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Abstract. Infectious diseases present persistent challenges to global public health, demanding a comprehen-
sive understanding of their dynamics to develop effective prevention and control strategies. The
presence of asymptomatic carriers, individuals capable of transmitting pathogens without displaying
symptoms, challenges conventional containment approaches focused on symptomatic cases. Waning
immunity, the decline in protective response following natural recovery or vaccination, introduces
further complexity to disease dynamics. In this paper, we developed a mathematical model to in-
vestigate the interplay between these factors, aiming to inform strategies for the management of
infectious diseases. We derived the basic reproduction number for the model and showed that the
disease would die out when this number falls below 1. We obtained a formula to estimate the rela-
tive contributions of asymptomatic and symptomatic transmission to the basic reproduction number,
which remains unchanged when vaccination is included in the model. Through computer simulations
with parameter values tailored for COVID-19 and sensitivity analysis, we demonstrated that popu-
lation susceptibility significantly impacts the timing and magnitude of infection peaks. Populations
with lower susceptibility experience delayed and less severe outbreaks. Vaccination was shown to
play a crucial role in disease control, with an increased vaccination rate, extended immunity, and
heightened vaccine efficacy proving pivotal. However, the effectiveness of these strategies hinges on
maintaining a low vaccine escape proportion. Taken together, this study underscores the need for
multifaceted, adaptable approaches to infectious disease management, highlighting the central role of
vaccination in mitigating disease spread. Further research and validation with disease-specific data
will enhance parameter estimates, improve model predictions, and inform evidence-based disease
control strategies.

1. Introduction. Infectious diseases continue to pose significant challenges to global pub-
lic health, necessitating concerted efforts from researchers and healthcare practitioners to
develop comprehensive strategies for understanding, preventing, and managing them [6, 28].
Two specific features of infectious diseases have recently garnered considerable attention due
to their complexity and potential implications: asymptomatic transmission [43] and waning
immunity [11]. These phenomena have the capacity to exert profound influences on disease
dissemination patterns, modulate the efficacy of interventions, and add layers of complexity
to public health response efforts.

Traditionally, the identification and containment of infectious diseases have revolved around
symptomatic cases — individuals who exhibit discernible clinical signs of infection. However,
the presence of asymptomatic carriers, individuals who harbor and transmit the pathogen
without displaying overt symptoms, has challenged this conventional approach. The COVID-
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19 pandemic vividly demonstrated the substantial impact of asymptomatic carriers in propa-
gating the causative agent, SARS-CoV-2 [20, 36]. Other infectious diseases also exhibit asymp-
tomatic transmission, including influenza [ 27], HIV [ 39], hepatitis B  and C  [ 25], tuberculosis 
[17], measles [3], herpes simplex virus [18], malaria [7], among others. Asymptomatic trans-
mission may stand as a formidable contributor to disease propagation, allowing the pathogen 
to silently infiltrate and establish itself within c ommunities. Such stealthy transmission often 
evades detection, rendering conventional control measures less effective and making it crucial 
to develop strategies that account for this hidden reservoir of infection.

Immunity acquired following an infection or vaccination is not always an enduring shield 
against reinfection. Over time, the protective response generated by the immune system can 
wane, leaving individuals susceptible to subsequent infections. The phenomenon of waning im-
munity is observed in various infectious diseases, introducing an additional layer of complexity 
into the dynamics of infectious diseases [5, 14, 21, 40, 47, 50]. It can lead to scenarios where a 
population’s overall immunity decreases, potentially giving rise to resurgences of the disease 
even after it appeared to be under control. The interplay between waning immunity and the 
introduction of asymptomatic carriers can further amplify the intricacies of disease dynamics 
and pose challenges for maintaining long-term population-level immunity [13, 10, 30, 35].

Understanding the interactions between asymptomatic transmission and waning immunity 
is pivotal for comprehending the overall trajectory of infectious diseases. These features can 
interact in intricate ways, affecting the overall disease burden, the potential for recurrent out-
breaks, and the effectiveness of vaccination and control strategies [ 46]. Mathematical modeling 
has emerged as a powerful tool to unravel the intricate dynamics of infectious diseases. By 
constructing mathematical frameworks that capture the interplay between hosts, pathogens, 
and environmental factors, researchers gain insights into disease transmission patterns, assess 
intervention strategies, and predict potential outcomes. For example, Moghadas et al. [33] 
and He et al. [26] found that asymptomatic transmission of COVID-19 could substantially 
contribute to the spread of the virus and that containment measures should consider this 
silent transmission. Althouse and Scarpino [2] explored the role of asymptomatic carriers 
in the resurgence of pertussis (whooping cough), highlighting that even if a high proportion 
of individuals are vaccinated, asymptomatic transmission can still sustain the disease in the 
population. Models have also been used to study the roles of asymptomatic transmission for 
other diseases, such as Zika infection [34], measles [35, 49], respiratory syncytial virus (RSV)
[38, 45], etc.

Mathematical models have also been developed to study waning immunity. Mossong et al.
[35] demonstrated that a single-dose routine vaccination strategy would not be sufficient for the 
elimination of the measles virus, provided the basic reproduction number among vaccinated 
individuals surpasses a certain threshold. This underscores the importance of determining 
both the intensity and duration of infectiousness in vaccinated individuals. López et al.
[31] analyzed more than 20 years of dengue virus infection epidemics in the isolated French 
Polynesian islands and found that lifelong serotype-specific i mmunity m ay n ot o ccur and 
that including waning immunity in models improved their accuracy in capturing epidemic 
dynamics. Woolthuis et al. [48] showed that variation in the duration of immunity can shape 
influenza e pidemics a nd i mpact t he l ong-term e ffectiveness of  va ccination. Th ese models 
provide a unique lens through which to investigate complex scenarios that are often challenging
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to dissect solely through empirical studies.
Anggriani et al. [4] recently developed a mathematical model to examine the impact of

both asymptomatic transmission and waning immunity, revealing a COVID-19 outbreak in
West Java Province, Indonesia. Their simulations suggest that waning immunity increases
outbreaks, while isolation periods can slow transmission. Another study modified an SEIR
model to capture various factors influencing the spread of COVID, including transmission dur-
ing the latent period, asymptomatic carriers, potential loss of acquired immunity, increased
awareness of social distancing, and vaccination efforts [24]. Results emphasize the benefits
of long-term confinement and extensive testing, with varying impacts on different regions. It
also underscores the effectiveness of a mass vaccination program in controlling infection size
and reducing mortality rates. Using an age-structured, deterministic model based on UK
population data, Crellen et al. [12] explored potential immunity dynamics, addressing rein-
fection and the short duration of immunity to seasonal coronaviruses. The analysis suggests
post-lockdown serological surveys can inform about waning immunity. The study cautions
policymakers on longer-term dynamics, highlighting that strategies aiming for herd immunity
may lead to repeated waves due to non-permanent immunity. In all these studies, waning im-
munity pertains to a fraction of naturally recovered individuals becoming susceptible again.
However, vaccine-induced immunity may also diminish.

In this paper, we develop and analyze an infectious disease model, aiming to shed light on
the complex interplay between asymptomatic transmission and waning immunity, considering
both natural recovery and vaccination, among other factors. Our motivation comes from the
pressing need to address real-world scenarios where asymptomatic individuals may play an
important role in transmission dynamics, and where immunity wanes over time, potentially
leading to resurgences of infection. Through our exploration, we aim to contribute to the
understanding of these multifaceted dynamics and provide insights that can inform decision-
making and policy development for disease control and prevention.

This paper is structured as follows: Section 2 outlines the model formulation, defining the
compartments and parameters governing the dynamics of infectious diseases with asympto-
matic transmission and waning immunity. In Section 3, we perform a detailed analysis of the
model, including the derivation of the basic reproduction number, study the model’s steady
states and their stability, and evaluate the relative contribution from the asymptomatic and
symptomatic transmissions. In Section 4, we present the results of numerical investigations,
employing COVID-19 as a case study to calibrate parameter values and illustrate disease
spread dynamics under various scenarios. We explore how various factors, such as asymp-
tomatic transmission, waning immunity, and vaccination effectiveness, can affect the disease
dynamics. The conclusions follow in Section 5.

2. Model development. We divide the total human population into six compartments:
susceptible (S), vaccinated (C), exposed (E), asymptomatic infected (A), symptomatic in-
fected (I), and recovered (R). The model is described by the following system of ordinary
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differential equations,

dS

dt
= Λ− λS − (ϕ+ µ)S + ρR+ ηC

dC

dt
= ϕS − θβACA− θβICI − (µ+ η)C

dE

dt
= βASA+ βISI + θβACA+ θβICI − (σ + µ)E

dA

dt
= σfE − (α+ γA + µ)A

dI

dt
= σ(1− f)E + αA− (ω + γI + µ)I

dR

dt
= γAA+ γII − (ρ+ µ)R,

(2.1)

with λ = βAA + βII representing the force of infection. In the model, the parameter Λ
represents the generation rate of the susceptible population, and µ denotes the natural death
rate. Susceptible individuals can become infected either by asymptomatic infected individuals
at a rate of βASA or by symptomatic infected individuals at a rate of βISI, thereby entering
the exposed stage, during which they are not infectious. Susceptible individuals are assumed
to be vaccinated at a per capita rate of ϕ. Because the vaccine may not be perfect, individuals
can still become infected following vaccination, with the extent of protection represented by
the vaccine escape proportion denoted as θ ∈ (0, 1). When θ = 0, the vaccine offers perfect
protection, and no vaccinated individuals will be infected. In contrast, when θ = 1, the
vaccine provides no protection, and vaccinated individuals have the same infection rate as
fully susceptible individuals. Vaccinated individuals can revert to a susceptible state at a rate
of η due to vaccine’s waning immunity.

Exposed individuals are assumed to progress to the next stage at a rate of σ, becoming
either asymptomatic with a fraction f or symptomatic with a fraction of 1−f . Asymptomatic
infected individuals may either become symptomatic at a rate of α or recover at a rate of γA.
Symptomatic infected individuals have a disease-induced mortality rate of ω and a recovery
rate of γI . Naturally recovered individuals can also revert to a susceptible state at a rate of
ρ due to waning immunity. For simplicity of notation, in the model, we combine parameters
and denote:

(2.2) δE = σ + µ, δA = α+ γA + µ, δI = ω + γI + µ.

A diagram of model (2.1) is presented in Figure 1. The descriptions of variables and parameters
are summarized in Table 1.

From model (2.1), we can observe that all the derivatives evaluated at the state 0 satisfy

Ṡ|S=0 ≥ 0, Ċ|C=0 ≥ 0, Ė|E=0 ≥ 0,

Ȧ|A=0 ≥ 0, İ|I=0 ≥ 0, Ṙ|R=0 ≥ 0.

Hence, if the initial conditions remain within the closed positive hyperspace R6
+, the solution 

will also remain in R6
+ for the entire duration, i.e., (S(t), C(t), E(t), A(t), I(t), R(t)) ∈ R6

+ for
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Figure 1. Flow diagram of model (2.1). The population is divided into 6 compartments: susceptible
individuals (S), vaccinated individuals (C), exposed individuals (E), asymptomatic infected individuals (A),
symptomatic infected individuals (I), and recovered individuals (R). Detailed model parameter descriptions are
given in Table 1.

any time t. Defining N(t) = S(t) + C(t) + E(t) + A(t) + I(t) +R(t) as the total population,
and summing the equations in (2.1), we obtain

dN

dt
= Λ− µN − ωI ≤ Λ− µN.

It follows that

lim sup
t→∞

N(t) ≤ Λ

µ
.

Hence, we define the domain of the model (2.1) as

D =
{
(S,C,E,A, I,R) ∈ R6

+|0 ≤ S + C + E +A+ I +R ≤ Λ

µ

}
.

D is positively invariant for system (2.1). In other words, trajectories with initial conditions
in D will remain within D for all time. Using a method similar to that in [22], we can show
the existence of a unique solution of system (2.1) in D for any initial conditions in D. Thus,
system (2.1) is both epidemiologically and mathematically well-posed.

3. Model analysis.
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Table 1
Model variables and parameters

Symbol Meaning Baseline value Unit Source

Variables
S(t) Susceptible population
C(t) Vaccinated population
E(t) Exposed population
A(t) Asymptomatic infected population
I(t) Symptomatic infected population
R(t) Recovered population
N(t) Total population

Parameters
Λ Recruitment rate of susceptible 11528 person/day [23]
µ Natural death rate 1/(79×365) 1/day [23]
βA Asymptomatic transmission rate 1.311× 10−9 1/(person×day) [23]
βI Symptomatic transmission rate 4.334× 10−9 1/(person×day) [23]
σ Transition rate from E to A or I 1/5.44 1/day [51]
ρ Waning rate of natural immunity 1/238 1/day [51]
f Proportion of asymptomatic infection 35% unitless [37]
α Transition rate from A to I 0.33 1/day [23]
γA Recovery rate of individuals in class A 0.094 1/day [23]
γI Recovery rate of individuals in class I 0.094 1/day [23]
ω Disease-induced death rate 0.017 1/day [23]
ϕ Vaccination rate 1/30 1/day Assumed
η Waning rate of vaccine-induced immunity 1/127 1/day [51]
θ Vaccine escape proportion 0.3 unitless [51]

3.1. Model without vaccination. We begin the analysis of the model without vaccination,
which can be simplified as follows

dS

dt
= Λ− λS − µS + ρR

dE

dt
= βASA+ βISI − (σ + µ)E

dA

dt
= σfE − (α+ γA + µ)A

dI

dt
= σ(1− f)E + αA− (ω + γI + µ)I

dR

dt
= γAA+ γII − (ρ+ µ)R,

(3.1)

with λ = βAA + βI I representing the force of infection.

3.1.1. Basis reproduction number. The basic reproduction number, widely used in epi-
demiology, represents the average number of secondary infections produced by one infected 
individual in a completely susceptible population. We derive the basic reproduction num-
ber using the next generation approach as follows [44]. Only considering the infected classes
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x = (E,A, I) and using the notations in (2.2), we get the system ẋ = F(x)− V(x), where

F =

βASA+ βISI
0
0

 , V =

 δEE
−σfE + δAA

−σ(1− f)E − αA+ δII

 .

Evaluating the Jacobian matrices of F and V at the disease-free equilibrium for model (3.1),
i.e. E0 = (S0, 0, 0, 0, 0) where S0 is equal to Λ/µ, we get

F =

0 βAS
0 βIS

0

0 0 0
0 0 0

 , V =

 δE 0 0
−σf δA 0

−σ(1− f) −α δI

 .

The inverse of matrix V is

V −1 =
1

det(V )

 δAδI 0 0
σfδI δEδI 0

ασf + σ(1− f)δA αδE δEδA

 ,

where the matrix determinant is det(V ) = δEδAδI . It follows that

FV −1 =
1

det(V )

a11 a12 a13
0 0 0
0 0 0

 ,

where

a11 = βAS
0σfδI + βIS

0[ασf + σ(1− f)δA],

a12 = βAS
0δEδI + βIS

0αδE ,

a13 = βIS
0δEδA.

According to [44], the basic reproduction number R0 is the spectral radius of the matrix
FV −1. Therefore,

(3.2) R0 =
a11

det(V )
= RA

0 +RI
0

with

RA
0 =

βA · Λ
µ

δA
· σf
δE

and RI
0 =

βI · Λ
µ

δI
· σ(1− f)

δE
+

βI · Λ
µ

δI
· σf
δE

· α

δA
.

In the term RA
0 , βA · Λµ represents the rate at which one asymptomatic infected individual

generates exposed individuals in an entirely susceptible environment per unit of time, 1/δA 
is the average duration an individual spends in the asymptomatic infected group A, and
σf/δE represents the fraction of infected individuals who transition from the exposed group
E to the asymptomatic infected class A. Therefore, R0

A quantifies the number o f secondary 
asymptomatic infected individuals produced by one infectious individual while in group A.
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Similarly, the term RI
0 represents the number of secondary symptomatic infected individ-

uals generated by one infectious individual while in class I. The two terms in this expression
account for the transition of infected individuals from class E either directly to I or via A
before entering I. Taken together, the expression for the basic reproduction number R0 high-
lights the importance of reducing both asymptomatic and symptomatic infected individuals.
We can further evaluate the relative contribution to the basic reproduction number from
asymptomatic and symptomatic transmissions. This ratio is given by

(3.3)
RA

0

RI
0

=

βA
δA
βI
δI

· f

1− f + f · α
δA

,

which depends on the transmission rates (βA and βI), proportion of asymptomatic infection
(f), transition rate (α) from asymptomatic to symptomatic, and removal rates from compart-
ments (δA and δI).

3.1.2. Existence and stability of equilibria. We calculate the equilibrium point of the
model (3.1). Let all the derivatives in the system be 0. From the third, fourth, and fifth
equation of model (3.1), we get the equilibrium in terms of A

(3.4) E =
δA
σf

A, I = ξA, R =
γA + ξγI
ρ+ µ

A,

where

(3.5) ξ =
αf + (1− f)δA

fδI
.

Using the above expression for ξ and performing a straightforward calculation, we can rewrite
the basic reproduction number (3.2) as

(3.6) R0 =
Λσf(βA + ξβI)

µδEδA
.

Substituting (3.4) into the second equation of (3.1), we have

(3.7) βASA+ ξβISA =
δEδA
σf

A.

There are two cases. The first is when A = 0. It follows that S = Λ/µ,E = 0, I = 0, and
R = 0. Thus, we have the disease-free equilibrium point for model (3.1), which is denoted by
E0 and given by

(3.8) E0 = (S,E,A, I,R) =

(
Λ

µ
, 0, 0, 0, 0

)
.

When A ̸= 0, dividing Eq. (3.7) by A leads to

S =
δEδA

σf(βA + ξβI)
.
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Using the basic reproduction number (3.6), the above expression for S can be rewritten as

(3.9) S =
Λ

µ
· 1

R0
.

Let N = S +E +A+ I +R be the total population. Adding all the equations in (3.1) yields

dN

dt
= Λ− µN − ωI.

At the equilibrium, the above derivative should be zero, leading to

Λ− µ(S + E +A+ I +R)− ωI = 0.

Using (3.4), we obtain

Λ− µ

(
Λ

µ
· 1

R0
+

δA
σf

A+A+ ξA+
γA + ξγI
ρ+ µ

A

)
= ωξA.

Solving for A, we have

(3.10) A =
Λ
(
1− 1

R0

)
µ
(
δA
σf + 1 + ξ + γA+ξγI

ρ+µ

)
+ ξω

.

It follows from (3.4), (3.9) and (3.10) that all the components of the positive equilibrium or
endemic equilibrium (S,E,A, I,R) are in the interval (0,Λ/µ) if and only if R0 > 1. We
summarize the above results in the following theorem.

Theorem 3.1. Model (3.1) always admits a unique disease-free equilibrium E0, given by
(3.8). The endemic equilibrium E∗ = (S∗, E∗, A∗, I∗, R∗) exists if and only if R0 > 1, and it
is given by

S∗ =
Λ

µ
· 1

R0
, A∗ =

Λ
(
1− 1

R0

)
µ
(
δA
σf + 1 + ξ + γA+ξγI

ρ+µ

)
+ ξω

,

E∗ =
δA
σf

A∗, I∗ = ξA∗, R∗ =
γA + ξγI
ρ+ µ

A∗,

where R0 and ξ are given in (3.2) and (3.5), respectively.

We are interested in the scenario where the disease dies out, i.e., when the system converges 
to the disease-free equilibrium point E0. We have the following result.

Theorem 3.2. When R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable. 
When R0 > 1, E0 is unstable.
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Proof. By evaluating the Jacobian matrix of system (3.1) at the disease-free equilibrium
E0 and denoting the eigenvalue as ζ, we get the characteristic equation, given by∣∣∣∣∣∣∣∣∣∣∣

−µ− ζ 0 −βA · Λ
µ −βI · Λ

µ ρ

0 −δE − ζ βA · Λ
µ βI

Λ
µ 0

0 σf −δA − ζ 0 0
0 σ(1− f) α −δI − ζ 0
0 0 γA γI −(ρ+ µ)− ζ

∣∣∣∣∣∣∣∣∣∣∣
= 0.

There are two negative eigenvalues, ζ = −µ and ζ = −(ρ+µ). The remaining eigenvalues are
determined by

(3.11) βI ·
Λ

µ
[ασf + σ(1− f)(ζ + δA)]− (ζ + δI)

[
(ζ + δE)(ζ + δA)− σfβA · Λ

µ

]
= 0

When R0 > 1, we denote the left side of (3.11) as F (ζ), which is a continuous function
on [0,+∞). On the one hand,

F (0) = βI ·
Λ

µ
[ασf + σ(1− f)δA]− δI

(
δEδA − σfβA · Λ

µ

)
= δEδAδI

(
RI

0 − 1 +RA
0

)
= δEδAδI (R0 − 1) > 0.

On the other hand, F (ζ) → −∞ as ζ → +∞. According to the intermediate value theorem,
F (ζ) has at least one positive root, which indicates that the disease-free equilibrium E0 is
unstable.

When R0 < 1, we rewrite (3.11) as

(3.12)
βI · Λ

µ [ασf + σ(1− f)(ζ + δA)] + σfβA · Λ
µ (ζ + δI)

(ζ + δA)(ζ + δI)
= ζ + δE .

We denote the left and right side of (3.12) as G(ζ) and H(ζ), respectively. Suppose the real
part of the eigenvalue is Re(ζ) ≥ 0. We evaluate the modulus of the left side and obtain

|G(ζ)| =

∣∣∣∣∣ βI ·
Λ
µ

ζ + δI

[
ασf

ζ + δA
+ σ(1− f)

]
+

σfβA · Λ
µ

ζ + δA

∣∣∣∣∣
≤

∣∣∣∣∣ βI ·
Λ
µ

ζ + δI

[
ασf

ζ + δA
+ σ(1− f)

]∣∣∣∣∣+
∣∣∣∣∣σfβA · Λ

µ

ζ + δA

∣∣∣∣∣
≤

βI · Λ
µ

δI

[
ασf

δA
+ σ(1− f)

]
+

σfβA · Λ
µ

δA

= δER0

< δE .
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However, the modulus of the right side is |H(ζ)| ≥ δE when Re(ζ) ≥ 0. This results in a
contradiction in (3.12). Thus, all the roots of the characteristic equation (3.12) have negative
real parts and the disease-free equilibrium E0 is locally asymptotically stable. This completes
the proof.

Remark. By evaluating the Jacobian matrix at the endemic equilibrium point E∗ =
(S∗, E∗, A∗, I∗, R∗) as provided in Theorem 3.1, we can derive the characteristic equation.
After extensive computation, this equation is expressed as follows:

(ζ + βAA
∗ + βII

∗ + µ)(ζ + ρ+ µ)(ζ + δE)(ζ + δA)(ζ + δI) = ασfβIS
∗(ζ + µ)(ζ + ρ+ µ)

+ σ(1− f)βIS
∗(ζ + µ)(ζ + ρ+ µ)(ζ + δA) + σfβAS

∗(ζ + µ)(ζ + ρ+ µ)(ζ + δI)

+ (βAA
∗ + βII

∗)[σfραγI + σfργA(ζ + δI) + σ(1− f)ργI(ζ + δA)].

While we can expand the products in the above equation and derive some general stability
conditions for the endemic equilibrium using the Routh-Hurwitz Criterion, expressing these
conditions succinctly in terms of the basic reproduction number R0 is challenging, if not
impossible. Therefore, we will not present the general stability conditions for the endemic
equilibrium E∗.

3.2. Model with vaccination. In this section, we study the model with vaccination (2.1).
Similar to model (3.1), system (2.1) always has a disease-free equilibrium

Ē0 = (S̄0, C̄0, Ē0, Ā0, Ī0, R̄0) =

(
Λ(µ+ η)

µ(ϕ+ µ+ η)
,

Λϕ

µ(ϕ+ µ+ η)
, 0, 0, 0, 0

)
.

Applying a similar method, we can derive the basic reproduction number for model (2.1) with
vaccination. Because it is under the influence of vaccination measures, we refer to it as the
control reproduction number, which is given by

(3.13) Rc = RA
c +RI

c

where

RA
c =

βA ·
[

Λ(µ+η)
µ(ϕ+µ+η) +

θΛϕ
µ(ϕ+µ+η)

]
σf

δEδA
,

RI
c =

βI ·
[

Λ(µ+η)
µ(ϕ+µ+η) +

θΛϕ
µ(ϕ+µ+η)

]
σ(1− f)

δEδI
+

βI ·
[

Λ(µ+η)
µ(ϕ+µ+η) +

θΛϕ
µ(ϕ+µ+η)

]
ασf

δEδAδI
.

The control reproduction number Rc shares a similar biological interpretation with the basic
reproduction number R0. RA

c represents the contribution from asymptomatic transmission,
whereas RI

c represents the contribution from symptomatic transmission. It’s worth noting
that when the vaccination rate ϕ = 0, the control reproduction number is precisely the same
as the basic reproduction number stated in (3.2).

We also evaluate the relative contribution to the control reproduction number from asymp-
tomatic and symptomatic transmissions, and obtain

(3.14)
RA

c

RI
c

=

βA
δA
βI
δI

· f

1− f + f · α
δA

.
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This is consistent with the ratio in (3.3), indicating that the inclusion of vaccination does not 
alter the relative contributions of asymptomatic and symptomatic transmissions.

Due to the complexity of model (2.1), we will conduct numerical investigations to explore 
the existence and stability of its equilibria, as well as the influence o f various parameters on 
the disease dynamics.

4. Numerical investigations. In this section, we use COVID-19 as an example to cal-
ibrate parameter values, illustrate the dynamics of disease spread in various scenarios, and 
evaluate how parameters — particularly the vaccination rate, waning immunity, asymptomatic 
transmission, and the vaccine escape proportion — affect the spread of the disease.

Given that the life expectancy in the US population is approximately 79 years [8], we 
set the natural death rate to µ = 1/(79 × 365) per day. The total US population in 2021 is 
approximately N0 = 332, 398, 949, and it is assumed to remain relatively stable during the 
period of the numerical simulation. Consequently, the rate of birth is approximately the rate 
of death, which allows us to get an estimation of the recruitment rate Λ = N0µ, measured 
in individuals per day. The other parameter values are listed in Table 1, with most of them 
chosen based on data fitting a  model to COVID-19 cases [23].

Using the parameter values from Table 1, we numerically solved model (2.1) and plotted 
the predicted dynamics of asymptomatic and symptomatic infected individuals in Figure 2(a) 
and (b) respectively. In each figure, t wo s cenarios w ere c ompared: o ne a ssuming a  high 
initial proportion of susceptible individuals (80% was chosen in the simulation) and the other 
assuming a low initial susceptibility (5% was chosen in the simulation). It was observed 
that, in both scenarios, both asymptomatic and symptomatic infected individuals converged 
to a steady state after reaching the peak (solid lines in Figure 2). The calculation of the 
control reproduction number using the formula (3.13) yielded Rc = 5.352, which supports 
the hypothesis that the disease becomes endemic (i.e. the endemic equilibrium of the model 
is asymptotically stable) when Rc exceeds 1. Although the initial conditions (80% vs. 5%
susceptibility) did not affect t he fi nal en demic st ate, th e re sults hi ghlighted th e significant 
impact of population susceptibility on the model’s dynamics, with populations exhibiting 
lower susceptibility experiencing lower and delayed infection peaks.

We further evaluated the contribution of asymptomatic transmission to the disease dynam-
ics. For comparison, we plotted the predicted dynamics assuming no asymptomatic transmis-
sion (dashed lines in Figure 2), i.e. βA = 0, while keeping other parameter values unchanged. 
It was found that there was no significant difference between the predictions with and without 
asymptomatic transmission. This finding was c onsistent w ith t he c alculation o f t he relative 
contribution using the formula (3.14). Using the parameter values listed in Table 1, the relative
contribution from asymptomatic and symptomatic transmissions, given by the ratio Rc

A/Rc
I , 

was approximately 3%. Even when we set βA to be equal to βI , the ratio remained at ap-
proximately 10%. These results suggest that asymptomatic transmission does not contribute 
significantly to the total transmission.

The above scenario shows the persistence of the disease when the control reproduction 
number Rc exceeds 1. If we increase the vaccination rate, decrease the waning rate of vaccine-
induced immunity, and reduce the vaccine escape proportion each by a factor of 10, i.e., 
ϕ = 1/3, η = 1/1, 270, θ = 0.03, while keeping all other parameter values unchanged as
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Figure 2. Convergence to the endemic equilibrium for model (2.1) with Rc = 5.352. The parameter values
are detailed in Table 1. The solid lines depict the disease dynamics with varying proportions (the blue color
representing 80% vs. the red color representing 5%) of susceptible individuals at the outset. The dashed lines
represent the scenario without asymptomatic transmission.

listed in Table 1, then the control reproduction number is reduced to Rc = 0.399. Figure 3
illustrates the convergence to the disease-free equilibrium for model (2.1) in this case. Panels
(a) and (b) depict the prevalence of individuals in compartments A and I, respectively. As
in Figure 2, we considered different initial conditions for susceptible individuals. The results
indicate that the disease dies out in both scenarios when Rc < 1. The model predicts a lower
peak in the prevalence of symptomatic infected individuals whenever a smaller proportion of
individuals are assumed to be susceptible at the outset. We also observed that the system
converges to the disease-free equilibrium under various parameter values (ensuring Rc < 1)
and diverse initial conditions. Whether backward bifurcation occurs in this model remains to
be further investigated.
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Figure 3. Convergence to the disease-free equilibrium for model (2.1) when Rc = 0.399. Panels (a) and 
(b) display the prevalence for compartments A and I respectively. We set ϕ = 1/3, η = 1/1270, and θ = 0.03, 
while all other parameter values are provided in Table 1.
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To understand how the changes in model parameters affect the spread of the disease, we
calculated the Partial Rank Correlation Coefficients (PRCCs), which can identify which model
input parameters have a strong influence on the output variable of interest. Figure 4 displays
the PRCCs for the control reproduction number Rc (left panel) and the combined level of
active infections A + I on the 25th day (right panel), with respect to all model parameters.
We chose day 25 because the disease peak occurs approximately at that time. The baseline
values for these parameters are listed in Table 1. Most parameter ranges in the sensitivity test
extend by 20% in both directions from their respective baseline values. The results strongly
underscore the significant influence of vaccination-related parameters, particularly ϕ, η and θ,
on both Rc and the total number of active infections. This implies that strategies aimed at
enhancing vaccination outcomes, whether through augmenting vaccination rates, extending
the duration of vaccine-induced immunity, or fortifying the protective efficacy of vaccines, can
serve as effective measures in curtailing Rc and mitigating infections. This insight provides
valuable guidance for formulating and refining vaccination strategies in the battle against
infectious diseases.

Figure 4. Partial Rank Correlation Coefficients (P RCCs) fo r th e co ntrol re production nu mber Rc  and 
active infections A + I on day 25 are assessed with respect to all parameters. The baseline values for all 
parameters are provided in Table 1, and for most of them, the ranges extend 20% both to the left and right of 
their baseline values.

Given the substantial impact that the vaccination rate ϕ, vaccine waning rate η, and vac-
cine escape proportion θ have on the disease dynamics (Figure 4), we have generated contour 
maps illustrating the control reproduction number Rc in relation to these parameters (Figure 
5). The results indicate that, under these specified parameter values, i t i s possible to reduce 
Rc below the critical threshold of unity. This reduction relies on both increasing the vaccina-
tion rate and decreasing the vaccine waning rate simultaneously. However, this reduction is 
only achievable when θ assumes a small value, emphasizing the necessity of a sufficiently high 
level of protection provided by the vaccines. Therefore, in scenarios of virus infections, such as 
SARS-CoV-2 infection characterized by frequent viral mutations and limited cross-immunity, 
conditions which often lead to a high escape proportion, supplementary control measures may 
be crucial in tandem with vaccination efforts. This highlights the complexity of managing
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infectious diseases in contexts where the virus is prone to rapid evolution, and where standard
vaccination strategies may not be adequate on their own.
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Figure 5. Contour maps illustrating the control reproduction number Rc concerning the vaccination rate 
ϕ and vaccine waning rate η for various vaccine escape proportions θ. The remaining parameter values are 
provided in Table 1.

In Figure 6, we explored the projected dynamics of both asymptomatic and symptomatic 
infected individuals, considering varying parameters ϕ, η, and θ. The upper panels illustrate 
the prevalence of individuals in compartments A and I under different vaccination r ates ϕ. 
All other parameters align with those outlined in Table 1. The initial condition was cho-
sen to be the endemic equilibrium in the absence of vaccination. The results demonstrate 
a decrease in prevalence as vaccination rates increase in both plots. This suggests that ac-
celerated vaccination efforts l ead t o a  r eduction i n i nfections. The m iddle p anels s how the 
dynamics under varying vaccine waning rates η. There is a noticeable decrease in prevalence 
as vaccine-induced immunity endures for a longer period. Hence, an extended duration of 
vaccine protection results in fewer infections. In the lower panels, we presented the dynamics 
with different vaccine escape proportions θ . The findings indicate a reduction in prevalence as 
the immune escape parameter diminishes, which implies that higher levels of vaccine-conferred
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protection lead to a decrease in infections. These simulation results collectively emphasize the
pivotal role of vaccination, providing invaluable insights into how adjustments in vaccination
rates, the extension of vaccine-induced immunity, and the enhancement of vaccine efficacy can
effectively curtail the spread of infectious diseases.

5. Conclusion and discussion. Infectious diseases present substantial challenges to the
global public health. Mathematical modeling has significantly contributed to our comprehen-
sion of disease spread and the development of effective prevention and control strategies. This
work advances our understanding by constructing a comprehensive mathematical model that
incorporates asymptomatic transmission and waning immunity, two factors that may poten-
tially reshape disease dynamics and impact the efficacy of interventions. Through mathemati-
cal analysis, sensitivity test and numerical investigations, we gained insights into the intricate
interplay of these elements, among other factors, and their implications for disease control.

We derived the basic reproduction number R0 for the model, which was proved to provide
a critical threshold for disease extinction or persistence. When R0 falls below 1, the disease is
predicted to die out. Thus, this metric serves as a fundamental benchmark for evaluating the
effectiveness of prevention and control measures. The basic reproduction number comprises
contributions from both asymptomatic and symptomatic transmissions, which highlight the
importance of targeting both forms of infection for effective disease control.

Numerical simulations of the model and sensitivity analysis have yielded a few results that
may have profound implications for the management of infectious diseases. Firstly, we found
that the level of susceptible population significantly influences disease dynamics (Figures 2
and 3). Populations with lower susceptibility tend to experience lower and delayed infection
peaks. This observation underscores the importance of tailored interventions, particularly
in settings where varying levels of susceptibility exist within the population. Understanding
and addressing this susceptibility gradient can help optimize the allocation of resources and
control measures.

Secondly, our findings indicate the pivotal role of vaccination in controlling infectious
diseases. Specifically, increasing vaccination rates, extending the duration of vaccine-induced
immunity, and enhancing vaccine efficacy were identified as critical strategies for reducing the
control reproduction number Rc below the critical threshold of unity (Figures 4, 5 and 6).
This implies that comprehensive vaccination efforts, when feasible, can play a central role
in curtailing disease spread. Policymakers and health authorities should prioritize strategies
that facilitate widespread vaccination, taking into account factors such as vaccine coverage,
accessibility, and public perception.

However, it is essential to recognize that the effectiveness of vaccination strategies is con-
tingent on maintaining a low vaccine escape proportion (Figure 5). In situations characterized
by frequent viral mutations and limited cross-immunity, where high escape proportions are
more likely, supplementary control measures may be essential alongside vaccination efforts
[32]. This emphasizes the need for a multifaceted approach to disease management, especially
in scenarios where the virus is prone to rapid evolution. Public health interventions should
not rely solely on vaccination but should incorporate strategies to mitigate the impact of high
escape proportions, such as genomic surveillance and adaptive vaccine development.

Our work has a few limitations. The mathematical model, while comprehensive, relies
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Figure 6. Prevalences of asymptomatic infected A and symptomatic infected I with different vaccination 
rates ϕ (upper panels), vaccine waning rates η (middle panels), and vaccine escape proportions θ (lower panels). 
Other parameter values are given in Table 1. The initial condition is the endemic equilibrium of the model 
without vaccination.
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on a set of assumptions and simplifications. It assumes homogeneity within compartments
and does not consider spatial dynamics [15, 29, 41], which can be relevant in real-world
scenarios. Additionally, the model does not account for behavioral changes in response to
disease outbreaks [1, 9, 16, 19], which can significantly impact transmission dynamics. Future
research could explore more complex models that address these factors and their interactions.

Another limitation lies in the parameter values used in our simulations, which are based
on data fitting to COVID-19 cases [23]. While this allowed us to gain some insights into the
dynamics of a real-world infectious disease, it’s important to recognize that these parameters
may vary in different contexts and for different pathogens. Therefore, the applicability of our
findings should be considered within the specific context of the disease under investigation.
Using the parameter values in Table 1, we estimated that the relative contribution to the
control reproduction number from asymptomatic and symptomatic transmissions is less than
10%, which is lower than the estimates in some other studies [36, 42]. The discrepancy may
be due to variations in study methodologies, population demographics, testing availability,
and the definition used for asymptomatic cases. It is also worth noting that the incorporation
of vaccination in the model does not alter the estimate of the relative contribution; see the
formulas given in (3.3) and (3.14).

In conclusion, our modeling, analysis and numerical simulations have advanced our under-
standing of the intricate dynamics of infectious diseases, particularly concerning asymptomatic
transmission and waning immunity. The insights gleaned from this research offer practical
implications for the design and implementation of effective disease control and prevention
strategies. By considering the impact of vaccination rates, the duration of vaccine-induced
immunity, and vaccine efficacy, policymakers and public health officials can make informed
decisions to mitigate the spread of infectious diseases and safeguard public health. More-
over, this study highlights the need for flexibility and adaptability in disease management
approaches, particularly in the face of rapidly evolving pathogens. Continued research in
this area, along with real-world data validation, will further refine our understanding and
guide evidence-based strategies for the management of a specific infectious disease in diverse
contexts.
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