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Abstract

This research uniquely focuses on predicting the likelihood of H5N1 outbreaks in the United
States at the county level. Unlike previous studies, which either excluded the United States
or used outdated data, we utilized diverse statistical techniques and publicly available H5N1-
related data from January 2022 to March 2023. Employing logistic regression, regularization
methods, cross-validation, and eXtreme Gradient Boosting (XGBoost), our models demon-
strated remarkable predictive efficacy. Notably, the XGBoost model, trained with 10-fold
cross-validation, outperformed others in terms of ROC-AUC. This research provides valuable
epidemiological insights, proposes intervention strategies for H5N1 in the United States, and
suggests future research directions.

Keywords H5N1 · avian influenza · risk assessment · classification · regularization · xgboost

1 Introduction

Since its first recognition in the 1880s, avian influenza has significantly influenced human health, as exemplified
by its role in approximately 50 million deaths in 1918 (Taubenberger and Morens 2006) and the infection of
around 1,500 individuals between 2013 and 2019 (World Health Organization 2018).
This study acknowledges the historical significance of avian influenza and highlights the necessity for current
research methodologies to adapt to the virus’s evolution. Extensive research exists on models predicting
H5N1 outbreaks in regions such as the Middle East, West Africa (Williams and Peterson 2009), Egypt (Kane
et al. 2014), and Southeast Asia (Gilbert et al. 2008). However, there is a noticeable scarcity of recent studies
within the United States, especially post-2019. Most studies on avian influenza infection prediction in America
have relied on older datasets, limiting their current applicability. In the study “Artificial intelligence and
avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses,” (Walsh et
al. 2019) the reliance on wild bird infection data from 2006 to 2011 to train the model raises concerns about
its current relevance. Despite the research being conducted in 2019, the outdated nature of the data could
limit the model’s applicability to contemporary scenarios.
The economic impact of the highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States
has been substantial. Since 2022, the H5N1 virus have been detected across various bird populations, affecting
1,064 counties (Centers for Disease Control and Prevention 2022b). Over 58.7 million poultry in 419 counties
and approximately 7,105 wild birds in 1,023 counties were infected (Centers for Disease Control and Prevention
2022b). In 2022, the H5N1 strain led to an estimated economic loss of $2.5 to $3 billion, with around 40
million animal deaths (Farahat et al. 2023). This has brought attention to the United States’ high meat
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consumption, particularly poultry, which was 115 pounds per capita in 2022 (World Animal Foundation
2023). Additionally, the significant rise in egg prices in 2022 (Iacurci 2023) has disrupted American dietary
patterns, indicating broader challenges for the environment and poultry industry.
In response to these challenges, this study presents a new model that utilizes recent data (2022 - 2023) from the
United States, aiming to fill the gaps in avian influenza surveillance and improve H5N1 outbreak predictions.
We will analyze avian influenza cases to forecast future incidents and suggest mitigation strategies. Our
methodology encompasses logistic regression, model regularizations, cross-validation, and eXtreme Gradient
Boosting (XGBoost), focusing on identifying United States counties at possible risk of H5N1 infection. This
identification process will guide the allocation of preventive measures. Our data sources include the Centers
for Disease Control and Prevention (CDC), United States Department of Agriculture (USDA), United States
Census Bureau, and the Bureau of Labor Statistics.
The primary objective of this study is to develop and evaluate machine learning models that identify areas in
the United States at high risk for H5N1 outbreaks, generating predictive insights that can accurately forecast
future occurrences in different regions. This approach provides insights to future research on the impact of
the H5N1 virus on public health and safety.

2 Data

The formulation of a prognostic framework aimed at discerning counties predisposed to H5N1 infection
necessitates a meticulous comprehension of the inherent structure and constituents of the dataset. Our
methodological approach entails the amalgamation of four disparate datasets combined to a singular dataset,
pertaining to documented instances of H5N1 manifestation within each county during the delineated temporal
span from January 2022 to March 2023.
This meticulously curated dataset will serve as the substrate for the training of our classification model, a
pivotal constituent in forecasting the prospective counties susceptible to H5N1 infection in the ensuing month.
Through an incisive scrutiny of discernible patterns within the dataset, we aim to elucidate salient variables
intricately correlated with an escalated vulnerability to infection, encompassing geographical locale, ambient
temperature, and the typology of avian populations. This analytical expedition is poised to yield insights
instrumental in the formulation of precisely targeted interventions and stratagems within the ambit of public
health, thereby assuaging the dissemination of H5N1 in locales characterized by an augmented proclivity for
contagion.

2.1 Overview

2.1.1 United States Counties Database

The United States Counties Database, sourced from Pareto Software, LLC (2023), is a comprehensive
compilation of data from authoritative entities such as the U.S. Census Bureau and the Bureau of Labor
Statistics. It encompasses all 3,143 counties across the United States, including Washington D.C., and provides
essential details such as Federal Information Processing Standard (FIPS) codes, geographical coordinates,
and more.

Table 1: First Five Observations of US Counties Database

FIPS Code State County Latitude Longitude
6037 CA Los Angeles County 34.3209 -118.2247

17031 IL Cook County 41.8401 -87.8168
48201 TX Harris County 29.8578 -95.3936
4013 AZ Maricopa County 33.3490 -112.4915
6073 CA San Diego County 33.0343 -116.7350

Modifications were applied to this dataset to streamline future analyses. These include the conversion of state
names into their respective abbreviations, as shown in Table 1, facilitating a more efficient data handling
process. This dataset is instrumental in generating intricate geographical reports of H5N1 cases in each
county by correlating with subsequent datasets from the CDC.
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2.1.2 H5N1 Bird Flu Detections across the United States (Backyard and Commercial)

The second dataset, procured from Centers for Disease Control and Prevention (2022a), focuses on H5N1
bird flu outbreaks in various types of bird populations across the United States, including commercial poultry
facilities, backyard poultry, and hobbyist bird flocks. To enhance its utility for our analyses, we refined this
dataset by transforming the date format to separate year, month, and day components and excluded records
post-March 31st, 2023, due to incomplete data.
Furthermore, we simplified the classification of flock types into “Poultry” and “Non-Poultry”, as per the
definitions provided by World Organisation for Animal Health (2022). This categorization assimilates 15
distinct commercial flock types under the “Poultry” umbrella, aligning with WOAH’s definition. The dataset,
post-modification, consists of 817 observations across 6 variables, forming a foundational component of our
subsequent analyses.

Table 2: Initial and Final Five H5N1 Backyard and Commercial Outbreaks in the United States until March
31st, 2023

State County Year_Month Day Type Cases
Indiana Dubois County 2022_02 08 Poultry 29000
Virginia Fauquier County 2022_02 12 Non-Poultry 90
Kentucky Fulton County 2022_02 12 Poultry 231400
Kentucky Webster County 2022_02 15 Poultry 53300
Indiana Dubois County 2022_02 16 Poultry 26600
...

...
...

...
...

...
Michigan Lapeer County 2023_03 23 Poultry 950
Colorado Arapahoe County 2023_03 24 Non-Poultry 10
Kansas Ellsworth County 2023_03 24 Non-Poultry 50
Colorado Yuma County 2023_03 28 Poultry 310
Oregon Umatilla County 2023_03 30 Non-Poultry 50

Table 2 delineates the initial and final five instances of H5N1 outbreaks in backyard and commercial settings
across the United States, up to March 31st, 2023. The data reveals that the inaugural outbreak occurred
on February 8th, 2022, in Dubois, Indiana, with a significant impact of 29,000 cases, classified under the
category “Poultry”. Conversely, the most recent outbreak recorded on March 30th, 2023, in Umatilla, Oregon,
involved a comparatively smaller scale of 50 cases, categorized as “Non-Poultry”.

2.1.3 H5N1 Bird Flu Detections across the United States (Wild Birds)

The dataset on the detection of highly pathogenic avian influenza (HPAI) A(H5) viruses in wild birds across
the United States, also provided by Centers for Disease Control and Prevention (2022b), has been meticulously
revised to enhance its utility for our analysis. Similar to the modifications applied to the dataset discussed in
Section 2.1.2, we have reformatted the date entries and omitted records post-March 31st, 2023. Additionally,
standardization of column names has been implemented to facilitate seamless data cleaning and analysis.
Post-modification, this dataset encompasses 2,752 observations across 6 variables, representing a crucial
resource for our future analytical endeavors.

Table 3: Initial and Final Five H5N1 Wild Bird Outbreaks in the United States until March 31st, 2023

State County Year_Month Day Type Cases
North Carolina Hyde County 2022_01 12 Wild bird 2
South Carolina Colleton County 2022_01 13 Wild bird 2
North Carolina Hyde County 2022_01 16 Wild bird 2
North Carolina Hyde County 2022_01 20 Wild bird 3
North Carolina Pamlico County 2022_01 20 Wild bird 34
...

...
...

...
...

...
Alaska Sitka County 2023_03 31 Wild bird 1
Maryland Harford County 2023_03 31 Wild bird 1
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State County Year_Month Day Type Cases
Minnesota Wright County 2023_03 31 Captive wild bird 1
Utah Millard County 2023_03 31 Wild bird 1
Washington Benton County 2023_03 31 Wild bird 1

It is imperative to note the classification of outbreak types in this context: “Wild bird” refers to birds
exhibiting natural phenotypes, living independently without human supervision, and “Captive wild bird”
denotes birds with minimal human-induced phenotypic changes yet requiring human supervision or control
(World Organisation for Animal Health 2022).
Table 3 provides a chronological overview of the first and last five H5N1 wild bird outbreaks in the United
States, up to March 31st, 2023. Analysis reveals that the initial outbreak was recorded on January 12th, 2022,
in Hyde, North Carolina, involving two cases, identified as “Wild bird” in type. The most recent outbreak, as
of March 31st, 2023, occurred in Benton, Washington, with a single case, also classified under the “Wild bird”
category.

2.1.4 Compilation and Refinement of the Monthly Average Temperature Dataset

This dataset, an amalgamation of data from National Centers for Environmental Information (2023) and
Cedar Lake Ventures, Inc (2023), provides the monthly average temperature in Fahrenheit degrees (◦F) for
U.S. counties. The NCEI dataset covers all counties except those in Hawaii from January 2022 to March
2023, while the Cedar dataset specifically addresses the average temperature for Hawaii’s five counties during
the same period.
To optimize the dataset for our analysis, we have standardized the formats and column names for state,
county, and month. Furthermore, we have rectified discrepancies in county names based on the dataset
outlined in Section 2.1.1. Notably, due to the unavailability of Hawaii’s average temperature data in offline
formats, we have manually inputted these values. For analytical efficiency, the months from January 2022 to
March 2023 have been converted to a month index ranging from 1 to 15 respectively.

Table 4: First Five Recorded Observations of County-Level Average Temperatures in Fahrenheit Across the
United States

State County Month Index Average Temperature
AL autauga county 1 45.1
AL baldwin county 1 50.1
AL barbour county 1 45.4
AL bibb county 1 43.2
AL blount county 1 41.6

Post-modification, the dataset comprises 47,160 observations across 4 variables, proving to be a critical
component for our analysis and predictive modeling. Table 4 presents the initial five observations from this
dataset.

2.1.5 Curated Dataset of Monthly H5N1 Cases by County

The amalgamation of data sets expounded upon in sections 2.1.1 through 2.1.4 is intricately executed through
the fusion of state and country nomenclature. This methodological approach is necessitated by the nuanced
geographical landscape, where certain counties bear identical names yet are dispersed across distinct states.
The resultant refined dataset, thereby achieved, stands as the foundational wellspring for subsequent analytical
endeavors. Comprising an expansive repository of 188,580 observations spanning 10 variables as shown in
Table 5, this dataset delineates the monthly distribution of H5N1 cases by county within the United States,
covering the temporal expanse from January 2022 to March 2023.
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Table 5: Descriptive Summary of Variables in the Curated Dataset

Variable Description
fips The FIPS code, serving as a unique identifier for each county within the United States,

manifests as a categorical variable. It embraces a total of 3,143 distinctive values, each with a
frequency of 60 entries, thereby elucidating the spatial granularity inherent in the dataset.

state The state variable, denoting the abbreviated nomenclature for each state in the United
States, constitutes a categorical entity with 51 unique values. Significantly, the individual
states exhibit variability in the number of counties, emphasizing the hierarchical structure of
administrative divisions.

county Representing the appellations of counties, independent cities, census areas, and administrative
counterparts at an equivalent level within the United States, the county variable emerges as a
categorical feature encompassing 3,143 distinct values.

lat The latitude of each county.
lng The longitude of each county.
month.index The month.index parameter serves as an ordinal indicator denoting the chronological sequence

of avian influenza outbreaks, ranging from 1 (January 2022) to 15 (March 2023). Noteworthy
is the consistent count of 12,572 entries per month.index, underscoring the inclusivity of all
counties irrespective of their H5N1 case counts, with zero cases explicitly recorded.

type The type variable, encapsulating the nature of outbreaks in specific counties and months,
assumes categorical form with four distinct values: poultry, non-poultry, wild bird, and
captive wild bird. This classification, comprising 47,145 entries for each type, underscores
the exhaustive nature of the cleaned dataset, wherein all counties’ H5N1 situations are
encompassed, regardless of case counts, with zero cases explicitly represented.

avg.temp The avg.temp variable signifies the average temperature in a specific county and month,
quantified in Fahrenheit degrees, thereby integrating meteorological factors into the analytic
framework.

cases Reflecting the number of H5N1 cases detected in a given county and month, the cases variable
serves as a cardinal metric, capturing the epidemiological dimension of the dataset.

binary.case The binary.case variable, operating as a binary indicator, assumes the value of uninfected
(185,907 entries) when the case count for a specific type of outbreak in a county and month is
0. Conversely, it adopts the designation infected (2,673 entries) when cases are detected,
thereby providing a dichotomous perspective on the outbreak status within the dataset.

2.2 Visualization

In this section, we embark on a visual exploration of the meticulously curated dataset detailed in the preceding
section. Visualization serves as a pivotal instrument in our analytical arsenal, offering an intuitive and
insightful comprehension of complex patterns, trends, and relationships latent within the expansive dataset.
Figure 1 illustrates a progressive increase in new H5N1 virus cases over time, with the majority of these cases
predominantly occurring in the western and midwestern regions of the United States. Notably, there was a
noticeable fluctuation in new cases during March, April, May, and from August to December 2022. The color
coding in the visualization confirms that new cases did not surpass 1,000,000 in March 2023, and there has
been a discernible decline in monthly cases since the onset of 2023.

Figure 1.1: January 2022 Figure 1.2: February 2022 Figure 1.3: March 2022 Figure 1.4: April 2022
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Figure 1.5: May 2022 Figure 1.6: June 2022 Figure 1.7: July 2022 Figure 1.8: August 2022

Figure 1.9: September 2022 Figure 1.10: October 2022 Figure 1.11: November 2022 Figure 1.12: December 2022

Figure 1.13: January 2023 Figure 1.14: February 2023
New H5N1 Cases

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

Figure 1.15: March 2023

Figure 1: Monthly Distribution of New H5N1 Cases by County in the United States from January 2022 until
March 2023

Table 6: Top and Bottom Five Monthly Case Counts by County in the United States from January 2022
until March 2023

FIPS code State County Month Index Type Cases
19021 IA buena vista county 3 poultry 5486700
19143 IA osceola county 3 poultry 5011700
42071 PA lancaster county 4 poultry 3782700
39039 OH defiance county 9 poultry 3748500
55055 WI jefferson county 3 poultry 2750700
...

...
...

...
...

...
56039 WY teton county 10 wild bird 1
56039 WY teton county 6 wild bird 1
56039 WY teton county 9 wild bird 1
56043 WY washakie county 13 wild bird 1
56043 WY washakie county 14 wild bird 1

Table 6 presents a comparative analysis of the five counties with the highest and lowest monthly case counts
in the United States as of March 31st, 2023. The data reveals that Buena Vista County, Iowa, recorded the
highest number of monthly cases, amounting to 5,486,700 in March 2022. The primary outbreak type in this
region was associated with poultry. In contrast, the five counties reporting the lowest monthly case numbers
are all located in Wyoming, each registering only a single case related to wild birds.
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Figure 2.1: January 2022 Figure 2.2: February 2022 Figure 2.3: March 2022 Figure 2.4: April 2022

Figure 2.5: May 2022 Figure 2.6: June 2022 Figure 2.7: July 2022 Figure 2.8: August 2022

Figure 2.9: September 2022 Figure 2.10: October 2022 Figure 2.11: November 2022 Figure 2.12: December 2022

Figure 2.13: January 2023 Figure 2.14: February 2023
Cumulative H5N1 Cases

2,000,000

4,000,000

6,000,000

Figure 2.15: March 2023

Figure 2: Monthly Cumulative H5N1 Case Totals by County in the United States from January 2022 until
March 2023

Figure 2 illustrates the cumulative incidence of H5N1 virus cases across the United States from January 2022
to March 2023. As of March 2023, a widespread occurrence of the virus was observed throughout the country.
Nevertheless, it is noteworthy that in most regions, the cumulative case count remained below 2,000,000.

Table 7: Counties with the Highest and Lowest Five Cumulative Case Counts in the United States until
March 31st, 2023

FIPS code State County Cases
8123 CO weld county 6188790
19021 IA buena vista county 5606301
19143 IA osceola county 5011700
42071 PA lancaster county 3855188
39039 OH defiance county 3748500
...

...
...

...
55127 WI walworth county 1
55135 WI waupaca county 1
56003 WY big horn county 1
56037 WY sweetwater county 1
56043 WY washakie county 1
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Table 7 delineates the counties with the highest and lowest cumulative case counts in the United States as of
March 31st, 2023. The analysis indicates that Weld County, Colorado, has the highest cumulative number of
cases, totaling 6,188,790. Notably, Buena Vista and Osceola counties in Iowa also report significantly high
cumulative cases, with counts of 5,606,301 and 5,011,700, respectively. Conversely, the counties with the
lowest cumulative case counts, each reporting only a single case, are situated in Wisconsin and Wyoming.
In Figure 3, the x-axis represents the column variables, while the y-axis corresponds to the row variables.
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Figure 3: Comprehensive Scatterplot Matrix Depicting Relationships Among Variables in H5N1 Case Data

A notable finding is the correlation between latitude and longitude, which is -0.407, indicating a moderate
negative relationship. Specifically, a surge in cases is observed when the latitude ranges between 35 and 45.
Similarly, an increase in cases is markedly evident when the longitude falls between -120 and -70, pinpointing
regions in the United States with higher case numbers.
Furthermore, the correlation between average temperature and latitude is -0.372. This correlation is logical:
as the latitude increases (approaching the North Pole), the average temperature tends to decrease.
The variable type highlights that H5N1 outbreaks are more prevalent among wild birds. However, this does
not necessarily imply a higher incidence of H5N1 cases in this group.
Additionally, the cases variable suggests a relatively low case count per outbreak, yet with numerous
outliers. This pattern may be attributed to the fact that, although wild birds constitute the majority of the
dataset, poultry are often found in larger groups. Given that viruses spread more efficiently in closely packed
populations, the bulk of the cases involve poultry.
An intriguing pattern emerges in the scatterplot with avg.temp on the x-axis and cases on the y-axis. The
distribution of cases against average temperature resembles a normal distribution, with a notable increase in
cases when the average temperature lies between 30 and 60 degrees Fahrenheit.
The bar chart presented in Figure 4 below illustrates the monthly distribution of H5N1 cases.
Notably, March 2022 recorded the highest number of cases, aligning with the data in Table 6, which indicates
that Buena Vista County, Iowa, experienced the peak monthly case count. Beginning in 2023, there has been
a consistent decline in the incidence of H5N1 cases.
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Figure 4: Monthly Distribution of New H5N1 Cases Visualized in a Bar Chart Format

3 Methodology

3.1 Overview

Figure 5, illustrated below, encapsulates a schematic representation delineating the procedural framework
employed in this investigation. The diagram distinctly elucidates the successive stages integral to the
formulation, evaluation, and selection of the optimal predictive model. The commencement and termination
points are signified by red ovals, serving as pivotal markers in the overall sequence. Each procedural step
within the study is distinctly demarcated by yellow rectangles, embodying discrete elements of the analytical
process. Noteworthy components are highlighted through the incorporation of three blue parallelograms,
symbolizing the curated dataset, training set, and testing set essential for model development and assessment.

Start

One-hot Encoding and 
Augmentation

Data Spliting

10-fold Cross Validation

Logistic Regression 
Model with Lasso

10-fold Cross Validation

Logistic Regression 
Model with Ridge

Logistic Regression 
Model 

10-fold Cross Validation

Logistic Regression Model 
with Ridge & Lasso

10-fold Cross Validation

eXtreme Gradient 
Boosting Model

Evaluate with Testing Set 
using AUC as a metric

Training SetTesting Set

Choose the Model with 
the Highest AUC

End

Cleaned Data

Figure 5: Detailed Flowchart Depicting the Methodology for Building, Evaluating, and Selecting Optimal
Models for Predicting Upcoming H5N1 Outbreaks by County

It is crucial to emphasize that the choice of the Area Under the Receiver Operating Characteristic Curve
(ROC-AUC score) as the evaluation metric in this study is driven by the presence of unbalanced distribution
of uninfected and infected within the response variable, binary.case, as indicated in Table 5. As Brabec
et al. (2020) says, “A convenient property of evaluating classifier by ROC-AUC is that it’s value is invariant
to class imbalance.” This metric, by considering the entire range of true positive rates and false positive rates,
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offers a comprehensive assessment of a model’s performance across various classification thresholds, making it
particularly well-suited for situations characterized by imbalanced class distributions.
The primary goal is to discern the model with the highest ROC-AUC score that can effectively prognosticate
the likelihood of H5N1 outbreaks in diverse counties for the forthcoming month with precision.

3.2 Data Preparation

The transformation of categorical predictors into a numerical format is often necessitated to facilitate
compatibility with various machine learning algorithms. Specifically, the technique of one-hot encoding
was employed in the present study to convert the categorical predictor variable labeled as type, which
encompasses four distinct categories. This strategic utilization of one-hot encoding ensures the preservation
of the categorical nature of the variables under consideration throughout the analytical process.
In addition to the aforementioned predictors, our models will incorporate an interaction term denoted as
lat * lng, representing the product of latitude and longitude. This interaction predictor aims to capture
potential joint effects and relationships between geographic coordinates, offering a nuanced perspective on the
spatial dynamics associated with the incidence of H5N1 cases. Through the inclusion of this interaction term,
we endeavor to enhance the models’ capacity to discern location-specific patterns and associations, thereby
contributing to a more comprehensive understanding of the factors influencing the predicted outcomes.
Following the implementation of one-hot encoding on the categorical predictor and data augmentation of lat
and lng, the resulting data frame incorporates a collective total of eight columns that represent the predictor
variables.
For the purposes of this investigation, our analysis incorporated data encompassing outbreaks that transpired
between January 2022 and February 2023 as the training set, constituting a dataset comprising n = 176, 008
observations. Furthermore, outbreaks occurring in March 2023, totaling 12,572 observations, were utilized as
the testing set. This methodological choice was made to facilitate the assessment of the models’ efficacy in
predicting the incidence of H5N1 cases within specific counties.

3.3 Logistic Regression Model

Logistic regression was selected as the baseline model due to its demonstrated effectiveness in accommodating
diverse data characteristics. Its appropriateness in the present context lies in its well-established suitability
for binary classification tasks, specifically discerning between instances of infected and uninfected status
of H5N1 in each county. The mathematical representation of the model is as follows:

Yi =β0 + β1 · lat + β2 · lng + β3 · month.index + β4 · avg.temp + β5 · type(non-poultry)
+ β6 · type(poultry) + β7 · type(wild bird) + β8 · lat * lng.

In the logistic regression model, the dependent variable Yi represents the log-odds of the probability of a
county experiencing an infected status of H5N1. The log-odds quantify the natural logarithm of the odds,
serving as a measure that facilitates the interpretation of the model’s coefficients in the context of binary
classification. Moreover, β0 is the intercept of the model, β1 to β8 are the coefficients of independent variables
lat to lat * lng.
Furthermore, the utilization of the sigmoid function is integral to our logistic regression model and is expressed
as follows:

Pr(Yi = infected|Xi) = p(Xi) = eβ0+β1·lat+...+β8·lat * lng

1 + eβ0+β1·lat+...+β8·lat * lng

Pr(Yi = uninfected|Xi) = 1 − p(Xi) = 1 −
(

eβ0+β1·lat+...+β8·lat * lng

1 + eβ0+β1·lat+...+β8·lat * lng

)
.

Here, Xi represents the vector of predictor variables associated with the i-th observation, including lat, lng,
month.index, avg.temp, type(non-poultry), type(poultry), type(wild bird), and lat * lng.
This sigmoid transformation ensures that the predicted probabilities fall within the interval (0, 1), thereby
enhancing the model’s capability to generate plausible predictions. Serving as a binary classifier, the model
is specifically designed to assess the likelihood of H5N1 cases in a county based on the type of outbreak
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encountered. The application of the sigmoid function contributes to the interpretability and calibration of
the model’s predictions, aligning them with the probabilistic nature of the logistic regression framework.
In the pursuit of parameterizing our logistic regression model and elucidating the factors influencing the
likelihood of avian influenza in specific counties, we turn our attention to the log-likelihood function, which is
defined as follows:

ℓ(β) =
n∑

i=1
Yi log(p(Xi)) + (1 − Yi) log(1 − p(Xi)).

To obtain the estimates of the logistic regression model parameters (βi), we employ the Maximum Likelihood
Estimate (MLE) method. Solving the following objective function maximizes the log-likelihood:

β̂ = arg max
β

[
ℓ(β)

]
.

This optimization process enhances our model’s capacity to capture and interpret the intricate relationships
between the predictor variables and the likelihood of avian influenza in each county.

3.4 Logistic Regression Model with Regularizations

To mitigate data bias and prevent overfitting, three regularization techniques will be applied to our fundamental
logistic model discussed in Section 3.3.

3.4.1 Ridge (L2) Regularization

For Ridge (L2) regularization, the objective function is defined as follows:

β̂ = arg max
β

[
ℓ(β) + λ

n∑
i=1

β2
i

]
,

where ℓ(β) represents the loss function of the basic logistic regression model, and λ
∑n

i=1 β2
i is the penalty

term.

3.4.2 Lasso (L1) Regularization

When employing Lasso (L1) regularization, the objective function takes the form:

β̂ = arg max
β

[
ℓ(β) + λ

n∑
i=1

|βi|

]
,

with ℓ(β) denoting the loss function of the original logistic regression model and λ
∑n

i=1 |βi| as the penalty
term.

3.4.3 Combination of Ridge (L2) and Lasso (L1) Regularizations

Given the relatively stronger penalty of Ridge regularization (λ
∑n

i=1 β2
i ) compared to Lasso regularization

(λ
∑n

i=1 |βi|), potentially leading to extreme feature selection, a combination of Ridge and Lasso regularizations
might perform great. The objective function is then expressed as:

β̂ = arg max
β

[
ℓ(β) + λ

(
1
2

n∑
i=1

β2
i + 1

2

n∑
i=1

|βi|

)]
,

where ℓ(β) is the loss function of the original logistic regression model, and λ
( 1

2
∑n

i=1 β2
i + 1

2
∑n

i=1 |βi|
)

is
the penalty term.
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To determine the optimal tuning parameter λ and rigorously evaluate our model, a 10-fold cross validation
strategy will be implemented for all the discussed regularization methods in this section. This approach
furnishes a robust estimate of the model’s performance through its log-likelihood.

3.5 eXtreme Gradient Boosting (XGBoost) Model

In contemporary times, XGBoost has emerged as a robust ensemble learning technique, garnering widespread
acclaim for its exceptional predictive prowess. The algorithm methodically assembles a set of weak learners,
typically manifested as decision trees, and amalgamates their predictions to bolster accuracy and exhibit
strong generalization performance on unseen data.
The XGBoost algorithm, as detailed by Chen and Guestrin (2016), leverages gradient tree boosting for
ensemble learning. For our training data with n observations and m = 8 features, the tree ensemble model is
expressed as follows:

Ŷi = ϕ(Xi) =
K∑

k=1
fk(Xi), fk ∈ F

for each F = {f(X) = wq(X)}, where q : Rm → T and w ∈ T (T is the number of leaves in the tree),
represents the space of regression trees, with q denoting the tree structure mapping an example to the
corresponding leaf index, and w being the leaf weights.
The learning objective is formulated with regularization as:

L(ϕ) =
∑

i

l(Ŷi, Yi) +
∑

k

Ω(fk).

Here, l is a differentiable convex loss function measuring the difference between predicted Ŷi and target Yi,
and Ω(fk) = γT + 1

2 λ
∑T

j=1 w2
j penalizes the complexity of the model.

Gradient tree boosting is employed to optimize the model in an additive manner. Given the prediction Ŷ
(t−1)

i
at the t-th iteration, a new function ft is added to minimize the objective:

L(t) =
n∑

i=1
l(Yi, Ŷ

(t−1)
i + ft(Xi)) + Ω(ft).

The second-order approximation is utilized for optimization:

L(t) ≈
n∑

i=1
[l(Yi, Ŷ

(t−1)
i ) + gift(Xi) + 1

2hif
2
t (Xi)] + Ω(ft).

Here, gi = ∂
Ŷ

(t−1)
i

l(Yi, Ŷ
(t−1)

i ) is the first-order gradient statistics, and hi = ∂2
Ŷ

(t−1)
i

l(Yi, Ŷ
(t−1)

i ) is the
second-order gradient statistics.
Given the objective function and approximation above, the optimal weight w∗

j of leaf j is computed as:

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
.

Here Ij = {i|q(Xi) = j} is the instance set of leaf j.
The loss reduction after a split is given by:

Lsplit = 1
2

( (∑
i∈IL

gi

)2∑
i∈IL

hi + λ
+
(∑

i∈IR
gi

)2∑
i∈IR

hi + λ
−
(∑

i∈I gi

)2∑
i∈I hi + λ

)
− γ.
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Here IL represents the instance set of left node after split, and IR represents the instance set of right node
after split. Moreover, IL and IR should satisfy I = IL ∪ IR.
This formulation is utilized for evaluating split candidates during the tree construction process. The XGBoost
model integrates these mathematical representations for effective optimization and predictive performance.
In the implementation of our XGBoost model, we will leverage the exact greedy algorithm. As described
by Chen and Guestrin (2016), the exact greedy algorithm, characterized by its thorough exploration of all
potential splits across features, aligns with our objective of meticulous feature selection and optimal decision
tree construction.
The performance of the XGBoost model will be assessed based on area under the curve (ROC-AUC).
Employing 10-fold cross-validation ensures robust estimation of ROC-AUC across different data subsets,
enhancing the model’s reliability and generalization capabilities.

4 Results

4.1 Logistic Regression Model

Utilizing the Maximum Likelihood Estimate (MLE) method in our logistic regression model yielded the
estimated log-odds as follows:

Ŷi =18.215 − 0.284 · lat + 0.08 · lng − 0.057 · month.index − 0.004 · avg.temp − 0.203 · type(non-poultry)
− 0.055 · type(poultry) − 1.997 · type(wild bird) − 0.002 · lat * lng.

Upon applying the model to the sigmoid function and inputting the test set data, we obtain a test accuracy
of 99% and a corresponding test ROC-AUC of 0.74987.

4.2 Logistic Regression Model with Ridge (L2) Regularization

Here the logistic regression model was trained with various ridge regularization strengths (λ), spanning a
range from low to high values, using a 10-fold cross-validation strategy. The model’s deviance was documented
for each regularization strength.
Figure 6 helps identify the optimal λ for the ridge penalty term of the logistic regression model. We aim to
get the λ which minimizes the deviance. By looking at the figure, we got the smallest deviance when λ =
0.0014659 and all 8 predictors were selected by the ridge penalty, which is indicated by the vertical dash line
on the left.
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Figure 6: 10-fold Cross-Validation for Optimal λ in Ridge Regularization

The estimated log-odds of the logistic regression model with ridge regularization is as follows:

Ŷi =9.092 − 0.085 · lat + 0.006 · lng − 0.048 · month.index − 0.001 · avg.temp + 0.043 · type(non-poultry)

+ 0.168 · type(poultry) − 1.693 · type(wild bird) − 5.818 × 10−5 · lat * lng.
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Upon applying this model to the sigmoid function and inputting the test set data, we attain a test accuracy
of 99% and a corresponding test ROC-AUC of 0.74727. However, it is noteworthy that the test ROC-AUC is
lower than that of the logistic regression model. This discrepancy suggests that the model may be underfitting
the data, likely due to the imposition of a robust ridge penalty.

4.3 Logistic Regression Model with Lasso (L1) Regularization

Here the logistic regression model was trained with various lasso regularization strengths (λ), spanning a
range from low to high values, using a 10-fold cross-validation strategy. The model’s deviance was documented
for each regularization strength.
Figure 7 helps identify the optimal λ for the ridge penalty term of the logistic regression model. We aim to
get the λ which minimizes the deviance. By looking at the figure, we got the smallest deviance when λ =
1.807284 × 10−5 and all 8 predictors were selected by the lasso penalty, which is indicated by the vertical
dash line on the left.
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Figure 7: 10-fold Cross-Validation for Optimal λ in Lasso Regularization

The estimated log-odds of the logistic regression model with lasso regularization is as follows:

Ŷi =17.243 − 0.262 · lat + 0.072 · lng − 0.056 · month.index − 0.004 · avg.temp − 0.197 · type(non-poultry)
− 0.049 · type(poultry) − 1.99 · type(wild bird) − 0.002 · lat * lng.

Upon application of this model to the sigmoid function and feeding it with the test set data, we achieve a test
accuracy of 99% and a test ROC-AUC of 0.75073. Notably, the test ROC-AUC exceeds that of the logistic
regression model.

4.4 Logistic Regression Model with Ridge (L2) and Lasso (L1) Regularizations

Here the logistic regression model was trained with various combinations of ridge and lasso regularization
strengths (λ), spanning a range from low to high values, using a 10-fold cross-validation strategy. The model’s
deviance was documented for each regularization strength.
Figure 8 helps identify the optimal λ for the combinations of ridge and lasso penalty term of the logistic
regression model. We aim to get the λ which minimizes the deviance. By looking at the figure, we got the
smallest deviance when λ = 1.7172127 × 10−5 and all 8 predictors were selected by the combinations of ridge
and lasso penalty, which is indicated by the vertical dash line on the left.
The estimated log-odds of the logistic regression model with the combination of ridge and lasso regularization
is as follows:

Ŷi =17.278 − 0.263 · lat + 0.072 · lng − 0.056 · month.index − 0.004 · avg.temp − 0.197 · type(non-poultry)
− 0.05 · type(poultry) − 1.991 · type(wild bird) − 0.002 · lat * lng.

Upon application of the model to the sigmoid function and inputting the test set data, we achieve a test
accuracy of 99% and a corresponding test ROC-AUC of 0.75072. Notably, the test ROC-AUC is slightly
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Figure 8: 10-fold Cross-Validation for Optimal λ in Combination of Ridge and Lasso Regularizations

inferior to that of logistic regression with lasso regularization, but it surpasses the test ROC-AUC obtained
from logistic regression alone.

4.5 eXtreme Gradient Boosting (XGBoost)

The XGBoost model was trained utilizing the exact tree method, and its performance was systematically
monitored through the negative log-likelihood loss at each iteration of the training process. In order to ensure
both performance and robustness, a 10-fold cross-validation strategy was implemented at each training round,
and certain hyperparameters were systematically adjusted and applied as delineated below:

• The learning rate (η) was designated as 0.02, serving as the step size shrinkage to mitigate overfitting
during the training process.

• The subsample ratio was established at 0.75, indicating that the XGBoost algorithm would stochasti-
cally select 75% of the training data for each tree’s growth.

• The column subsample ratio for each tree was configured to 0.8, signifying that the XGBoost algorithm
would randomly consider 80% of predictors when developing a new tree.

• The maximum depth of the trees was restricted to 10.
• The number of training rounds was predetermined to be 700.

Figure 9 illustrates the progression of training and validation losses across 700 rounds. The training loss,
depicted by the blue line, exhibits a consistent and gradual decrease over the course of the training iterations.
Similarly, the validation loss, represented by the orange line, also demonstrates a continuous and steady
decline. Notably, at the conclusion of the 700 training rounds, the validation negative log-likelihood loss
converges to a value of 0.05019, indicating the model’s improved generalization performance on unseen data.
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Figure 9: Training and Validation Losses of XGBoost Model over 700 Rounds of Training

Upon applying the model to the test set, we observe a test accuracy of 99% and a test ROC-AUC of
0.87928. Notably, the test ROC-AUC surpasses that of any logistic regression model, whether with or without
regularizations.
An inherent characteristic of XGBoost lies in its capability to furnish insightful analyses regarding feature
importance. This is accomplished by computing importance scores assigned to each predictor, employing
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Gain as the metric. Gain signifies the enhancement in accuracy attributed to a particular feature across the
ensemble of the model’s trees (Chen and Guestrin 2016), thereby facilitating the identification of the most
influential predictors.
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Figure 10: Feature Importance Plot for XGBoost Model

Figure 10 depicts the Gain scores associated with the predictors employed in the XGBoost model. A taller bar,
indicative of a higher Gain score, signifies greater importance of the corresponding predictor. Remarkably,
pivotal predictors such as lng (longitude), lat * lng (interaction between latitude and longitude), and lat
(latitude) have emerged as noteworthy contributors to the predictive efficacy of the model.

4.6 Model Selection and Evaluation

This section undertakes a rigorous evaluation and comparative analysis of diverse models employed from
section 4.1 to 4.5. Given the test accuracy of these models are all 99% and the fact that the dependent
variable binary.cases has imbalanced classes, the test ROC-AUC is the preferred metric here.
Figure 11 encompasses a series of Receiver Operating Characteristic (ROC) Curves corresponding to the
models developed in Sections 4.1 to 4.5. Notably, the XGBoost model demonstrates exceptional efficacy, as
evidenced by a remarkable test ROC-AUC score of 0.87928. This superiority is discernible when juxtaposed
against traditional models such as Logistic Regression, Logistic Regression with Lasso Regularization, Logistic
Regression with Ridge Regularization, and their amalgamated approach, as illustrated in Figure 10.6. The
ROC curve for the XGBoost model distinctly approaches the upper-left corner, indicative of a robust fit to
the test set data and exemplary predictive performance.

Figure 11: Receiver Operating Characteristic (ROC) Curves for Model Discrimination
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Given that the XGBoost model attains the highest test ROC-AUC score, we acknowledge the superior
classification efficacy of the XGBoost model among the five considered models.
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Figure 12: Comprehensive Risk Index Map Derived from the XGBoost Model

In Figure 12, a cartographic representation is presented, depicting the cumulative predicted probabilities for
all four potential H5N1 outbreak types (poultry, non-poultry, wild bird, and captive wild bird) across
all counties in March 2023. These probabilities are computed through the application of the XGBoost model.
The amalgamated probability across the four distinct outbreak types for each county may be construed as
its risk index. This risk index serves as a composite measure encapsulating the cumulative probabilities
associated with the aforementioned outbreak types collectively. A higher value ascribed to this index implies
a correspondingly greater overall risk of encountering an outbreak. It is imperative to underscore that a
heightened darkness in the visual representation corresponds to an elevated perceived risk of an outbreak.
Furthermore, the identification of green dots in the visualization designates counties that indeed experienced
H5N1 cases in March 2023. The magnitude of the green dots is indicative of the extent of outbreak cases,
where a larger green dot conveys a higher incidence of outbreaks.
Figure 13 provides an in-depth examination through a series of risk index maps, which divide the United
States into four distinct regions: West, South, Midwest, and Northeast. The presence of documented H5N1
cases is represented by green dots within these regions, and the size of each green dot is scaled to reflect
its contextual significance within the respective region, aiming to amplify visual impact. Additionally, blue
triangles within each region pinpoint counties with reported cases and a risk index exceeding 0.25.
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Figure 13: Risk Index Map by Regions Derived from the XGBoost Model

Upon careful examination of Figures 13.1 and 13.2, it becomes evident that these regions experienced the
fewest outbreaks in March 2023 among the four delineated regions. Specifically, within the West region,
six counties are marked by blue triangles - three in California, two in Colorado, and one in Oregon. The
South region exhibits a total of two counties with blue triangles, all located in Florida. Figure 13.3 reveals a
solitary county, situated in Minnesota, marked by a blue triangle. However, it is noteworthy that the county
highlighted is not necessarily the one with the highest incidence of H5N1 cases, because the size of the green
dot is not the largest in the region. Conversely, Figure 13.4 unequivocally illustrates that the Northeast
region endured the most severe H5N1 outbreak in March 2023 among the four regions. Four counties are
identified by blue triangles, with particular emphasis on the county in Pennsylvania, which recorded the
highest number of H5N1 outbreak cases.

Table 8: Counties with Confirmed Cases in March 2023 and High H5N1 Outbreak Risk Index Predicted by
XGBoost Model

FIPS State County Risk Index Real Cases Region
8069 CO larimer county 1.7793775 1 West

36103 NY suffolk county 1.1598013 1 Northeast
6041 CA marin county 0.8736894 1 West
6001 CA alameda county 0.8572757 2 West

42071 PA lancaster county 0.7268378 92813 Northeast
8005 CO arapahoe county 0.5431374 11 West

36109 NY tompkins county 0.5326815 6503 Northeast
27053 MN hennepin county 0.4637383 1 Midwest
12057 FL hillsborough county 0.4396641 341 South
6097 CA sonoma county 0.3607736 3 West

25001 MA barnstable county 0.3071986 1 Northeast
12031 FL duval county 0.2581048 1 South
41007 OR clatsop county 0.2504931 1 West

Table 8 further strengthens the portrayal of the geographical distribution of H5N1 risk and actual cases,
providing additional depth to the visual insights obtained from the accompanying risk index maps in Figure
12 and 13. Noteworthy is the commendable performance of the XGBoost model, which accurately identifies
the Northeast region as particularly risky. This is substantiated by elevated risk indices and confirmed cases
in specific counties, such as Suffolk County, New York, and Lancaster County, Pennsylvania, underscoring
the effectiveness of the XGBoost model in risk prediction.
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5 Conclusion and Suggestions

In this study, logistic regression, model regularization techniques, 10-fold cross validation, and eXtreme
Gradient Boosting (XGBoost) have been methodically utilized to predict the probability of H5N1 outbreaks
in the United States. The study’s results demonstrate a notably high ROC-AUC score of 0.87928 for the
XGBoost model, underscoring its effectiveness in forecasting future H5N1 cases. This model has accurately
pinpointed counties in the United States, particularly in the Northeast region, with an elevated risk of H5N1
outbreaks in March 2023, which corresponds closely with the actual outbreak patterns observed. Within this
context, geographic factors emerged as the most critical features in the XGBoost model. Additionally, the
variable of temperature was identified as a subsequent pivotal feature, aiding in the guideline of H5N1 risk
control across various U.S. counties.
However, the study acknowledges certain limitations in its methodology. The predictive models predominantly
considered variables such as temperature, types of outbreaks, time, and population density. Critical factors
like existing control zones, wild waterfowl migration patterns, agricultural practices, off-site daily mortality
disposal methods, and wild bird access to feed (Green et al. 2023), which could significantly influence H5N1
spread, were not incorporated.
To augment the robustness and precision of our models, future studies should incorporate more comprehensive
datasets, including factors like bird migration, human travel patterns, and agricultural data. Exploring
advanced machine learning techniques, such as Convolutional Neural Networks (CNNs) and time series
analysis, is recommended to elucidate the intricate interactions among these variables. The efficacy of CNNs
in related fields is exemplified in the work of Scarafoni et al. (2019), who adeptly applied deep CNN models
to predict the host tropism of the Influenza A virus based on protein sequences, thereby demonstrating the
potential of this method in virological studies. Furthermore, integrating time series techniques with tree
models such as Random Forest and XGBoost, as demonstrated by Kane et al. (2014) in their analysis of
H5N1 outbreak predictions in Egypt, could yield low mean square error (MSE) in both retrospective (MSE
= 6.3195) and prospective (MSE = 24.8101) contexts. Additionally, the application of Long Short-Term
Memory (LSTM) networks, as shown in the study “Prediction of COVID-19 using long short-term memory
by integrating principal component analysis and clustering techniques,” (Ilu, Rajesh, and Mohammed 2022)
underscores the viability of LSTM in H5N1 research. This study reported both sensitivity and specificity
rates of 98% for the LSTM model, indicating its commendable performance in disease forecasting.
Our study identifies geographical location and temperature as key predictors in distinguishing between
infected and uninfected cases in our model. “Technical Report: Highly Pathogenic Avian Influenza A(H5N1)
Viruses” from Centers for Disease Control and Prevention (2023) highlights the current low public health risk
posed by A(H5N1) viruses. However, the widespread geographic distribution of infected birds and poultry,
along with the potential for human and mammalian exposures, increases the likelihood of viral evolution
or reassortment events, potentially altering the risk assessment. This underscores the connection between
H5N1 infection and geographic factors, corroborating our model’s emphasis on these variables. Additionally,
the study “Avian Influenza Virus (H5N1); Effects of Physico-Chemical Factors on Its Survival” conducted
by Shahid et al. (2009) reveals a significant relationship between Avian Influenza Virus H5N1 infection and
temperature, demonstrating that the virus maintains infectivity at 4 degrees Celsius (39.2 Fahrenheit) for
over 100 days, although hemagglutinin (HA) activity diminishes. In contrast, the virus loses its infectivity
after 24 hours at room temperature 28 degrees Celsius (82.4 Fahrenheit).
Future research, building on our study’s insights, should delve deeper into the intricate relationships among
spatial, time, and temperature factors. Emphasizing the geographical location and temperature as pivotal
predictors, researchers could explore the spatial dynamics of H5N1 outbreaks with a finer resolution, considering
not only county-level data but also incorporating more granular information to capture localized patterns.
Additionally, investigating the interactions among spatial, time, and temperature variables can provide a
more nuanced understanding of the dynamics influencing the spread of the virus. Integrating advanced
spatial analysis techniques, such as Geographic Information System (GIS) mapping, can help uncover spatial
patterns that may not be immediately apparent, contributing to a more comprehensive predictive model.
In addition to research directions, comprehensive datasets would enable a more holistic analysis of the
multifaceted aspects influencing H5N1 transmission. Collaborative efforts among researchers, governmental
agencies, and international organizations can facilitate the sharing of standardized data, fostering a collective
approach to understanding and combating the potential threats posed by H5N1 outbreaks.
By focusing on these research directions, scientists can contribute to the development of more robust and
accurate predictive models, ultimately aiding in proactive measures for H5N1 risk management and control.
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6 Computational Details

The analysis was conducted using R version 4.4.0 for Windows, with the utilization of various R libraries
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/ to facilitate data
manipulation, statistical modeling, and visualization. The following R libraries were employed in this study:

• car (3.1-2): Companion to Applied Regression
• dplyr (1.1.4): A Grammar of Data Manipulation
• GGally (2.2.1): Extension to ‘ggplot2’
• ggplot2 (3.5.1): Create Elegant Data Visualisations Using the Grammar of Graphics
• ggpubr (0.6.0): ‘ggplot2’ Based Publication Ready Plots
• glmnet (4.1-8): Lasso and Elastic-Net Regularized Generalized Linear Models
• grid (4.4.0): The Grid Graphics Package
• gridExtra (2.3): Miscellaneous Functions for “Grid” Graphics
• imputeTS (3.3): Time Series Missing Value Imputation
• knitr (1.46): A General-Purpose Package for Dynamic Report Generation in R
• patchwork (1.2.0): The Composer of Plots
• pROC (1.18.5): Display and Analyze ROC Curves
• psych (2.4.2): Procedures for Psychological, Psychometric, and Personality Research
• tidyr (1.3.1): Tidy Messy Data
• usmap (0.6.4): US Maps Including Alaska and Hawaii
• usmapdata (0.1.2): Mapping Data for ‘usmap’ Package
• xgboost (1.7.7.1): Extreme Gradient Boosting

The analyses were conducted in the RStudio integrated development environment (IDE) version “Mountain
Hydrangea” Release (583b465e, 2023-06-05) for Windows. RStudio can be downloaded for free at https:
//posit.co/.
An Intel-compatible 64-bit platform is preferred. At least 2048 MB of Random Access Memory (RAM) is
recommended to run the whole script.

7 Reproducibility

Ensuring the reproducibility of this study is of utmost importance. The entire analysis, including data
preprocessing, model development, and result generation, is encapsulated in an RMarkdown document. A
GitHub repository is also created to store relevant materials: https://github.com/GitData-GA/h5n1.
The RMarkdown file, necessary BibTeX and style files can be downloaded at the following link:
https://h5n1.gd.edu.kg/code/download.zip

To reproduce the findings and generate the same results presented in this paper, follow these steps:

1. Download the Necessary Files:

• Navigate to the provided link in your browser.
• Unzip the downloaded file to a directory of your choice.

2. Open RMarkdown in RStudio:

• Ensure you have R and RStudio installed on your machine.
• Open RStudio and navigate to the directory where you unzipped the files.
• Open the RMarkdown file (main.Rmd) in RStudio.

3. Install Required Packages:

• If not already installed, install the required R packages from the CRAN.

4. Knit the Document:

• Knit the RMarkdown file to reproduce the analysis. This will execute the code chunks, perform the
analysis, and generate the final document.

141

https://CRAN.R-project.org/
https://posit.co/
https://posit.co/
https://github.com/GitData-GA/h5n1
https://h5n1.gd.edu.kg/code/download.zip


By following these steps, you can recreate the entire analysis and verify the results presented in this paper.
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