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Abstract. A small number of epithelial ovarian cancer cases are deemed preventable and its overall survival5
rates are low. The developments in omics data analysis paves a way for biomarker discovery for6
epithelial ovarian cancer in order to improve survival rates and prevent its development. This report7
provides analysis of gene expression data for epithelial ovarian cancer to compare the gene expression8
of 99 epithelial ovarian cancer samples and 4 non-cancerous ovary samples. Serous and endometrioid9
epithelial ovarian cancer subtypes were most similar based on hierarchical clustering. Serous was10
the subtype with the most differentially expressed genes when compared with normal ovary samples11
whereas mucinous had the least by the Wilcoxon Rank-Sum test (Benjamini Hochberg, p < 0.05).12
The number of down-regulated genes exceeded the number of up-regulated genes when comparing13
each cancer subtype with normal ovary samples. In this case, the clear cell subtype had the greatest14
number of dysregulated genes when compared to normal ovaries whereas endometrioid had the least.15
The dysregulated genes were found by fold change analysis (FC > 2 or FC < 0.5). Differences16
in gene expression levels between epithelial ovarian cancer subtypes were suggested due to 11, 18117
differentially expressed genes identified when comparing expression levels in all sample groups by the18
Kruskal-Wallis test (Benjamini Hochberg, p < 0.05). Genes proposed as biomarkers for (1) epithelial19
ovarian cancer and (2) individual epithelial ovarian cancer subtypes, when compared with normal20
ovaries included MUC1, SCNN1A, CD24, ITM2A, AGR2 and WFDC2.21
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1. Introduction. Ovarian cancer represents 2% of all cancer cases in the UK with approx-23

imately 7, 500 new cases diagnosed annually between 2017 and 2019. It is estimated that from24

2013 to 2017 in England and Wales the survival of 35% of patients diagnosed with ovarian25

cancer exceeded 10 years. On estimation, in the UK only 11% of cases in 2015 were deemed26

preventable [6]. In the US, 19, 880 new cases were predicted for 2022 along with 12, 810 deaths27

[58]. For all cases of ovarian cancer, approximately 90% are recorded as epithelial ovarian can-28

cer; of which there are four types including clear cell, endometrioid, mucinous and serous, with29

serous being most prevalent [25].30

31

Omics is defined as the study of biomolecules (examples of which include genomics, pro-32

teomics and metabolomics) [29]. Studies have provided steps to developing personalised drug33

treatments [11, 67], allowed detection of biomolecules (biomarkers) that indicate presence or34

absence of a disease [8, 12, 44] and a means to compare diseases [28]. Statistical analysis of35

omics data [1, 13, 27] and multi-omics data [36, 37, 69] aids these developments. For exam-36

ple, statistical analysis of gene expression data has led to research developments in precision37

medicine [20, 61, 34], prediction of survival [2] and responses to treatment [7, 49].38

39

Studies on gene expression for ovarian cancer date back as far as the 1990s [4, 19, 42]. Aims of40
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analysing gene expression in ovarian cancers are to aid the development of treatments, earlier41

diagnosis and improvement of survival chances for patients. Genetic differential expression in42

ovarian cancer is a topic researched abundantly in the 2000s; a multitude of statistical anal-43

yses have taken place to distinguish between normal and cancerous ovarian samples. Often44

multiple forms of statistical analysis are performed on data. A small number of analytical45

methods include hierarchical clustering [15], fold change analysis [63, 48, 22], hypothesis test-46

ing [63, 22, 60, 57, 38, 47, 46], Pearson’s correlation [23] and meta-analysis [31, 52, 53].47

48

This study will explore statistical analysis of epithelial ovarian cancer gene expression data49

through the application of hierarchical clustering, fold change analysis and hypothesis testing.50

The detection of both differentially expressed and dysregulated genes when comparing epithe-51

lial ovarian cancer samples with normal ovary samples will allow for biomarker suggestion.52

Furthermore, this paper will explore the similarities between subtypes of epithelial ovarian53

cancer to determine which subtypes are most similar. Analysis will be performed on the54

supplementary data set made available by [66]. The expression measures of 22, 283 genes are55

provided for 103 human samples consisting of 4 normal ovarian cell samples and 99 epithelial56

ovarian cancer cell samples separated into 4 groups. These 4 groups consist of 8 clear cell,57

37 endometrioid, 13 mucinous and 41 serous samples. Quantile normalization with trimmed58

means and a log2 transformation have previously been performed on the raw data. Statistical59

methods such as ANOVA and fold change analysis have also been performed. The raw data60

has previously been included in a large-scale meta-analysis to identify core genes in ovarian61

cancer [35]. This report will provide a more in depth analysis of the gene expressions provided62

in the supplementary data set [66].63

2. Methods. The data analysed in this study describes the gene expression levels of64

22, 283 genes for 103 samples. The samples are made up of 4 normal ovary samples and 865

clear cell, 37 endometrioid, 13 mucinous and 41 serous epithelial ovarian cancer samples.66

Hierarchical clustering with a Euclidean proximity measure and Ward’s linkage [9, 16]67

was performed to determine which samples were most similar based on their gene expression68

levels.69

The Wilcoxon Rank-Sum Test [54] was applied to determine whether differentially ex-70

pressed genes existed when comparing normal ovary samples with samples from each subtype71

of epithelial ovarian cancer. The Kruskal-Wallis Test [55] was applied to the data to com-72

pare the gene expression levels of all five groups to determine whether differentially expressed73

genes existed between at least one pair of groups. Both hypothesis tests included a Benjamini-74

Hochberg (BH) test correction [3] in which a p-value<0.05 was applied. The 20 most differen-75

tially expressed genes detected by the Kruskal-Wallis test were hierarchically clustered using76

Pearson’s proximity measure and average-linkage.77

Fold change analysis [33] was performed to determine differences in expression levels of78

genes between normal ovaries (control) and the epithelial ovarian cancer (condition) groups79

based on the ratio of the mean expression levels of each gene. The log2 fold change of a gene80

calculated by81

(2.1) log2(FC) = log2(āi)− log2(āc)82
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In which āi is the mean expression level of a gene for all samples in a condition group, āc is the83

mean expression level of a gene for all samples in the control group, FC is the fold change value.84

85

The log2 fold change value can be transformed in order to calculate the fold change value86

of a gene as follows.87

(2.2) FC = 2(log2(āi)−log2(āc))88

Genes are described as up-regulated if they have a fold change value greater than a cut-off89

C90

(2.3) FC > C91

Genes are described as down-regulated if the fold change value is less than the cut off 1
C .92

(2.4) FC <
1

C
93

Up-regulation indicates a condition group has greater expression level of a gene than the94

control group and is described as up-regulated by C-fold. Down-regulation implies a control95

group has greater expression level of a gene than the condition group and is described to be96

down-regulated by C-fold.97

3. Results.98

3.1. Hierarchical Clustering.99
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Figure 1. Hierarchical Clustering Dendrogram of 103 Samples Using Euclidean Proximity Measure and
Ward-Linkage Method.

Figure 1 presents the dendrogram produced when hierarchically clustering the 103 samples.100

The control samples formed one branch and were the last group to join a cluster. This101

suggests the normal ovary samples differed the most in expression levels when comparing102

gene expression levels in all five groups. All clear cell samples also formed one branch103

implying their gene expression levels were most unique when compared to other sample104

types. Clear cell could be easier to distinguish in comparison to other cancer subtypes based105

on its expression of genes. Endometrioid and serous samples formed one large cluster which106

may suggest they are the two most similar subtypes of epithelial ovarian cancer based on107

their gene expression levels.108

3.2. Wilcoxon-Rank Sum Test. The aim of the Wilcoxon Rank-Sum test was to deter-109

mine whether any of the 22, 283 genes varied significantly in expression level between epithelial110

ovarian cancer subtypes and normal ovaries. A BH adjusted p-value with a significance level111

of 5% indicated that the distribution of expression levels in a cancer group and the control112

group were not equal for the gene tested; the gene is differentially expressed. All gene symbols113

and titles for gene tables were taken directly from the supplementary data set [66].114

3.2.1. Clear Cell vs Control Samples. A total of 8, 764 genes were found with p < 0.05115

indicating the rejection of the null hypothesis and differential expression of these genes. When116
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the BH test correction was applied, 6, 329 statistically significant p-values were detected. Table117

SM1 presents 20 of the most differentially expressed genes and corresponding BH adjusted118

p-values for this comparison. The smallest p-value presented in table SM1 is 0.036943; 5, 107119

genes had this p-value. Based on the BH p-value adjustments, all 20 genes in this table were120

equally significant.121

3.2.2. Endometrioid vs Control Samples. The test detected 9, 770 genes for p < 0.05122

indicating statistical significance and null hypothesis rejection prior to the BH test correction.123

The BH test correction detected 6, 988 statistically significant p-values; 20 of the most differ-124

entially expressed genes and corresponding BH adjusted p-values are presented in table SM2.125

Of the 6, 988 differentially expressed genes, 2, 696 were observed with the smallest p-value of126

0.018677 and all 20 genes in table SM2 were considered equally significant.127

3.2.3. Mucinous vs Control Samples. A comparison of mucinous epithelial ovarian can-128

cer and normal ovary samples found 9, 669 genes had statistically significant p-values prior to129

BH test correction. The BH test correction detected 5, 546 statistically significant p-values.130

Table SM3 presents 20 of the most differentially expressed genes and corresponding BH ad-131

justed p-values. There were 3, 054 differentially expressed genes with a p-value of 0.028331132

including the genes in table SM3.133

3.2.4. Serous vs Control Samples. The comparison of serous epithelial ovarian cancer134

and normal ovary samples detected 9, 906 genes with statistically significant p-values prior to135

BH corrections. The BH test correction detected 7, 260 statistically significant p-values. Table136

SM4 presents 20 of the most differentially expressed genes with corresponding BH adjusted p-137

values. The two most differentially expressed genes found when comparing serous and control138

samples were MCPH1 and GLP1R with p-values of 0.008 and 0.010688, respectively. All other139

genes in table SM4 had the p-value 0.017239; 2, 576 genes in total had this p-value.140

3.3. Fold Change Analysis.141

3.3.1. Clear Cell vs Control Samples. When comparing clear cell and control group142

expression levels, 2, 317 genes were up-regulated and 2, 752 genes were down-regulated. Ta-143

bles SM5 and SM6 present the top 20 up-regulated and down-regulated genes, respectively.144

MUC1 was the most up-regulated gene by 345-fold in clear cell samples compared with control145

samples. The genes CLDN3 and CD24 were observed multiple times within the 20 most up-146

regulated genes. MAOB was the most down-regulated gene by 50-fold. The fold change values147

were more significant for the 20 most up-regulated genes than the 20 most down-regulated148

genes.149

3.3.2. Endometrioid vs Control Samples. Performing fold change analysis to compare150

control and endometrioid samples found 1, 724 up-regulated genes and 2, 021 down-regulated151

genes. Tables SM7 and SM8 present the top 20 up-regulated and down-regulated genes,152

respectively. MUC1 was the most up-regulated gene and was up-regulated by 128-fold. Both153

CLDN3 and CD24 were observed multiple times in the 20 most up-regulated genes list. STAR154

was the most down-regulated gene and was down-regulated by 37-fold. For this comparison,155

the up-regulation of the top 20 genes were more significant than the top 20 down-regulated156

genes.157
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3.3.3. Mucinous vs Control Samples. The fold change analysis on mucinous and control158

sample groups detected 2, 008 up-regulated genes and 2, 397 down-regulated genes. Tables159

SM9 and SM10 present the top 20 up-regulated and down-regulated genes for this case, re-160

spectively. MUC1 was the gene with the greatest fold change value; it was up-regulated by161

278-fold with greater expression in mucinous samples. CD24 was observed multiple times162

within the top 20 up-regulated gene table. ADAMTS1 was the most down-regulated gene at163

20-fold.164

3.3.4. Serous vs Control Samples. Fold change analysis for the groups serous and control165

detected 1, 753 up-regulated and 2, 063 down-regulated genes. Tables SM11 and SM12 present166

the top 20 up-regulated and down-regulated genes, respectively. MUC1 was the most up-167

regulated gene in the comparison of serous and control sample groups and was up-regulated168

by 224-fold. CLDN3 and CD24 were observed multiple times within the top 20 gene table.169

The most down-regulated gene found between serous and control groups was STAR which170

was down-regulated by 113-fold.171

3.4. Kruskal-Wallis. The Kruskal-Wallis test compared the gene expression in normal172

ovary, clear cell, endometrioid, mucinous and serous epithelial ovarian cancer samples to de-173

termine whether any genes were differentially expressed between at least one pair of sample174

types. The total number of statistically significant p-values found when performing Kruskal-175

Wallis on the 22, 283 genes was 13, 667; the BH test correction reduced this number to 11, 181.176

Table SM13 presents the top 20 differentially expressed genes and corresponding BH adjusted177

p-values. EPS8 was the most differentially expressed gene when comparing all five groups178

followed by AGR2, TSPAN1 and PEA15. Both observations of PEA15 were found in the top179

20 differentially expressed gene list and one was more significant than the other.180

The top 20 differentially expressed genes detected by the Kruskal-Wallis test were hierarchi-181

cally clustered based on their mean expression level for each group (see SM14).182
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Figure 2. Hierarchical clustering of Kruskal-Wallis top 20 genes; Pearson proximity and average linkage.

Figure 2 presents the dendrogram for the 20 most differentially expressed genes deter-183

mined by the Kruskal-Wallis test.184

185

When considering the mean expression levels of gene 12 (GAS1) displayed in table SM14,186

clear cell epithelial ovarian cancer presented the lowest expression of GAS1 when compared187

with all other cancer types and normal ovary samples. Endometrioid and mucinous cancer188

groups had similar mean expression levels of GAS1 (8.837596 vs 8.518631). In addition, serous189

and the control groups had similar mean expression levels of GAS1 (11.273543 vs 12.106772).190

This suggests GAS1 was differentially expressed in clear cell epithelial ovarian cancer compared191

to all other groups. Also that GAS1 was differentially expressed when comparing endometri-192

oid and mucinous epithelial ovarian cancer with serous epithelial ovarian cancer and normal193

ovaries.194

195

Clear cell, mucinous and control groups had similar mean expression levels of genes 6 (PEA15),196

4 (PEA15), 15 (CRABP2), 14 (PNOC), 7 (CLDN16) and 11 (KLK5), whereas serous dis-197

played greater mean expression levels as indicated by table SM14. This suggests differential198

expression of these genes when comparing clear cell, mucinous and normal ovaries with serous199

epithelial ovarian cancer.200

201

Mucinous had the highest mean expression levels of genes 5 (TFF3) and 16 (IQGAP2) when202
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compared with all other sample types. Clear cell epithelial ovarian cancer mean expression203

levels for these genes differed from normal ovaries. These mean expression levels can be found204

in table SM14. Differential expression of these genes in mucinous epithelial ovarian cancer205

compared with the other ovary types was indicated. In addition, these genes may have been206

some of the differentially expressed genes between clear cell epithelial ovarian cancer and nor-207

mal ovaries not included in table SM1.208

209

Clear cell and mucinous epithelial ovarian cancer displayed a higher mean expression level210

of genes 10 (SLC3A1), 20 (CYP2C9), 2 (AGR2), 19 (USH1C), 3 (TSPAN1) and 9 (ACADS)211

than other ovary types (see table SM14), suggesting their differential expression in this case.212

213

Endometrioid and serous epithelial ovarian cancer had lower mean expression levels of genes 1214

(EPS8), 18 (ARL1), 8 (TTC38) and 13 (PPAP2A) than other ovary types (see table SM14),215

implying the differential expression of these genes in endometrioid and serous epithelial ovarian216

cancer compared with clear cell, mucinous and normal ovary types.217

3.5. Test Result Comparisons. Providing an overall comparison of the Wilcoxon Rank-218

Sum tests, serous epithelial ovarian cancer had the greatest number of differentially expressed219

genes (7, 260) when compared with control samples. Mucinous had the least number of differ-220

entially expressed genes compared to control samples (5, 546). However, when considering the221

fold change analysis results, clear cell samples had the greatest overall number of dysregulated222

genes when compared with control samples (5, 067). Endometrioid samples displayed the least223

dysregulated genes when compared with control samples (3, 745).224

225

Comparisons of differentially expressed genes in Wilcoxon Rank-Sum tests found endometri-226

oid and serous groups when compared with the control group shared the most differentially227

expressed genes (approximately 84% and 80.9%, respectively). Whereas, approximately 69%228

of clear cell differentially expressed genes and 77% of mucinous differentially expressed genes229

were also detected as differentially expressed in endometrioid samples when all three groups230

were compared with the control group.231

232

When comparing the four fold change analyses results with the Wilcoxon Rank-Sum test233

results, approximately 61% of differentially expressed genes between clear cell and control234

groups, 46% of differentially expressed genes between endometrioid and control groups, 57%235

of differentially expressed genes between mucinous and the control group and 47% of differen-236

tially expressed genes between serous and the control group were also found to be dysregulated237

when fold change analysis was performed to compare these same groups. There were 1, 700238

genes both differentially expressed and up-regulated compared to 2, 176 genes both differen-239

tially expressed and down-regulated in clear cell samples compared to control samples. A total240

of 1, 398 genes were both differentially expressed and up-regulated compared to 1, 819 genes241

differentially expressed and down-regulated in endometrioid samples compared with control242

samples. The total number of genes differentially expressed and up-regulated between muci-243

nous and control samples was 1, 370 compared with 1, 818 genes differentially expressed and244

down-regulated. There were 1, 503 genes observed as differentially expressed and up-regulated245
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between serous and control samples compared to the 1, 928 differentially expressed and down-246

regulated.247

248

MUC1 was the gene most up-regulated for each fold change analysis; it was up-regulated249

by 345-fold, 128-fold, 278-fold and 224-fold for clear cell, endometrioid, mucinous and serous250

epithelial ovarian cancer when compared with normal ovaries, respectively. Five observations251

of CD24 were within the 20 most up-regulated genes for all four cancer groups compared with252

the control groups. SCNN1A was one of the 20 most up-regulated genes by 194-fold, 85-fold,253

95-fold and 124-fold for clear cell, endometrioid, mucinous and serous epithelial ovarian can-254

cer, respectively. ITM2A is the only gene from this analysis that was one of the 20 most255

down-regulated genes by 38-fold, 20-fold, 16-fold and 21-fold in clear cell, endometrioid, mu-256

cinous and serous epithelial ovarian cancer when compared with normal ovaries. These four257

genes were also some of the most differentially expressed genes when comparing each cancer258

group with the control group by the Wilcoxon Rank-Sum test.259

260

Many genes were both differentially expressed and dysregulated for a single cancer group261

compared with the control group. For example, AGR2, CEACAM6, ST14, SLC44A4 and262

S100P were within the most differentially expressed and up-regulated genes for mucinous263

compared with control samples. They were up-regulated by 199-fold, 69-fold, 38-fold, 37-264

fold and 31-fold, respectively. EFEMP1, ADAMTS1, TRO, PRELP, WT1, SLC4A3 and265

AOX1 were within the most differentially expressed and down-regulated genes for mucinous266

compared with control groups. These genes were down-regulated by approximately 17-fold,267

19-fold, 19-fold, 16-fold, 15-fold, 13-fold and 13-fold, respectively.268

269

Genes indicating differential expression and dysregulation in clear cell samples compared with270

control samples include LBP, HGD, GAS1, NR4A2, GULP1, RGS2, ANG and PELI2. LBP271

and HGD were up-regulated in clear cell samples by 78-fold and 66-fold, respectively. Whereas272

GAS1, NR4A2, GULP1, RGS2, ANG and PELI2 were down-regulated in clear cell samples273

by approximately 40-fold, 22-fold, 35-fold, 23-fold, 21-fold and 20-fold, respectively.274

275

SCGB1D2 and WFDC2 were both most differentially expressed for endometrioid cancer com-276

pared with control samples and were up-regulated by approximately 36-fold and 29-fold, re-277

spectively. WISP2 was one of the most differentially expressed genes for endometrioid cancer278

samples compared with control samples and was down-regulated by approximately 15-fold.279

280

C7, ALDH1A1 and GATM are three genes originally detected as three of the most differ-281

entially expressed in clear cell, endometrioid and serous cancers when compared with control282

samples. However, they were only found to be most down-regulated in serous samples. Ex-283

amples of genes that were within the top 20 up-regulated genes in serous cancers and were284

some of the most differentially expressed genes for this group were MSLN, KLK8, FOLR1,285

CHI3L1 and MUC16. PEG3 and PTPRN2 were down-regulated.286

287

All 20 genes with the most significant differential expression when tested by Kruskal-Wallis,288

excluding CLDN16 and PPAP2A, were also differentially expressed when comparing at least289
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one cancer subtype with control samples. TSPAN1 was the only gene differentially expressed290

in all four cancer subtypes compared with the control group. ACADS was differentially ex-291

pressed when clear cell, endometrioid and mucinous groups were compared with the control292

group. AGR2, TFF3, GAS1, USH1C and CYP2C9 were differentially expressed when com-293

paring clear cell and mucinous individually with the control group. One observation of PEA15294

and BCAM were differentially expressed when clear cell and serous were compared with the295

control group. EPS8 and ARL1 were both differentially expressed when endometrioid and296

serous groups were compared with the control group. One observation of PEA15, TTC38,297

KLK5, PNOC and CRABP2 were differentially expressed when comparing the serous group298

with the control group. Both SLC3A1 were IQGAP2 are both differentially expressed when299

comparing clear cell and control groups.300

4. Conclusions. Hierarchical clustering of the 103 samples suggests that gene expression301

in normal ovaries and clear cell ovarian cancer are distinct. Implications include clear cell302

being more easily identifiable than other ovarian cancer subtypes based on its gene expression303

patterns. Furthermore, gene expression patterns can distinguish between cancerous and non-304

cancerous ovaries. Serous and endometrioid samples clustered together suggesting similarities305

in their expression levels in each gene; this study suggests they are the two most similar ep-306

ithelial ovarian cancer subtypes based on gene expression.307

308

Genes presented as both differentially expressed and dysregulated for each cancer subtype309

comparison with normal ovaries were detected. Based on the presence of these genes, a two310

step criteria was introduced to reduce the number of significant genes suggested for further311

study. Therefore, a gene suggested for further study had to be detected as significant in both312

the Wilcoxon Rank-Sum test and fold change analysis.313

314

Considering the above discussion, the first set of genes suggested for further analysis as315

biomarkers was based on epithelial ovarian cancer overall, with no distinction between cancer316

subtypes. The genes selected met both of the following criteria. (1) The gene was one of the317

most significantly differentially expressed when comparing each of the four cancer subtypes318

with normal ovaries. (2) The gene was one of the top 40 dysregulated genes for each of the319

four cancer subtypes when compared with normal ovaries. The genes meeting both of these320

criteria were MUC1, SCNN1A, CD24 and ITM2A. Similarly to this study, ovarian cancer321

has previously been found to display greater expression levels of MUC1, SCNN1A and CD24322

than normal ovaries [40, 65, 26, 32, 59, 64, 62, 63]. Furthermore, studies have found down-323

regulation of ITM2A in ovarian cancer compared with normal ovaries providing agreement324

with this current study [45, 17]. The differential expression and dysregulation of these genes325

in both this study and other studies is indicative of a significance of these genes in ovarian326

cancer.327

328

Still considering the use of a two step criteria for gene selection, genes were then suggested for329

further analysis as biomarkers for specific epithelial ovarian cancer subtypes. For a specific330

subtype, a gene was suggested for further analysis if it met both of the following criteria for only331

the specific subtype. (1) The gene was one of the most significantly differentially expressed332
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when comparing the specific cancer subtype with normal ovaries. (2) The gene was one of the333

top 40 dysregulated genes for the specific cancer subtype when compared with normal ovaries.334

335

Genes suggested for further analysis as biomarkers for mucinous epithelial ovarian cancer336

based on the two step criteria were AGR2, EFEMP1, CEACAM6, ST14, SLC44A4, S100P,337

ADAMTS1, TRO, PRELP, WT1, SLC4A3 and AOX1. Genes AGR2, CEACAM6, ST14,338

SLC44A4 and S100P all presented in significantly greater expression levels in mucinous epithe-339

lial ovarian cancer compared with normal ovaries. The converse was true for genes EFEMP1,340

ADAMTS1, TRO, PRELP, WT1, SLC4A3 and AOX1. AGR2, S100P and CEACAM6 have341

all previously displayed significance of their differential expression in mucinous epithelial ovar-342

ian cancer compared with normal ovaries [43, 50, 5] providing further feasibility of these genes343

being biomarkers for mucinous epithelial ovarian cancer. Down-regulation of ADAMTS1 and344

PRELP in ovarian cancer has been identified [68, 64], indicating tumour suppressive roles.345

This study recommends further analysis to determine possible prognostic associations of the346

selected genes in mucinous ovarian cancer.347

348

Genes suggested for further analysis as biomarkers in endometrioid epithelial ovarian cancer349

based on the two step criteria were SCGB1D2, WFDC2 and WISP2. The increased expression350

of SCGB1D2 and WFDC2 in endometrioid ovarian cancer compared with normal ovaries in351

this study has also been identified in other studies [43, 14], with WFDC2 being described352

as a biomarker for ovarian cancer [21]. Whereas, the lower expression levels of WISP2 in353

endometrioid epithelial ovarian cancer observed in this study has also been demonstrated in354

ovarian cancer by [64]. Associations of these genes with ovarian cancer in other studies implies355

further study is needed to determine their role in ovarian cancer. This study suggests these356

genes could have a significant role in endometrioid ovarian cancer development, specifically.357

358

Genes suggested for further analysis as biomarkers in clear cell epithelial ovarian cancer based359

on the two step criteria were LBP, HGD, GAS1, NR4A2, GULP1, RGS2, ANG and PELI2.360

LBP and HGD presented in significantly greater expression levels in clear cell ovarian cancer361

compared with normal ovaries. Whereas GAS1, NR4A2, GULP1, RGS2, ANG and PELI2362

presented in significantly lower expression levels in clear cell ovarian cancer compared with363

normal ovaries. The expression level of GULP1 has been associated with ovarian cancer devel-364

opment and tumour suppression [39, 41]. Down-regulation of GAS1, RGS2 and PELI2 have365

been identified in ovarian cancer previously [24, 68]. Whereas, HGD was previously associated366

with up-regulation in ovarian cancer [71]. A prior study has also proposed LBP as an ovarian367

cancer biomarker [70]. Associations of these genes with ovarian cancer in both this study and368

other studies indicates their possible role in ovarian cancer. Analysis performed in this study369

further suggests a role in clear cell ovarian cancer that should be considered.370

371

Genes suggested for further analysis as biomarkers for serous epithelial ovarian cancer based on372

the two step criteria were C7, ALDH1A1, GATM, MSLN, KLK8, FOLR1, CHI3L1, MUC16,373

PEG3 and PTPRN2. The genes MSLN, KLK8, FOLR1, CHI3L1 and MUC16 presented in374

significantly greater expression levels for serous epithelial ovarian cancer compared with nor-375

mal ovaries. The converse was true for genes C7, ALDH1A1, GATM, PEG3 and PTPRN2.376
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ALDH1A1 has been proposed as a biomarker for serous ovarian cancer previously [51]. Fur-377

thermore, the down-regulation of ALDH1A1, C7, GATM and PEG3 in ovarian cancer has been378

determined [68, 56, 18]. Up-regulation of CHI3L1 was identified in serous epithelial ovarian379

cancer compared with normal ovaries previously [43]. The up-regulation of MUC16, FOLR1380

and KLK8 has been indicated in ovarian cancer [10, 64, 30], with MUC16 being proposed as381

a biomarker for ovarian cancer [21]. Both this study and other studies imply an importance382

in the selected genes in ovarian cancer. However, based on analysis performed in this study383

the recommendation is to consider the importance of these genes specifically in serous ovarian384

cancer.385

386

Comparing differentially expressed genes detected by the Kruskal-Wallis test and each individ-387

ual Wilcoxon Rank-Sum test provided evidence that differential expression of genes was also388

present between ovarian cancer subtypes. Approximately 49.9%, 52.9%, 44.1% and 55.3% of389

Kruskal-Wallis significant genes were also significant for the Wilcoxon Rank-sum tests associ-390

ated with clear cell, endometrioid, mucinous and serous ovarian cancers, respectively. Further391

evidence to this statement was provided by hierarchical clustering of the top 20 Kruskal-Wallis392

differentially expressed genes. The clusters formed using mean expression levels of these genes393

indicated varying expression level patterns between ovarian cancer subtypes. In particular,394

differing expression levels of genes in clear cell and mucinous ovarian cancer were displayed395

when compared with other subtypes.396

397

Further analysis of genes suggested as biomarkers could provide ways of detecting individ-398

ual subtypes of epithelial ovarian cancer, thus improving presence detection of subtypes. This399

will provide more efficient and effective diagnosis of epithelial ovarian cancer. Earlier diagno-400

sis can also lead to earlier treatment and improved chance of survival. Similarities found in401

gene expression between epithelial ovarian cancer subtypes could also allow for development402

of treatments that are effective for multiple subtypes.403

4.1. Limitations of Research. The small number of normal ovary samples may have af-404

fected the reliability of the Wilcoxon Rank-Sum test and Kruskal-Wallis test results; a larger405

sample size may be needed to increase this reliability.406

407

The Wilcoxon Rank-Sum test and fold change analysis were performed independently of one408

another and then results were compared. It may have been more efficient to combine the409

analysis to originally find the genes that satisfied p < 0.05 and FC > 2 or FC < 0.5. This410

would have provided an easier comparison between the genes that were both dysregulated and411

differentially expressed in each cancer subtype in comparison to the normal ovary samples.412

The number of differentially expressed genes detected also led to complications. Only a subset413

of genes to discuss were selected based on certain criteria. This criteria may mean important414

biomarker candidates were not selected for further analysis or discussion.415

416

As the Kruskal-Wallis test only suggested differential expression of genes between groups417

but gave no indication of which groups were different, it meant biomarkers that distinguish418

between specific epithelial ovarian cancer subtypes could not be determined or suggested.419
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4.2. Further Proposed Analysis. To build upon the hierarchical clustering of samples,420

with a view to establishing classification rules, heatmaps could be useful in visually identify-421

ing patterns in expression levels for both samples and genes simultaneously.422

423

As there are many genes indicated to be differentially expressed by the Kruskal-Wallis test,424

the Wilcoxon Rank-Sum test could be applied to make comparisons between gene expressions425

of epithelial ovarian cancer subtypes. It is unclear which of the groups vary in distribution426

based on the Kruskal-Wallis test alone. Therefore, applying the Wilcoxon Rank-sum test to427

compare cancer subtypes could detect possible biomarkers to distinguish between epithelial428

ovarian cancer subtypes.429

430

As meta-analysis is increasingly common in determining genes that could be biomarkers for431

disease, meta-analysis could also be performed to determine whether the genes suggested as432

biomarkers in this report are reliable choices.433

434

It may also be of interest to analyse gene expression data for another cancer type and compare435

differentially expressed genes between conditions. This could allow detection of genes that436

may be specific biomarkers for a particular cancer or biomarkers for multiple cancers.437

438

Collaboration with an expert in genomics would also be valuable to understand the functions439

of genes detected as differentially expressed. Furthermore, it could provide more information440

on the co-expression of genes; whether one gene affects the regulation of another gene could441

also provide insight into which genes should be studied based on their expressions together.442
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