLfUAaR7SdDj/view?usp=drive_link

YONG HONG IVAN TAN

3.1. P-Best Detection Algorithm. Let A ∈ {0, 1}48×384 denote the P-Best Matrix. Let y ∈
(R≥0)

48×1 denote the quantitative viral loads of all the 48 groups. In here, we assume that the
quantitative measurements of all viral loads cannot be negative. Samples and groups with C(t)
values less than 40 are considered positive [5]. Suppose y = Ax. The detection of the positive
samples in x is described in Algorithm 3.1 [5], assuming that there are at most five positives.

Algorithm 3.1 P-Best Detection Algorithm

Step 1 : The estimated viral load of all the samples in x is determined via the COMP Algorithm
followed by a Compressed Sensing Decoder, see subsections 3.2 and 3.3. LetN ′ denote the number
of non-zero estimated viral loads in x and n = min{20, N ′}.

Step 2 : The n samples with the highest estimated viral loads from Step 1 will be identified,
given that they are most likely to be positive. Then, we will consider all the possible 2n subsets
containing some of these n samples. Each subset is a vector x′ ∈ {0, 1}384×1, where only the
entries corresponding to the selected samples in x′ are denoted as 1, which represents the positives.

Step 3 : Out of all the possible vectors x′, the vector x′ for which ||ψ(Ax′) − ψ(y)||1 achieved
its minimum will be selected, where ψ : R48×1 −→ {0, 1}48×1, such that for 1 ≤ i ≤ 48, the ith
entry of ψ(y) is 1 if the ith entry of y is not zero. Otherwise, the ith entry of ψ(y) will be zero.

3.2. COMP Algorithm. The COMP Algorithm is used to decode the sure negative samples
and high confidence positive samples. A sample is described to be sure negative if it belongs to
a group with 0 viral load. Sure negative samples have 0 viral load. A sample is described to be
high confidence positive if it belongs to a group with viral load greater than 0 such that all the
other samples are sure negative [8]. The COMP Algorithm will return a smaller sub-matrix after
eliminating all the rows in the original P-Best Matrix which represents the negative groups and
the columns representing the sure negative samples. Then, it is left for us to apply a Compressed
Sensing Decoder to decode the statuses of the remaining undecodable samples x′ based on the
smaller M ×N submatrix A′ and the remaining non-zero groups y′, where M ≤ 48 and N ≤ 384.

3.3. Compressed Sensing Algorithms. In this section, we will briefly describe numerical meth-
ods which can be implemented to decode the viral loads of the remaining N samples in x′. For
ϵ ≥ 0, consider the problem of finding a vector x′ which satisfies the following condition, where
||x′||0 denotes the number of non-zero entries in x′ and x′ ≥ 0N×1 denotes a non-negative vector
x′ ∈ RN×1.

(3.1) min{||x′||0 : ||y′ −A′x′||2 ≤ ϵ , x′ ≥ 0N×1}

However, solving the above problem may be NP hard [8]. Therefore, several Compressed Sensing
Algorithms have been developed to numerically solve the above problem. In this section, we will
explore the Gradient Projection for Sparse Reconstruction (GPSR), which is a possible numerical
method to solve the quadratic program, argmin{||x′||1 : x′ ≥ 0N×1 and ||y′−A′x′||22 ≤ ϵ}, which is
a convex relaxation of (3.1). This is equivalent to solving the following unconstrained optimization
problem, where τ ≥ 0 is a real constant.

(3.2) argmin{1
2
||y′ −A′x′||22 + τ ||x′||1 : x′ ≥ 0N×1}

By letting z = x′, it is equivalent to solving

(3.3) argmin{cT z + 1

2
zTBz : z ≥ 0N×1}
158

POOLING MATRIX DESIGNS FOR GROUP TESTING

Where c = τ1N×1 − (A′)T y′ and B = (A′)TA′.

Hence, we define F (z), ∇F (z) and HF (z) as follows :

(3.4) F (z) = cT z +
1

2
zTBz

(3.5) ∇F (z) = c+Bz

(3.6) HF (z) = B

where B = (A′)TA′ is a positive semi-definite matrix. The algorithm to perform the GPSR Com-
pressed Sensing Method are described in Appendix F [4], with the goal of minimizing F (z) while
ensuring that z ≥ 0N×1. In [4], the Basic GPSR Algorithm and the Second Order GPSR Algo-
rithm, otherwise known as the GPSR BB Algorithm, have been proposed for the sparse recovery of
z ≥ 0N×1. The comparison of the performance of the GPSR Compressed Sensing Algorithm with
other types of Compressed Sensing methods is illustrated in the diagram below [4]. Compared to
the Orthogonal Matching Pursuit (OMP), one can conclude that the GPSR Algorithm is better in
error performance as the estimated vector x′ incurs close to no error if the original vector x′ is a
sparse vector with very few non zero entries. Here, MSE = 1

N ||Actual x′−Estimated x′||22.

Figure 18: Comparison of Compressed Sensing Methods [4]

159

YONG HONG IVAN TAN

4. Conclusions. An Effective Pooling Matrix Design represents the group testing strategy
which minimizes the number of groups when exactly identifying all positive samples. This manu-
script focuses on comparing pooling matrices constructed by the Hypercube [11], Kirkman Triples
[6, 8] and Polynomial Pools [1, 2] Algorithms in performing direct decoding methods if we know
that up to k out of N samples are positive. However, Compressed Sensing Methods are able to
numerically decode out the statuses of the samples while minimizing the number of groups to test
by solving optimization problems [5, 4]. Hence, this remains a further aspect for us to explore.

Appendix A. Constructions and operations of prime power fields.

Theorem A.1. For a prime number p, (Zp,
⊕
,
⊗

) is a finite field of p elements such that for all
x, y ∈ Zp, x

⊕
y ≡ x+ y [mod p] and x

⊙
y ≡ x ∗ y [mod p].

Theorem A.2. Let Fp[x] denote the set of all polynomials over Zp. For all z ≥ 2, Fpz is isomor-
phic to Fp[x]/(b(x)) where b(x) ∈ Fp[x] is a monic irreducible degree z polynomial over the field Zp,
where p is a prime number.[3]

Proof. Given Zp is a field, Fp[x] is an euclidean domain. Hence, for all f(x) ∈ Fp[x], f(x) can be
represented uniquely as such, f(x) = [q(x)

⊗
b(x)]

⊕
k(x) where q(x), k(x) ∈ Fp[x] and 0 ≤ degree

of k(x) < degree of b(x) = z. Therefore, k(x) ≡ f(x) [mod b(x)] uniquely for each f(x) ∈ Fp[x].
Fp[x]/(b(x))={

⊕z−1
h=0[ch

⊗
xh] : ch ∈ Zp} is isomorphic to a set of polynomials over Zp of degree at

most z− 1. All
⊕z−1

h=0[ch
⊗
xh] ∈ Fp[x]/(b(x)) can be uniquely represented by

∑z−1
i=0 cip

i ∈ Fpz and
we hence, define (Fpz ,

⊎
,
⊙

) ∼= (Fp[x]/(b(x)),
⊎
,
⊙

) to be the finite field of pz elements. We define
the addition and multiplication operators in Fp[x]/(b(x)) to be as such

• For all f(x), g(x) ∈ Fp[x]/(b(x)), f(x)
⊎
g(x) ≡ f(x)

⊕
g(x) [mod b(x)].

• For all f(x), g(x) ∈ Fp[x]/(b(x)), f(x)
⊙
g(x) ≡ f(x)

⊗
g(x) [mod b(x)].

Theorem A.3 (Operations in prime power fields). Recall that the following properties hold in all
fields.

• (∀x,y ∈ Fpz)(x
⊎
y = y

⊎
x ∈ Fpz)

• (∃!0 ∈ Fpz)(∀x ∈ Fpz)(x
⊎
0 = 0

⊎
x = x)

• (∀x ∈ Fpz)(∃!−x ∈ Fpz)(x
⊎
(−x) = (−x)

⊎
x = 0)

• (∀x,y ∈ Fpz \ {0})(x
⊙
y = y

⊙
x ∈ Fpz \ {0})

• (∃!1 ∈ Fpz \ {0})(∀x ∈ Fpz)(x
⊙

1 = 1
⊙
x = x)

• (∀x ∈ Fpz \ {0})(∃!x−1 ∈ Fpz \ {0})(x
⊙
x−1 = x−1

⊙
x = 1)

• (∀k ∈ Fpz)(k
⊙

0 = 0
⊙
k = 0)

Appendix B. Explicit constructions of Kirkman Triple Pooling Matrix. The appendix
describes on the explicit construction of the Kirkman Triple Pooling Matrix introduced in subsec-
tion 2.3. The operations in the (Fpz ,

⊎
,
⊙

) field are described in Appendix A.

Theorem B.1 (Pooling matrices for M = 2pz + 1 groups and N = (4t+ 1)pz samples).
Let g = ⌊p

z−1
2 ⌋ ∈ Fpz , be the generator of the Fpz field. Let m be the solution to 2

⊙
gm = gt

⊎
1.

A possibleM×N pooling matrix can be constructed here where the following holds for 0 ≤ e ≤ pz−1
:

• The (e+ 1, e(4t+ 1) + 1)− entry, (e+ pz + 1, e(4t+ 1) + 1)− entry and
(2pz + 1, e(4t+ 1) + 1)− entry are both Ones.
• For 0 ≤ j ≤ 2 and 1 ≤ i ≤ t, the (gi+2jt

⊎
e+1, e(4t+1)+jt+ i+1)−entry, (gi+2jt+t

⊎
e+

1, e(4t+ 1) + jt+ i+ 1)− entry and
([gi+2jt+m

⊎
e] + pz + 1, e(4t+ 1) + jt+ i+ 1)− entry are both Ones.

• For 1 ≤ j ≤ t, the ([gj+m+t
⊎
e] + pz + 1, e(4t+ 1) + 3t+ j + 1)− entry,

([gj+m+3t
⊎
e] + pz + 1, e(4t+ 1) + 3t+ j + 1)− entry and

([gj+m+5t
⊎
e] + pz + 1, e(4t+ 1) + 3t+ j + 1)− entry are both Ones.

160

POOLING MATRIX DESIGNS FOR GROUP TESTING

Theorem B.2 (Pooling matrices for M = 3pz groups and N = (9t+ 1)pz samples).
A possible M×N Kirkman Triple Pooling Matrix can be constructed here where the following holds
for 0 ≤ e ≤ pz − 1 :

• The (e+ 1, e(6t+ 1) + 1)− entry, (e+ pz + 1, e(6t+ 1) + 1)− entry and
(e+ 2pz + 1, e(6t+ 1) + 1)− entry are both Ones.
• For 0 ≤ j ≤ t−1, the (gj

⊎
e+1, e(6t+1)+2+j)−entry, (gj+2t

⊎
e+1, e(6t+1)+2+j)−

entry, (gj+4t
⊎
e+1, e(6t+1)+2+j)−entry, ([gj

⊎
e]+pz+1, e(6t+1)+ t+2+j)−entry,

([gj+2t
⊎
e]+pz+1, e(6t+1)+t+2+j)−entry, ([gj+4t

⊎
e]+pz+1, e(6t+1)+t+2+j)−entry,

([gj
⊎
e]+2pz+1, e(6t+1)+2t+2+j)−entry, ([gj+2t

⊎
e]+2pz+1, e(6t+1)+2t+2+j)−entry,

([gj+4t
⊎
e]+2pz+1, e(6t+1)+2t+2+j)−entry, (gj

⊎
e+1, (6t+1)2+jpz+e+1)−entry,

([gj+2t
⊎
e] + pz + 1, (6t+ 1)2 + jpz + e+ 1)− entry and ([gj+4t

⊎
e] + 2pz + 1, (6t+ 1)2 +

jpz + e+ 1)− entry are both Ones.
• For t ≤ j ≤ 2t−1, the ([gj

⊎
e]+1, e(6t+1)+2t+2+j)−entry, ([gj+2t

⊎
e]+pz+1, e(6t+

1) + 2t+ 2 + j)− entry and ([gj+4t
⊎
e] + 2pz + 1, e(6t+ 1) + 2t+ 2 + j)− entry are both

Ones.
• For 3t ≤ j ≤ 4t−1, the ([gj

⊎
e]+1, e(6t+1)+ t+2+j)−entry, ([gj+2t

⊎
e]+pz+1, e(6t+

1)+ t+2+ j)− entry and ([gj+4t
⊎
e]+2pz +1, e(6t+1)+ t+2+ j)− entry are both Ones.

• For 5t ≤ j ≤ 6t− 1, the ([gj
⊎
e] + 1, e(6t+1)+ 2+ j)− entry, ([gj+2t

⊎
e] + pz +1, e(6t+

1) + 2 + j)− entry and ([gj+4t
⊎
e] + 2pz + 1, e(6t+ 1) + 2 + j)− entry are both Ones.

• For 2t ≤ j ≤ 3t−1, the (gj
⊎
e+1, (7t+1)(6t+1)+(j−2t)pz+e+1)−entry, ([gj+2t

⊎
e]+

pz + 1, (7t+ 1)(6t+ 1) + (j − 2t)pz + e+ 1)− entry and ([gj+4t
⊎
e] + 2pz + 1, (7t+ 1)(6t+

1) + (j − 2t)pz + e+ 1)− entry are both Ones.
• For 4t ≤ j ≤ 5t−1, the (gj

⊎
e+1, (8t+1)(6t+1)+(j−4t)pz+e+1)−entry, ([gj+2t

⊎
e]+

pz + 1, (8t+ 1)(6t+ 1) + (j − 4t)pz + e+ 1)− entry and ([gj+4t
⊎
e] + 2pz + 1, (8t+ 1)(6t+

1) + (j − 4t)pz + e+ 1)− entry are both Ones.

Appendix C. Properties of PPOL Algorithm, refer to subsection 2.4.1.

Theorem C.1. For each c ∈ Fpz , we can define a collection of pz parallel groups to be {{hpz +
[b
⊎
(h

⊙
c)] + 1 : h ∈ Fpz} : b ∈ Fpz}. Groups which are parallel to each other do not contain any

samples in common.

Proof. (∀b1,b2 ∈ Fpz)(∀c,h ∈ Fpz)(b1 ̸= b2 ↔ b1
⊎
[h

⊙
c] ̸= b2

⊎
[h

⊙
c]).

Therefore, for all b1, b2 ∈ Fpz and b1 ≠ b2,
{hpz + [b1

⊎
(h

⊙
c)] + 1 : h ∈ Fpz}

⋂
{hpz + [b2

⊎
(h

⊙
c)] + 1 : h ∈ Fpz} = ∅

Theorem C.2. For each c1, b1, b2 ∈ Fpz and c2 ∈ Fpz \ {c1}, we define {hpz +[b1
⊎
(h

⊙
c1)]+1 :

h ∈ Fpz} and {hpz + [b2
⊎
(h

⊙
c2)] + 1 : h ∈ Fpz} to be a pair of non parallel groups. Each pair of

non parallel groups contains exactly one sample in common.

Proof. hpz + [b1
⊎
[h

⊙
c1]] + 1 = hpz + [b2

⊎
[h

⊙
c2]] + 1→ h

⊙
[c1

⊎
(−c2)] = b2

⊎
(−b1).

As c1 ∈ Fpz and c2 ∈ Fpz \ {c1} , c1
⊎
(−c2) ∈ Fpz \ {0}, we can uniquely determine [c1

⊎
(−c2)]−1

such that [c1
⊎
(−c2)]−1

⊙
[c1

⊎
(−c2)] = 1. Therefore, h = [b2

⊎
(−b1)]

⊙
[c1

⊎
(−c2)]−1 is the

unique solution which satisfies hpz + [b1
⊎
[h

⊙
c1]] + 1 = hpz + [b2

⊎
[h

⊙
c2]] + 1

161

YONG HONG IVAN TAN

Appendix D. Properties of Polynomial Pools Algorithm, refer to subsection 2.4.2.

Theorem D.1. Any Pair of Distinct Samples grouped via the Polynomial Pool Algorithm is con-
tained in at most d− 1 Groups.

Proof. Let the number of samples be N = (pz)d. Suppose, we know that two samples s1, s2 are
both contained in group apz + b+ 1, where for 1 ≤ i ≤ d− 1, hi, h

′
i ∈ Fpz ,

s1 =
∑d−1

i=1 hi(p
z)d−i+[b

⊎
[
⊎d−1

i=1 [hi
⊙
ai]]] and s2 =

∑d−1
i=1 h

′
i(p

z)d−i+[b
⊎

[
⊎d−1

i=1 [h′i
⊙
ai]]].

Given each group is uniquely represented by apz + b + 1 for an a, b ∈ Fpz , s1 and s2 will be

contained in the same group iff −u1
⊎

[
⊎d−1

i=1 [hi
⊙
ai] = −b = −u2

⊎
[
⊎d−1

i=1 [h′i
⊙
ai], where

u1 = s1 −
∑d−1

i=1 hi(p
z)d−i and u2 = s2 −

∑d−1
i=1 h

′
i(p

z)d−i. Therefore,

(D.1) [u2
⊎
−u1]

⊎
[

d−1⊎
i=1

[[hi
⊎
−h′i]

⊙
ai]] = 0

Since the above equation represents a polynomial of variable a of degree at most d − 1 over Fpz ,
there are at most d− 1 values of a ∈ Fpz such that equation (D.1) is satisfied. Hence, we can show
that samples s1 and s2 can be contained together in at most d− 1 distinct groups.

Appendix E. Code runs in Matlab.

Figure 19: Effective PP Design for 23 samples, 1 positive and prime power 3, refer to subsection 2.4.3

Figure 20: Effective Matrix Design for 23 samples and 1 positive sample, refer to subsection 2.5

The code to perform the above operations in Python and R are accessible through the links Effective
Matrix Design in Python and Effective Matrix Design in R Studio respectively

162

https://colab.research.google.com/drive/1ljwljDlAfYY-A8iQU-I40Y0f39eUFKV4
https://colab.research.google.com/drive/1ljwljDlAfYY-A8iQU-I40Y0f39eUFKV4
https://colab.research.google.com/drive/1caKv617Xdp8iqmKgceeCS-mMhiIlFfmj?usp=drive_link

POOLING MATRIX DESIGNS FOR GROUP TESTING

Appendix F. GPSR Algorithms, refer to subsection 3.3.

Algorithm F.1 GPSR Basic Algorithm

Step 1 : Set z0 = 0N×1, k = 0, λ ∈ (0, 1), µ ∈ (0, 12) and αmin, αmax ∈ R.

Step 2 : Define gk ∈ RN×1 such that (gk)i = (∇F (zk))i if (zk)i > 0 or (∇F (zk))i < 0. Otherwise,
(gk)i = 0.

Step 3 : Set F (zk − αgk) = cT (zk − αgk) + 1
2(zk − αgk)

TB(zk − αgk).
∇αF (zk − αgk) = −(gk)T (c + Bzk) + α(gk)

TB(gk) and ∇2
αF (zk − αgk) = (gk)

TB(gk) ≥ 0.
Therefore, F (zk − αgk) is minimized when ∇αF (zk − αgk) = 0 and is achieved when

α = ∇F (zk)
T gk

(gk)TBgk
= αk = (gk)

T gk
(gk)TBgk

Step 4 (Backtracking Line Search with Steepest Descent Method) : Let βk = mid{αmin, αk, αmax}
and γk be the first value in {(λ)hβk : h ≥ 0} such that F ((zk − γk∇F (zk))+) ≤ F (zk) −
µ(∇F (zk))T (zk − (zk − γk∇F (zk))+). Set zk+1 = (zk − γk∇F (zk))+.

Step 5 (Termination) : Suppose we aim to determine a termination criterion which takes into
account on how much the sparsity pattern in zk has changed in recent iterations.

Define τk = {1 ≤ i ≤ N : ith entry of zk ̸= 0}. If
|(τk+1 ∪ τk)\(τk+1 ∩ τk)|

|τk+1| ≤ threshold, set zk+1

to be the estimated value of x′. Otherwise, k ← k + 1 and go back to Step 2.

Algorithm F.2 GPSR Barzilai and Borwein Algorithm

Step 1 : Set z0 ≥ 0N×1, k = 0, amin, amax ∈ R and amin ≤ a0 ≤ amax

Step 2 : Compute δk = (zk − ak∇F (zk))+ − zk

Step 3 : Set F (zk − λδk) = cT (zk − λδk) + 1
2(zk − λδk)

TB(zk − λδk).
∇λF (zk−λδk) = −(δk)T (c+Bzk)+λ(δk)TB(δk) and∇2

λF (zk−λδk) = (δk)
TB(δk) ≥ 0. Therefore,

F (zk − λδk) is minimized when ∇λF (zk − λδk) = 0 and is achieved when

λ = (δk)
T∇F (zk)

(δk)TBδk
. Set λk = mid{0, (δk)

T∇F (zk)
(δk)TBδk

, 1} and zk+1 = zk + λkδk

Step 4 : If (δk)
TBδk = 0, set ak+1 = amax. Otherwise, set ak+1 = mid{amin,

(δk)
T δk

(δk)TBδk
, amax}

Step 5 (Termination) : Similar to that of Algorithm F.1

163

YONG HONG IVAN TAN

Acknowledgments. This project was submitted as my honours thesis for my bachelor’s degree
in the National University of Singapore, Department of Mathematics. I would like to thank my
project supervisor, Associate Professor Chu Delin, for recommending this as a topic for my Final
Year Project. Besides, I would like to thank my project examiner, Dr Timo Sprekeler, who en-
couraged me to explore the materials in greater depths. Next, I would like to thank Dr Johannes
J Brust for his group testing algorithms which has allowed me to view statistical pooling from a
different angle, using the properties of finite prime power fields. Furthermore, I would like to thank
Associate Professor Roger Tan Choon Ee, for advising me to write my ideas to cater to the general
understanding of the readers. Lastly, I would like to thank the Reviewer and Associate Editor for
providing constructive comments to improve the manuscript.

REFERENCES

[1] David Brust and Johannes J. Brust Effective Matrix Designs for COVID-19 Group Testing, BMC Bioinformatics
24, 26 (2023), available at https://www.medrxiv.org/content/10.1101/2022.08.23.22279137v1.full.pdf+html

[2] Johannes J. Brust, University of California San Diego, Matrix Designs for COVID-19 Group Testing (Spring
2022), available at http://www.johannesbrust.com/image68.pdf, International Linear Algebra Society, Issue
Number 68, Pages 9 to 16.

[3] Keith Conrad , University of Connecticut, Finite Fields, available at https://kconrad.math.uconn.edu/blurbs/
galoistheory/finitefields.pdf

[4] Mario A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright Gradient Projection for Sparse Reconstruction:
Application to Compressed Sensing and Other Inverse Problems (Year 2007) available at https://nowak.ece.
wisc.edu/GPSR.pdf

[5] Noam Shental Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers available at https:
//www.science.org/doi/10.1126/sciadv.abc5961

[6] Ray-Chaudhuri, D. K. and Wilson, Richard M. Solution of the Kirkman Schoolgirl Prob-
lem, Proceedings of Symposia in Pure Mathematics, 1971, Vol 19 available at https://doi.
org/10.1090/pspum/019 Internet Access: https://math.stackexchange.com/questions/4509843/
efficient-way-to-rotate-through-partitions-with-subsets-of-size-three/4510645#4510645

[7] Rajamani Barathidasan, Ferdina Marie Sharmila, Ratchagadasse Vimal Raj, Gounassegarane Dhanalakshmi, Gu-
nalan Anitha, Rahul Dhodapkar Pooled sample testing for COVID-19 diagnosis: Evaluation of bi-directional
matrix pooling strategies(16th October 2021), available at https://www.sciencedirect.com/science/article/
pii/S0166093422000714

[8] Sabyasachi Ghosh, IIT Bombay A Compressed Sensing Approach to Pooled RT-PCR Testing for COVID-19 De-
tection, available at https://www.scienceopen.com/document file/be3451c2-2288-4ec1-85de-f3dc818abb67/
PubMedCentral/be3451c2-2288-4ec1-85de-f3dc818abb67.pdf

[9] Sabyasachi Ghosh Tapestry: A Single-Round Smart Pooling Technique for COVID-19 Testing available at https:
//www.medrxiv.org/content/10.1101/2020.04.23.20077727v2

[10] Varlam Kutateladze and Ekaterina Seregin, Fast and Efficient Data Science Techniques for COVID-19 Group
Testing (July 2021), available at https://jds-online.org/journal/JDS/article/561/file/pdf.

[11] Wolfgang Rauch, Universität Innsbruck, High prevalence group testing in epidemiology with geometrically inspired
algorithms (June 2023), available at https://www.researchsquare.com/article/rs-2966307/v1.pdf

[12] Yi-Jheng Lin, Che-Hao Yu, Tzu-Hsuan Liu, Cheng-Shang Chang, Fellow, IEEE, and Wen-Tsuen Chen, Life
Fellow, IEEE, Constructions and Comparisons of Pooling Matrices for Pooled Testing of COVID-19 (15 Jun
2021), available at https://arxiv.org/pdf/2010.00060.pdf.

[13] Yaniv Erlich, Anna Gilbert, Hung Ngo, Atri Rudra, Nicolas Thierry-Mieg, Mary Wootters, Dina Zielinski,
and Or Zuk Biological screens from linear codes: theory and tools (25th December 2015) available at https:
//www.biorxiv.org/content/biorxiv/early/2015/12/25/035352.full.pdf

164

https://www.medrxiv.org/content/10.1101/2022.08.23.22279137v1.full.pdf+html
http://www.johannesbrust.com/image68.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/finitefields.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/finitefields.pdf
https://nowak.ece.wisc.edu/GPSR.pdf
https://nowak.ece.wisc.edu/GPSR.pdf
https://www.science.org/doi/10.1126/sciadv.abc5961
https://www.science.org/doi/10.1126/sciadv.abc5961
https://doi.org/10.1090/pspum/019
https://doi.org/10.1090/pspum/019
https://math.stackexchange.com/questions/4509843/efficient-way-to-rotate-through-partitions-with-subsets-of-size-three/4510645#4510645
https://math.stackexchange.com/questions/4509843/efficient-way-to-rotate-through-partitions-with-subsets-of-size-three/4510645#4510645
https://www.sciencedirect.com/science/article/pii/S0166093422000714
https://www.sciencedirect.com/science/article/pii/S0166093422000714
https://www.scienceopen.com/document_file/be3451c2-2288-4ec1-85de-f3dc818abb67/PubMedCentral/be3451c2-2288-4ec1-85de-f3dc818abb67.pdf
https://www.scienceopen.com/document_file/be3451c2-2288-4ec1-85de-f3dc818abb67/PubMedCentral/be3451c2-2288-4ec1-85de-f3dc818abb67.pdf
https://www.medrxiv.org/content/10.1101/2020.04.23.20077727v2
https://www.medrxiv.org/content/10.1101/2020.04.23.20077727v2
https://jds-online.org/journal/JDS/article/561/file/pdf
https://www.researchsquare.com/article/rs-2966307/v1.pdf
https://arxiv.org/pdf/2010.00060.pdf
 https://www.biorxiv.org/content/biorxiv/early/2015/12/25/035352.full.pdf
 https://www.biorxiv.org/content/biorxiv/early/2015/12/25/035352.full.pdf

	Introduction
	Group Testing Strategies By Direct Decoding
	Dorfman's Two Stage Approach
	Hypercube Designs
	Two Dimensional Hypercube Design
	Three Dimensional Hypercube Design
	General Hypercube Design

	Kirkman Triple Algorithm
	Polynomial Pools Algorithm
	PPOL Algorithm
	Multidimensional Polynomial Pools Designs
	Projective Geometry Design

	Comparison Of Direct Decoding Methods

	P-Best Pooling Matrix Design
	P-Best Detection Algorithm
	COMP Algorithm
	Compressed Sensing Algorithms

	Conclusions
	Appendix A. Constructions and operations of prime power fields
	Appendix B. Explicit constructions of Kirkman Triple Pooling Matrix
	Appendix C. Properties of PPOL Algorithm, refer to ppol
	Appendix D. Properties of Polynomial Pools Algorithm, refer to PP
	Appendix E. Code runs in Matlab
	Appendix F. GPSR Algorithms, refer to hi
	Acknowledgments

