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Abstract. This paper introduces a linear algebra-based formulation of camera calibration algorithms, focusing
on two methods: the regular method and the linearized method. The regular method is computa-
tionally more efficient while the linearized method can be adapted to an iterative process to enhance
calibration accuracy. To demonstrate the effectiveness of these methods, a marker-based motion
tracking experiment utilizing real-life data is conducted. The results showcase the regular method’s
computational efficiency, while the linearized method’s ability to remove outliers is demonstrated
through reverse coordinate computation. With a 2.00 mm upper limit threshold, reverse coordinate
computation achieved accuracy up to a Frobenius norm of 0.18 mm.

1. Introduction. Camera calibration finds its applications in various fields including ro-
botics, augmented reality, 3D reconstruction, and object tracking [8]. The availability of
reliable calibration algorithms has greatly enhanced the accuracy and reliability of computer
vision systems, allowing for more precise and robust analysis of visual data [12].

The real world coordinates refer to the physical three-dimensional space with respect to
some origin while the camera coordinates represent the coordinate system of the camera itself
with respect to the camera’s optical center or the focal point. These two coordinate systems
are related by a transformation process. The image captured by the camera consists of a two-
dimensional grid of pixels. Each pixel represents a discrete element of the image, containing
color and intensity information. The coordinates of a pixel are defined in terms of its position
within the image grid. To establish a transformation correspondence between the real-world
coordinates and the image coordinates, intrinsic and extrinsic parameters are needed.

Camera calibration is a fundamental process in computer vision and photogrammetry that
aims to accurately determine the intrinsic and extrinsic parameters of a camera. Intrinsic
characteristics include skew factor (s), focal length (f), and center of the camera (C). On the
other hand, extrinsic characteristics include translation (T) and rotation (R) matrices that
determine transformation from world to 3D camera coordinates [1]. The purpose of camera
calibration is to establish a reliable transformation between the 3D world coordinates and the
projected 2D pixel coordinates captured by the camera (Figure 1). By accurately calibrating
a camera, one can accurately measure distances, angles, and positions of objects in the real
world using images or video acquired from the camera.

Previously, there have been numerous works related to camera calibration in the field of
photogrammetry and camera vision due to its potential application in sensors, robotics, and
drones. Zhang [12] proposed a closed-form solution calibration method that utilizes planar
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Figure 1: Coordinate systems present in a typical calibration problem. X is collected via a
motion detection system. (xp, yp) is collected via image processing on MATLAB. Calibration
aims to find K, an upper triangular matrix that contains positional information of the camera,
C, and T.

patterns such as a checker board for test-set data. Based off of Zhang’s work, many researchers
have worked on elevating calibration precision and simultaneously optimizing the iteration
processes [7]. Ganesh et al. [2] proposed real time calibration using three pose estimates:
camera, fiducial markers, and motion capturing system. In 2017, Syahputra and Pulungan
[10] demonstrated obtaining extrinsic parameters via Singular Value Decomposition (SVD).

Most literature involves the presence of a calibration pattern, for example a checkerboard
[10]. In this paper, we present a linear algebra based formulation of a camera calibration
algorithm which only requires experimental data coordinates of an object. Furthermore, we
discuss its underlying principles, and evaluation of the proposed algorithm through a marker-
based motion detection experiment.

The paper is organized as follows. The mathematical theory behind the camera cali-
bration algorithm is in Section 2, and the proposed algorithm is presented in Section 3. The
experimental set up and results are in Section 4 and Section 5. Conclusions follow in Section 6.

2. Mathematical Theory behind Camera Calibration. In Figure 2, the 3D world coor-
dinates of a point P can be described as [Xw, Yw, Zw]

T while in camera coordinates, it can
be described as [xC , yC , zC ]

T . The object’s coordinates in world coordinate system and the
camera coordinate system can be connected via a homogeneous transformation as [1]:

xC
yC
zC
1

 =

(
R T
0 1

)
Xw

Yw
Zw

1

(2.1)

An additional row of 1 is introduced to match the sizes of the matrix products where
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P = [Xw, Yw, Zw]

p = [xp, yp]

Image plane

Figure 2: Formation and Capturing of Images: P is the coordinates of a point from the real
world coordinates, p is the projected 2D pixel coordinates in the image plane, and C is the
camera’s center.

R ∈ R3×3 and T ∈ R3. Furthermore, introducing the relationship between the 3D camera
coordinates and the camera plane coordinates

u = fxC

v = fyC

w = zC

where f is the focal length of the camera, Equation (2.1) can be rewritten as [4]:

u
v
w

 =

f 0 0 0
0 f 0 0
0 0 1 0



xC
yC
zC
1



=

f 0 0 0
0 f 0 0
0 0 1 0

(
R T
0 1

)
Xw

Yw
Zw

1


Now, by noting that an image is projected to an individual pixel where the corresponding
coordinates are [1]:

u′ = fkxxC + x0zC = αxxC + x0zC

v′ = fkyyC + y0zC = αyyC + y0zC

w′ = zC

(2.2)

kx and ky are camera scaling factors and x0 and y0 are the coordinates of the image center in 
pixels and using the Equation (2.2), we arrive at a transformation equation between the 2D
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pixel coordinates and the 3D world coordinates [6]:

(2.3)

u′

v′

w′

 =

αx s x0 0
0 αy y0 0
0 0 1 0



xC
yC
zC
1



=

αx s x0 0
0 αy y0 0
0 0 1 0

(
R T
0 1

)
Xw

Yw
Zw

1


Note that a skew factor s is typically added account for the skew between the axes of the
image plane. Typically, one can obtain image plane data in the form of:

xp =
u′

w′

and

yp =
v′

w′

Introducing new notations x̃ =

(
x
1

)
=

xp
yp
1

, X̃ =

(
X
1

)
=


Xw

Yw
Zw

1

, and a scaling factor

λ = w′, we can address the issue. With the new notations and the scaling factor, Equation (2.3)
is now rewritten as:

λx̃ = PX̃(2.4)

where P is a 3 × 4 matrix containing the unknown characteristics of the camera. Then we
now consider,

λx̃ = PX̃ =

pT
1

pT
2

pT
3

 X̃

=

X̃T 0 0

0 X̃T 0

0 0 X̃T

p1

p2

p3


Subsequently, simple algebraic manipulation leads to the following matrix multiplication re-
lationship.

0 =

X̃T 0 0

0 X̃T 0

0 0 X̃T

p1

p2

p3

− λx̃
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0 =

X̃T 0 0 −xp
0 X̃T 0 −yp
0 0 X̃T 1



p1

p2

p3

λ

 = AλPλ(2.5)

Note that Equation (2.5) contains only one pixel coordinate data. In the most generic case,
AλPλ can be written as follows:

X̃T
1 0 0 −x1 0 0 ...

0 X̃T
1 0 −y1 0 0 ...

0 0 X̃T
1 1 0 0 ...

X̃T
2 0 0 0 0 −x2 ...

0 X̃T
2 0 0 0 −y2 ...

0 0 X̃T
2 0 0 1 ...





p1

p2

p3

λ1

λ2

...


for N = number of distinct data points.

Onwards, the calibration method using Aλ is called the linearized method.
The disadvantage of this form is that the matrix size grows as additional points are

considered. As an additional data point is added, an additional 3 × 12 matrix is added
below the left matrix with a column of zeros appearing on the right end. Simultaneously,
a new λ appears at the bottom of the right matrix. Therefore, we propose an alternative
method to approach the calibration problem [13]. Equation (2.4) implies that the λx̃ and
PX̃ are collinear 3× 1 vectors. Therefore, the cross product between λx̃ and PX̃ is 0 for all
data points [1]. Hence,

0 = λx̃× PX̃ =

u′

v′

w′

×

pT
1 X̃

pT
2 X̃

pT
3 X̃

 =

v′pT
3 X̃ − w′pT

2 X̃

w′pT
1 X̃ − u′pT

3 X̃

u′pT
2 X̃ − v′pT

1 X̃

(2.6)

Dividing through Equation (2.6) by λ,

(2.7)

0 =

 ypp
T
3 X̃ − pT

2 X̃

pT
1 X̃ − xpp

T
3 X̃

xpp
T
2 X̃ − ypp

T
1 X̃


=

 0 −X̃T ypX̃
T

X̃T 0 −xpX̃
T

−ypX̃
T xpX̃

T 0

p1

p2

p3

 = AP

Again in the most generic case, AP can be written as follows:
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0 X̃
T
1 y1pX̃

T
1

X̃T
1 0 −x1pX̃

T
1

−y1pX̃
T
1 x1pX̃

T
1 0

...
...

...

0 X̃
T
(i) y

(i)
p X̃

T
(i)

X̃T
(i) 0 −x

(i)
p X̃T

(i)

−y
(i)
p X̃T

(i) x
(i)
p X̃T

(i) 0
...

...
...



p1

p2

p3



for i = 1, 2, ..., N where N = number of distinct data points.

Onwards, the calibration method using A is called the regular method.
First of all, one can see that (xp×the first row)−(yp×the second row) is equal to the third

row. Hence, this is a rank deficient system. In other words, there are 2 independent equations
for 11 unknowns ignoring the scale factor. Therefore, we need 6 point correspondences that
are not all co-planar. Second, this form has an advantage of the matrix size not growing as
rapidly as Equation (2.5). In fact, for every data point, an additional 3 × 9 matrix is being
added with no additional zeros being added. Therefore, it is computationally more efficient.
As an additional data point is added, additional columns do not appear as λ terms are not
being added to the right matrix. However, this also means that λ, the focal length, cannot be
directly extracted from the system. As will be shown in Section 4, the λ terms play a pivotal
role in determining the accuracy of calibration.

To find the components of P in Equation (2.4), the generic idea is that Equation (2.1)
can be expressed as a product of an upper triangular matrix K, an orthogonal matrix R and
the camera’s center C [1]. Furthermore another important relationship is T = −RC where
T is the translation vector to align the world coordinate origin to the camera coordinate’s
origin. The reason for the presence of the negative sign is because RC describes the camera
center in the camera coordinates system. Hence, the negative sign essentially aligns the world
coordinate system in such a way that the camera center appears to be at the origin and
oriented along the standard axes.

u′

v′

w′

 =

αx s x0 0
0 αy y0 0
0 0 1 0

(
R T
0 1

)
xw
yw
zw
1



=

αx s x0
0 αy y0
0 0 1

(
I3×3 03×1

)(R −RC
0 1

)
xw
yw
zw
1
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=

αx s x0
0 αy y0
0 0 1

(
R −RC

)
xw
yw
zw
1

(2.8)

=

αx s x0
0 αy y0
0 0 1

R
(
I3×3 −C

)
xw
yw
zw
1



= KR
(
I3×3 −C

)
xw
yw
zw
1


while noting that CT is a null vector of P [3]:

KR
(
I3×3 −C

)(C
1

)
= KR(C − C) = 0(2.9)

3. Algorithm. Let 3D world coordinates of an object be Xi. Let image data point be xi.
Formulate matrix Aλ using Equation (2.5) (Linearized Method) or A using Equation (2.7)
(Regular Method).

Aλ =



X̃T
1 0 0 −x1 0 0 ...

0 X̃T
1 0 −y1 0 0 ...

0 0 X̃T
1 1 0 0 ...

X̃T
2 0 0 0 0 −x2 ...

0 X̃T
2 0 0 0 −y2 ...

0 0 X̃T
2 0 0 1 ...


(3.1)

A =



0 X̃
T
1 y1pX̃

T
1

X̃T
1 0 −x1pX̃

T
1

−y1pX̃
T
1 x1pX̃

T
1 0

...
...

...

0 X̃
T
N yNp X̃

T
N

X̃T
N 0 −xNp X̃T

N

−yNp X̃T
N xNp X̃T

N 0


(3.2)
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Algorithm 3.1 Camera Calibration Algorithm

1: Collect 3D world coordinate data of the object using motion detection system. Collect
2D pixel data of the object using a camera image.

2: Linearized Method: Calculate SVD of Aλ and let p be the unit right singular vector
corresponding to the smallest σ of Aλ [11].
Regular Method: Calculate SVD of A and let p be the unit right singular vector corre-
sponding to the smallest σ of A

3: Normalize the vector p by the norm of p(9 : 11).
4: Let

P = [p(1 : 4)T ;p(5 : 8)T ;p(9 : 12)T ]

noting that the focal length values of each data point can be found in p(13, :) for linearized
method only [9].

5: Calculate the SVD of P . Set C̃ to be the unit right singular vector corresponding to the
smallest σ of P .

6: Scale C̃ such that the last entry is 1.
7: Calculate the QR factorization

[q, r] = qr(P (1 : 3, 1 : 3)−1)

[5].
8: Let K = r−1 and R = q−1. Scale K such that K(3, 3) = 1
9: Compute T = −RC

(a) Image of the motion detec-
tion calibration wand

(b) Image processing for obtaining 2D coordinates

Figure 3: Experimental Setup
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4. Experimental Set Up. In this section, we present an experimental demonstration of the
camera calibration algorithm. Figure 3a shows the motion detection system calibration wand
that we used as a marker-based position tracking object. The wand consists of five infrared
(IR) markers that the motion detection system can track and obtain 3D world coordinates.
Each marker can be considered as a distinct data point with well known 3D coordinates with
respect to the motion detection system origin. In total, 15 different positions were captured
adding up to 75 distinct data points. At the same time, 2D pixel coordinates were collected
via a cellphone. The pixel coordinates were obtained from a video recording of the cellphone
via image processing toolbox in MATLAB as shown in Figure 3b.

5. Results. We present theK,R, andCmatrices which contain all the camera properties.
Table 1 below summarizes the experimental results after running the calibration algorithm
with 75 marker position data.

Table 1: Results Summary

Linearized Method Iterative Linearized Method Regular Method

K


−1531.5 145.5 852.9

0 −1597.5 497.1

0 0 1



−1537 191.4 751.9

0 −1562.4 326

0 0 1



−1532.4 39.9776 1078.6

0 −1471.1 65.056

0 0 1


R


−0.9994 −0.0138 −0.0303

−0.276 −0.1655 0.9858

−0.0186 0.9861 0.1650



−0.9952 −0.0919 −0.0345

−0.0083 −0.2722 0.9622

−0.0978 0.9578 0.2701



−0.9921 0.1248 −0.0110

−0.0649 −0.4365 0.8974

0.1072 0.8910 0.4411


C


−619.4

−1715

728.6




−632.7

−1765.8

782.8




−621.7

−1731.7

706.6


||C−Ctruth||2 61.8 17.3 70.9

The linearized method has strong preference over the regular method as one can utilize 
the intrinsic and extrinsic camera characteristics to convert measured 2D pixel coordinates to 
corresponding 3D world coordinates. This can be done by reversing the derivation shown in 
2.9 (Appendix A). A comparative analysis between reverse-calculated coordinates and exper-
imental coordinates serves as a reliable means of conducting a rigorous sanity check. Hence, 
we specifically f ocus o n a nalyzing a nd i mproving t he l inearized method r esults. The K, R, 
and C matrices obtained after 56 iterations with 2mm Euclidean norm threshold are shown 
in the right-most column of Table 1.

In Figure 4, the red Os represent the actual 3D world coordinates obtained via the mo-
tion detection system. The blue rhombuses represent the approximated 3D world coordinates 
based on the camera characteristics obtained via the linearized method algorithm. Note that 
this type of comparison is not trivial for the regular method as focal length λ information can-
not be directly obtained from the regular method. The “backtracking” analysis enables one 
to gauge the accuracy of data at hand. By setting an appropriate point-by-point Euclidean 
norm threshold, one can go through an iterative process to remove so called off-set data points 
and approximate the camera characteristics with a greater degree of accuracy. The bottom 
Oriented View plot shows the approximated coordinates after 30 iterations of 0.2 mm thresh-
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Figure 4: Reversed-calculated coordinates comparison plots. The top Oriented View plot 
shows the coordinates after initial calibration. The bottom Oriented View plot shows the 
coordinates after 30 iterations. The zoomed-in plots show the cuboid volume indicated by 
dotted lines. The Top Down View plot shows the points enclosed by a patch of area in the 
XY plane.

old. The grey circles are the removed data points. One can see that the approximations after 
30 iterations are closer to actual measurements than the initial calibration. This suggests that 
the linearized method, through an iterative process, can be a viable tool for experimentally 
determining the camera properties to a greater accuracy compared to the regular method. 
With the above threshold parameter, the frobenius norm of the world coordinates and reverse 
calculated coordinates decrease from 4.08 mm to 0.18 mm.

During data collection, 4 pearl hard markers were attached, not all planar, on the back 
surface of the smartphone. Although not precise, the observed (experimental) coordinates of 
the markers provide a rough indication of where the ground truth Ctruth is. The approximate 
Euclidean norm between the ground truth and calculated center of the camera is presented in 
the last column of Table 1. To identify the validity of the K, R, C matrices obtained from the 
proposed algorithm, we simply plot the matrix C as a three dimensional vector. Since the C 
matrix contains the coordinates of the center of the camera in the world coordinate system, 
the resulting point should be approximately in a region enclosed by the 4 markers.

In Figure 5, The solid-line patch represents the actual geometry of the smartphone used. 
The dotted-line patch represents the approximate smartphone case on which the markers 
were attached. The approximate location of the camera is shown for reference purposes.
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Figure 5: 3D Scatter plot of the C Vectors obtained from linearized method, iterative lin-
earized method, and regular method with the coordinates of pearl markers. The approximate 
location of the camera center is also shown.

The markers are not exactly aligned with the patch because some of them were placed on 
the corner of the smartphone case to create non-planar geometry. The C vectors obtained 
from the regular method and the initial linearized method fail to pass the ground truth 
validity test. However, the iterative linearized method shows that the linearized method 
can still obtain proper camera parameters via an iteration process. The 2-norm error for 
iterative linearized method is 17.3 mm which is expected as the motion detection system had 
inherent vibrations due to building conditions. Furthermore, the pixel data collection was 
done using basic MATLAB image processing library with an ordinary laptop mouse. On the 
other hand, the regular method, although computationally faster than the linearized method, 
has no method of detecting experimental anomalies and iterating to reduce computational 
discrepancies.

6. Conclusions. In this paper, we presented a linear algebra based camera calibration 
algorithm utilizing SVD and QR factorization. The proposed algorithm was verified using 
a marker-based motion detection system. Although the regular method has the advantage 
of being computationally more efficient, th e li nearized me thod ha s th e st rong pr eference as 
the initial calibration offset can be overcome with an outlier-removal iterative p rocess. In the 
future, we wish to add rigorous analysis on why the iterative linearized method is preferable 
as well as a convergence proof for such method. We hope to use this work as a basis to
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study dynamic motion calibration, markerless-motion capturing or multi-camera calibration
problems.
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Appendix A. 2D coordinates transformation to 3D coordinates. In Equation (2.9), the
relationship between image coordinate system and the world coordinate system was shown as
follows 

u′

v′

w′

 = KR
(
I3×3 −C

)

xw

yw

zw

1


Suppose that the camera properties K,R, and C are found using the calibration algorithm.
Then, one can ”reverse” calculate the camera coordinates into world coordinates as follows

(A.1)

RTK−1


u′

v′

w′

 =


1 0 0 −C1

0 1 0 −C2

0 0 1 −C3



xw

yw

zw

1



=


xw − C1

yw − C2

zw − C3



=


xw

yw

zw

−C

where C1, C2, and C3 are the entries of the column vector C. Then,

(A.2)


xw

yw

zw

 = RTK−1


u′

v′

w′

+C

= RTK−1


u′

v′

w′

−RTT

= RT (K−1


xpw

′

ypw
′

w′

− T )

= RT (K−1


xpf

ypf

f

− T )
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