
Fast & Fair: Efficient Second-Order Robust Optimization for Fairness in1

Machine Learning∗2

Allen Joseph Minch† , Hung Anh Dinh Vu‡ , and Anne Marie Warren§3

Project Advisor: Dr. Elizabeth Newman¶4

5

Abstract. This project explores adversarial training techniques to develop fairer Deep Neural Networks (DNNs)6
to mitigate the inherent bias they are known to exhibit. DNNs are susceptible to inheriting bias7
with respect to sensitive attributes such as race and gender, which can lead to life-altering outcomes8
(e.g., demographic bias in facial recognition software used to arrest a suspect). We propose a robust9
optimization problem, which we demonstrate can improve fairness in several datasets, both synthetic10
and real-world, using an affine linear model. Leveraging second order information, we are able to11
find a solution to our optimization problem more efficiently than with a purely first order method.12

Key words. machine learning, fairness, robust optimization, adversarial training, optimization13

MSC codes. 65F10, 65F22, 65K05, 90C4714

1. Introduction. Machine learning has become an integral part of data analysis with its15

powerful ability to reveal underlying patterns and structures in data. Deep Neural Networks16

(DNNs) in particular are the gold standard classifying complex data; however, there is a17

tendency for DNNs to inherit bias from the datasets on which they train. Bias in this sense18

is not statistical bias, but the ways in which individual advantages or disadvantages manifest19

in data. This can be especially problematic in areas where machine learning is used to make20

life-altering decisions such as criminal justice [4] and corporate hiring [7].21

The ever-expanding use of machine learning poses a significant ethical question when22

models are known to perpetuate societal biases [7]. While an in-depth discussion of these23

ethical concerns is beyond the scope of this work, they motivate our efforts to improve fairness24

within the models themselves. The unfortunate truth is that the harmful biases we see in our25

models and in our data come from deep-rooted societal structures that are at present beyond26

the abilities of machine learning to correct. However, we feel that in the face of these larger27

issues it is our duty within our means to work towards fairer outcomes.28

One way to potentially achieve fairer outcomes is to use adversarial training to introduce29

robustness to a model. Robust optimization aims to make the model less susceptible to small30

variations in data, known as adversarial attacks, but in doing so decreases model accuracy.31

Recently, the Fair-Robust-Learning framework was proposed to reduce this unfairness problem32

in adversarial training [13]. The authors demonstrated that a combination of fairness and33

adversarial regularization yielded fairer models on benchmark image classification datasets.34

∗Submitted to the editors January 31, 2024.
Funding: This work is supported in part by the US NSF award DMS-2051019.

†Department of Mathematics, Brandeis University, Waltham, MA (allenminch@brandeis.edu)
‡Department of Mathematics, University of Maryland, College Park, MD (hvu1@terpmail.umd.edu)
§University of Minnesota, Minneapolis, MN (warre659@umn.edu, https://anniewarren.github.io)
¶Department of Mathematics, Emory University, Atlanta, GA (elizabeth.newman@emory.edu).

Copyright © SIAM

Unauthorized reproduction of this article is prohibited

 179

This manuscript is for review purposes only.

mailto:allenminch@brandeis.edu
mailto:hvu1@terpmail.umd.edu
mailto:warre659@umn.edu
https://anniewarren.github.io
mailto:elizabeth.newman@emory.edu

180 A. J. MINCH, H. A. VU, AND A. WARREN

Our research shares the goal of addressing fairness issues in DNNs through the use of35

adversarial training techniques, but focuses on an additive bias rather than out-of-distribution36

bias or other forms. We define fairness on different metrics (independence, separation, and37

sufficiency vs. average and worst-class boundary, robust, and standard errors) to measure38

additive bias with respect to sensitive ’hidden’ attributes. Without aiming to cater to specific39

types of data, we explore the effects of adversarial training on this definition of fairness. A40

simultaneous focus is to improve the efficiency of solving robust optimization problems. To this41

end, we use second-order information to accelerate training, a concept that was not addressed42

in previous work [13].43

We implement a second-order method, termed the “trust region subproblem” (TRS), de-44

signed explicitly to address inner optimization challenges encountered when introducing robust45

training. Our experiments, spanning both synthetic and real-world datasets, demonstrate the46

capabilities of robust optimization in enhancing fairness. We employ three distinct optimiz-47

ers for these tests, allowing us to compare their performance. Notably, the integration of48

hessQuik [8], has proven instrumental in efficiently deriving exact Hessians. This approach49

surpasses the projected gradient descent (PGD) method in terms of time efficiency while pro-50

ducing the same solution. For transparency and further community engagement, we’ve made51

our Python implementation, including all our experiments, available on our GitHub repository52

at Fast-N-Fair (https://github.com/elizabethnewman/fast-n-fair).53

The paper is organized as follows: Section 2 introduces DNNs and the necessary notation,54

robust optimization, and our choice of fairness metrics. Section 3 describes our proposed sec-55

ond order method, our implementation, and is followed by an analysis of the error produced56

by approximations used in our methods (Subsection 3.2). In Subsection 3.3, we introduce57

alternate methods of solving the robust optimization problem that are implemented as a com-58

parison to our proposed approach. Section 4 first describes the setup of a synthetic dataset59

along with the preliminary fairness results, and then extends the discussion to several real60

world datasets. We also examine the relative computational efficiency of our different meth-61

ods of performing robust optimization. Lastly, Section 5 concludes the paper and discusses62

potential future work.63

2. Background. First we must discuss DNNs and some necessary notation, robust opti-64

mization, and our choice of fairness metrics.65

2.1. Notation. Deep neural networks (DNNs) can be represented by a parameterized66

mapping fθ : X × Θ → Y from input-target pairs (x,y) ∈ D, where D ⊆ X × Y is the67

data space, X ⊆ Rnin is the input space, and Y ⊆ Rnout is the target space, and Θ ⊂ Rnθ68

is the parameter space. Our goal is to learn the weights θ ∈ Θ such that fθ(x) ≈ y for all69

input-target pairs. Typically, learning the weights is posed as the optimization problem70

(2.1) min
θ

1

|T |
∑

(x,y)∈T

L(fθ(x),y) +R(θ)71

where T ⊂ D is the training set and R : Θ → R is a regularization term to enforce desirable72

properties on the weights.73

For many problems with a well-chosen optimizer, we can solve (2.1) well. However, this74

can lead to problems such as overfitting, where the model fits the training data well but does75

This manuscript is for review purposes only.

https://github.com/elizabethnewman/fast-n-fair

FAST & FAIR 181

Ŷ “ 1

Ŷ “ 0

w J
z`

b “
0

r

δz
z

δz

z

δz

z

Figure 1: Robust optimization, visualized in the case of a linear classifier (black line) in two
dimensions w⊤z+b = 0. The black data points z ≡ fθ(x) are the network outputs for various
data inputs. The white circles indicate output features within a radius of r of the network
outputs. The direction of perturbation δz that maximizes the inner optimization problem is
normal to the linear classifier defined by w. Any network outputs in the white channel, r
away from the linear classifier, change the predicted class. Robust optimization encourages
network outputs to live outside of the white channel to avoid ambiguous class predictions.

not generalize to unseen data, or a lack of robustness, where small changes to the data result76

in significantly different results (e.g., incorrect classifications).77

2.2. Robust Optimization. Adversarial training promotes robustness in DNNs by intro-78

ducing a perturbation δx for each input x and solving the minimax problem79

min
θ

1

|T |
∑

(x,y)∈T

L(fθ(x+ δx(θ)),y) +R(θ)(2.2a)80

s. t. δx(θ) ∈ argmax
∥δx∥2≤r

L(fθ(x+ δx),y) for each (x,y) ∈ T(2.2b)81

We perturb the inputs x by δx and maximize the Euclidean norm of the perturbation ∥δx∥282

(inner optimization problem (2.2b)) while optimally fitting the data (outer minimization prob-83

lem (2.2a)). We build neighborhoods of radius r around our training points where we can84

rely on our model classifying anything within the neighborhood similarly. See Figure 1 for a85

visualization.86

The complexity of our new minimax problem is a large consideration for the applicability87

of our results to large scale real-world situations. To address this, we use second order in-88

formation to solve the inner optimization problem efficiently in terms of computational time.89

This manuscript is for review purposes only.

182 A. J. MINCH, H. A. VU, AND A. WARREN

Solving this problem well means satisfying first order optimality conditions. Following [2], we90

first negate the loss to produce an equivalent minimization problem and set up a Lagrangian.91

L(δx, λ) = −L(fθ(x+ δx),y) + λ(12∥δx∥
2
2 − 1

2r
2)(2.3)92

Here λ is a Lagrangian multiplier and we use an equivalent version of the constraint 1
2∥δx∥

2
2 ≤93

1
2r

2 that we can differentiate more easily. The perturbation δx that maximizes the inner94

optimization problem of (2.2) necessarily satisfies the Karush-Kuhn-Tucker (KKT) conditions95

below [9].96

∇δxL(δx, λ) = −∇δxL(fθ(x+ δx),y) + λδx = 0 (stationarity)(2.4a)97

∥δx∥2 ≤ r (primal feasibility)(2.4b)98

λ ≥ 0 (dual feasibility)(2.4c)99

λ(∥δx∥2 − r) = 0 (complementary slackness)(2.4d)100

Satisfying the KKT conditions ensures that gradients of the outer optimization problem are101

accurate; in particular, for each training sample, we have102

∇θL(fθ(x+ δx(θ)),y) = [∇θ′fθ′(x+ δx(θ))∇fL(fθ′(x+ δx(θ)),y)]θ′=θ(2.5)103

+
[
∇θ′δx(θ

′)∇δxL(fθ(x+ δx(θ
′)),y)

]
θ′=θ

104

The first term in (2.5) is the traditional gradient that we want to preserve. The second105

term comes from considering the perturbation as a function of the network weights, δx(θ).106

From the stationarity condition (2.4a), we get that ∇δxL(fθ(x + δx),y) is parallel to δx if107

the perturbation is a maximizer. If the constraint is inactive (λ = 0), then ∇δxL(fθ(x +108

δx),y) = 0 and the second term is zero. If the constraint is active (λ > 0), then from109

primal feasibility (2.4b) we know that the perturbation must satisfy the constraint even when110

undergoing changes incurred from [∇θ′δx(θ
′)]θ′=θ. With a sufficiently small perturbation of111

the weights θ, the change in perturbation will follow the boundary of the constraint, nearly112

orthogonal to the direction of the gradient ∇δxL(fθ(x+δx),y). This again makes the second113

term zero. Thus, if we solve the inner optimization problem well and thereby satisfy the KKT114

conditions, we can ignore the contribution of the second term.115

2.3. Fairness. We use three different fairness metrics defined in [1] in our experiments. All116

of these fairness metrics pertain to fairness of a classifier with respect to a sensitive attribute,117

in terms of true labels against the classifier’s predictions. In all of our experiments, the118

sensitive attribute s, true label Y , and classifier prediction Ŷ are all binary. For convenience,119

in defining the fairness metrics, we treat Y as a random variable representing an object’s true120

label and Ŷ as a random variable representing its prediction.121

2.3.1. Independence. For a classifier to satisfy independence its prediction Ŷ must be un-122

correlated with the sensitive attribute s. This requires an equal rate of positive classifications123

across all sensitive groups.124

(2.6) P (Ŷ = 1|s = 0) = P (Ŷ = 1|s = 1) = P (Ŷ = 1)125

This manuscript is for review purposes only.

FAST & FAIR 183

For instance, if the classifier was being used to recommend hiring decisions (so Ŷ = 1 means a126

candidate should be hired, and Ŷ = 0 means a candidate should not), satisfying independence127

would mean that if the classifier hires 20% of applicants in class s = 1, then it also hires 20%128

of applicants in class s = 0.129

2.3.2. Separation. Separation is similar to independence; for separation to be satisfied Ŷ130

must be conditionally independent of s given the value of Y .131

P (Ŷ = 1|Y = 1, s = 0) = P (Ŷ = 1|Y = 1, s = 1)(2.7)132

P (Ŷ = 1|Y = 0, s = 0) = P (Ŷ = 1|Y = 0, s = 1)133

Separation enforces equality of true and false positive rates. If again Ŷ determines hiring rec-134

ommendations, then Y might indicate an individual’s true qualifications. Separation requires135

that individuals with similar qualifications have an equal chance of being hired, regardless of136

sensitive attribute.137

2.3.3. Sufficiency. Sufficiency enforces the conditional independence of Y and s given Ŷ .138

P (Y = 1|Ŷ = 1, s = 0) = P (Y = 1|Ŷ = 1, s = 1)(2.8)139

P (Y = 1|Ŷ = 0, s = 0) = P (Y = 1|Ŷ = 0, s = 1)140

Sufficiency requires that the rates of individuals with the same predicted label also having the141

same true label is equal across different sensitive groups. If sufficiency is satisfied, then an142

individual from one group who is hired by the classifier is as likely to be truly qualified as a143

hired individual from another group.144

3. Our Approach. Next we introduce our proposed second order method, and discuss its145

implementation. Our approach relies on approximation, so an analysis of the error produced by146

this approximation follows in Subsection 3.2. Then in Subsection 3.3, we introduce alternate147

methods of solving the robust optimization problem and their implementations to test against148

our proposed approach.149

3.1. Trust Region Subproblem (TRS). Our main algorithm (Algorithm 3.1) solves an150

approximation of the inner optimization problem (2.2b) using second order information. For151

each training sample (x,y) ∈ T , we fix θ and expand the loss function using a quadratic152

Taylor series approximation about x in the direction of δx.153

(3.1) min
∥δx∥2≤r

−L(fθ(x),y)− (∇xL(fθ(x),y))
Tδx − 1

2δ
T
x∇2

xL(fθ(x),y) δx154

To fit our constraint, we construct a Lagrangian term by squaring our initial constraint and155

scaling the Lagrange multiplier by one-half. This gives us a function that depends on δx and156

λ.157

(3.2) L̃(δx, λ) = −L(fθ(x),y)−(∇xL(fθ(x),y))
Tδx−

1

2
δTx∇2

xL(fθ(x),y) δx+
λ

2
(||δx||2−r2)158

We approximate the optimal δ∗x to the inner optimization problem as the optimal δx solution159

to the quadratic problem (3.1). The KKT conditions are the same as (2.4) except for the160

This manuscript is for review purposes only.

184 A. J. MINCH, H. A. VU, AND A. WARREN

Algorithm 3.1 Trust Region Subproblem

Require: network fθ : X × Θ → Y, loss function L : Rnout × Y → R, batch Ti ⊂ T , trust
region radius r

Ensure: Candidate perturbation per sample S ∈ Rnin×|Ti|

1: Initialize S as empty array
2: for each sample (x,y) ∈ Ti do
3: Evaluate loss and derivatives, L(fθ(x),y), ∇xL(fθ(x),y), and ∇2

xL(fθ(x),y)
4: Define perturbation as a function of Lagrange multiplier δx(λ) ▷ Equation (3.4)
5: Compute unconstrained perturbation sx = δx(0)
6: if ∥sx∥2 > r then
7: Set λlow = 0, compute λhigh ▷ Subsection 3.1.1
8: Solve for λ∗ using bisection method on the function g(λ) ▷ Equation (3.5)
9: Choose optimal search direction sx = δx(λ

∗)
10: end if
11: Concatenate S and sx
12: end for

stationarity condition.161

(3.3) −∇xL(fθ(x),y)−∇2
xL(fθ(x),y) δx + λδx = 0 (stationarity)162

This gives us an explicit relation of δx to λ.163

(3.4) δx(λ) = −(∇2
xL(fθ(x),y)− λI)−1∇xL(fθ(x),y)164

There are two cases to (3.4). If λ = 0, then the optimal δx for (3.1) can be found by solving a165

system of linear equations involving the gradient and the Hessian. Alternatively, if λ ̸= 0, then166

complementary slackness enforces ∥δx∥2 = r, so we need to find λ such that ∥δx(λ)∥2 = r.167

We note that Algorithm 3.1 and our derivation uses a “per-sample” option. This means168

the trust region constraint is applied independently for each sample in the input dataset; i.e.,169

for each data point, we solve a separate trust region optimization problem and perturb. This170

is beneficial when different data points require different level of adjustment. An alternative171

approach would be to use a “global” option; i.e., a single constraint is applied to the entire172

batch of data. The “per-sample” approach is beneficial because we can optimize the adversarial173

perturbation for each samples (i.e., increase robustness) and offers the potential to use a174

different trust region radius per sample (we have not programmed this adaptability into our175

code yet). The trade off is that the “per-sample” method is run sequentially over the batch176

samples, which can be slow. There is a potential for parallelization; however, this is non-trivial177

to code, particularly when ensuring the gradients track properly for automatic differentiation.178

We consider as a future improvement of the repository. During our experiments, we had a179

choice to use either but we mainly used “per-sample” which is why it was included.180

3.1.1. The Bisection Method Bracket. To find a value for λ such that ∥δx(λ)∥2 = r, we181

build a univariate function g(λ) := ∥δx(λ)∥2 − r and find a root of this function. Applying182

This manuscript is for review purposes only.

FAST & FAIR 185

some linear algebra to (3.4), one can show that183

g(λ) = ∥δx(λ)∥2 − r(3.5a)184

= ∥ − (∇2
xL(fθ(x),y)− λI)−1∇xL(fθ(x),y)∥2 − r(3.5b)185

= ∥(QDQ⊤ − λI)−1∇xL(fθ(x),y)∥2 − r(3.5c)186

= ∥Q(D − λI)−1Q⊤∇xL(fθ(x),y)∥2 − r(3.5d)187

= ∥(D − λI)−1Q⊤∇xL(fθ(x),y)∥2 − r(3.5e)188

where ∇2
xL(fθ(x),y) = QDQT is the eigendecomposition of the Hessian. Because the Hessian189

is symmetric, by the Spectral Theorem, we know Q is orthogonal and D is diagonal and real-190

valued.191

We use the bisection method [5] to find a root of g(λ) = 0. We do recognize that it may not192

seem appropriate to use a bisection method here because g is not continuous at eigenvalues of193

the Hessian of L. However, given the complexity of the function g and of robust optimization194

in general, we wanted to use a straight-forward approach to find a root of g. In practice, we did195

not seem to run into any numerical issues in our code using the bisection method. Moreover,196

we obtained the same final fairness and accuracy results using a first order projected gradient197

descent (PGD) method, outlined later, as using a bisection method with our new second-198

order optimization approach. Considering these things, we considered the bisection method199

to be adequate for the purposes of this work, and we leave it for future work to improve the200

root-finding strategy of our optimization method.201

In order to use the bisection method, we need to establish a bracket [λlow, λhigh] such that202

g has different signs at the endpoints; that is, g(λlow)g(λhigh) < 0. If λ = 0, then constraint is203

satisfied. Thus, g(0) ≥ 0 and, in practice, positive, so λlow = 0 is a good candidate. To find204

the upper bound, we first bound the norm205

∥(D − λI)−1Q⊤∇xL(fθ(x),y)∥2 ≤ ∥(D − λI)−1∥2∥∇xL(fθ(x),y)∥2(3.6)206

=

√√√√ nin∑
i=1

1

(di − λ)2
∥∇xL(fθ(x),y)∥2(3.7)207

Following from [9], as λ → d+max, the upper bound approaches +∞ and as λ → ∞, the upper208

bound approaches 0. This guarantees that there is some λ ∈ (dmax,∞) such that the upper209

bound is less than r. If we let210

λhigh = |dmax|+
√
n∥∇xL(fθ(x),y)∥2

r
(3.8)211

then (di−λhigh)
2 ≥ n∥∇xL(fθ(x),y)∥22

r2
for i = 1, . . . , nin. Substituting into the upper bound,212

we get213 √√√√ nin∑
i=1

1

(di − λ)2
∥∇xL(fθ(x),y)∥2 ≤

√
nr√

n∥∇xL(fθ(x),y)∥2
∥∇xL(fθ(x),y)∥2 = r.(3.9)214

Thus, we have found a bracket for the bisection method.215

This manuscript is for review purposes only.

186 A. J. MINCH, H. A. VU, AND A. WARREN

3.2. Algorithm Analysis. When solving the inner optimization problem using a second216

order approximation, we would like to know how well this approximation actually solves217

this problem. For specific classes of models, loss functions, and activation functions, we can218

confine the error explicitly to depend on high orders of the perturbation δx and loss function219

derivatives.220

3.2.1. Affine model. An affine model fw,b(x) = w⊤x + b with weight vector w and a221

scalar bias b combined with a logistic regression loss function L and a sigmoid activation222

function σ is convex with respect to inputs. The loss is given explicitly as223

(3.10) L(fw,b(x), y) = −y ln[σ(w⊤x+ b)]− (1− y) ln[1− σ(w⊤x+ b)]224

with σ(z) = (1+e−z)−1. Introducing the perturbation δx results in a specific case of the inner225

optimization problem in (2.2b). To solve this optimization problem without approximation,226

we introduce as before a Lagrange multiplier λ with the constraint ∥δx∥2 − r2 ≤ 0.227

Laff(δx, λ) = −y ln(σ(w⊤(x+ δx) + b))− (1− y) ln(1− σ(w⊤(x+ δx) + b))

+
1

2
λ(∥δx∥22 − r2)

(3.11)228

The first order optimality conditions for (3.11) tell us that at the optimal δx,229

(3.12) ∇δxLaff(δx, λ) = (−y + σ(w⊤(x+ δx) + b))w + λδx = 0.230

To compare the exact solution from equation (3.12) to the approximation made when solving231

using the trust region method of section 3.1, we find the second order approximation of the232

loss function L(fw,b(x), y) by a Taylor expansion in x in the direction of δx.233

(3.13) L(fw,b(x+ δx), y) ≈ L(fw,b(x), y) +∇⊤
xL(fw,b(x), y)δx +

1

2
δ⊤x∇2

xL(fw,b(x), y)δx234

where the gradient and Hessian are235

∇xL(fw,b(x), y) = (−y + σ(w⊤x+ b))w

∇2
xL(fw,b(x), y) = wσ′(w⊤x+ b)w⊤.

(3.14)236

The associated Lagrangian is237

(3.15)

L̃aff(δx, λ) = L(fw,b(x), y) +∇⊤
xL(fw,b(x), y)δx +

1

2
δ⊤x∇2

xL(fw,b(x), y)δx +
1

2
λ(∥δx∥2 − r2).238

As before, take the gradient with respect to δx and set it equal to zero to solve using239

first-order optimization conditions.240

∇δxL(δx, λ) = (−y + σ(w⊤x+ b))w +wσ′(w⊤x+ b)w⊤δx + λδx = 0(3.16)241

Comparing (3.12) (LHS) and (3.16) (RHS), the discrepancy between the exact solution and242

the approximation is restricted to243

(3.17) σ(w⊤(x+ δx) + b) ̸= σ(w⊤x+ b) + σ′(w⊤x+ b)w⊤δx.244

This manuscript is for review purposes only.

FAST & FAIR 187

Figure 2: Flattening behavior of sigmoidal function, σ, derivatives.

Now, appling a Taylor expansion centered at x in the ball x+ δx to the LHS, we obtain:245

(3.18) σ(w⊤(x+ δx) + b) ≈ σ(w⊤x+ b) + σ′(w⊤x+ b)w⊤δx +
1

2
δ⊤xwσ′′(w⊤x+ b)w⊤δx246

We have recovered the RHS of (3.17), so the error is due to the truncation of the second-order247

and higher terms of (3.18). In this case with a sigmoidal loss function, that means this error248

depends on the magnitude of |σ′′(z)| and the δx for which we solved.249

For any sigmoidal function, their structure gives first and second order derivatives of the250

classes shown in Figure 2. For our sigmoid function defined as σ(z) = (1 + e−z)−1 with251

|σ′′(z)| ≤ 0.1, and in general for any choice of sigmoidal function this flattening of higher-252

order derivatives will be observed. By nature δx is bounded by the data since it defines the253

perturbation from a given point, and a perturbation larger than the size of the data space254

in any given dimension would be meaningless. For data in the form of continuous numerical255

values normalized to be between 0 and 1, as in our case, each component of δx must be256

less than 1. In practice, δx tends to be much smaller than that. This bound means higher257

order terms are generally quite small, and for this combination of loss function, activation258

function, model, and radii on the order of 10−1, the approximation error is on the order of259

∥δx∥2|σ′′(z)| ≈ 10−3.260

3.3. Other Methods. We compare our trust region subproblem (TRS) algorithm to ran-261

dom perturbation to examine whether or not it is important to solve the inner optimization262

problem well. We also use random perturbation, along with a projected gradient descent263

(PGD) method, to verify that our second order TRS approach has greater computational264

efficiency than only using lower order information.265

3.3.1. Random Perturbation. For each data point, we sample the perturbation δx ran-266

domly from a multivariate standard normal distribution and rescale to the length of the trust267

region radius. This method acts as a control in our experiments to show the advantages of268

solving for an optimal perturbation.269

3.3.2. Projected Gradient Descent (PGD). In order to test that our second order TRS270

approach is computationally faster than using purely first order information, we also imple-271

mented a version of gradient descent for our inner optimization problem. Since our inner272

problem has the constraint ∥δx∥2 ≤ r, we cannot use vanilla gradient descent, and instead273

This manuscript is for review purposes only.

188 A. J. MINCH, H. A. VU, AND A. WARREN

use projected gradient descent (PGD) [3, 10]. PGD operates similarly to standard gradient274

descent, but once it has found its optimal step it projects the step onto the constrained set275

before returning it. Mathematically, this looks like:276

(3.19) δ
(k+1)
x = P

[
δ
(k)
x + α(k) · ∇xL(fθ(x+ δx),y)

]
277

where δ
(k)
x is the kth iterate, α(k) is the step size at the kth iteration, and P is the projection278

operator P (x) = argminz:||z||2≤r ||x − z||22. This projection operator turns out to be very279

simple, returning the inputted point if the point already satisfies the constraint, or scaling the280

point inward to the boundary of the constraint if it is outside it. In particular,281

(3.20) P (x) = min

{
1,

r

||x||2

}
x.282

Numerical experiments on how PGD performs with adversarial training [13, 6] have shown283

that PGD is a reliable method when it comes to solving robust optimization problems.284

4. Numerical Results. Now we present results of our numerical experiments pertaining to285

fairness, accuracy, and computational time. Subsections 4.1, 4.2, and 4.3 discuss fairness and286

accuracy results on three datasets. For each dataset, we compute the fairness and accuracy re-287

sults for nonrobust training, for robust training with various radii, and random perturbations.288

We measure the absolute difference across sensitive attributes for analysis of each fairness289

metric, and the closer this difference is to zero, the fairer the classifier is with respect to that290

metric. Subsection 4.4 presents our results on relative computational time across our various291

methods for solving the inner optimization problem.292

4.1. Synthetic Data (Unfair2D). The primary dataset we used for carrying out numerical293

experiments was a synthetic dataset. Individuals belonging to two different groups, labeled294

with respect to a sensitive attribute A or B, are being hired on the basis of two numeric scores295

x1 and x2. Individuals have a binary label that is either “should be hired” or “shouldn’t be296

hired,” and we train a linear classifier to decide whether or not to hire an individual. The data297

is initially fair (Figure 3a), and we introduce unfair bias into the data by artificially raising298

the scores of all Bs while lowering the scores of all As (Figure 3b). In the real world, this299

could be a manifestation of structural unfairness in which Bs are more likely to belong to a300

wealthy socioeconomic class, and thus can afford training that boosts their scores, whereas301

As do not have this opportunity. In fact, As may not only lack the advantage of Bs, but also302

have an active disadvantage, such as an increased likelihood of needing to work longer hours,303

impeding time for study and test prep, lowering their scores.304

This manuscript is for review purposes only.

FAST & FAIR 189

(a) Pre-shift data (b) Sample of post-shift data

Figure 3: Points are colored based on their original location in the blue region (Y = 1) or
red region (Y = 0). Post shift, note the unfair presence of red Bs in the blue region and blue
As in the red region.

Y, Ŷ = 0 Y, Ŷ = 1 Accuracy

T
ra
in
in
g
se
t

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Traing Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Traing Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs. Radius, Unfair 2d
Robust Accuracy
Nonrobust Accuracy

(a) (b) (c)

T
es
t
se
t

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Test Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Test Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs. Radius, Unfair 2d
Robust Accuracy
Nonrobust Accuracy

(d) (e) (f)

Figure 4: Synthetic fairness and accuracy results. For fairness, values closer to zero are
desirable.

This manuscript is for review purposes only.

190 A. J. MINCH, H. A. VU, AND A. WARREN

(a) Nonrobust Classifier

Diff: Y = 0, |S1− S0| Y = 1, |S1− S0|
Ind. 0.152 0.152

Sep. 0.248 0.179

Suff. 0.213 0.190

Training Accuracy: 79.5%
Test Accuracy: 78.0%

(b) Robust Classifier (r=0.18)

Diff: Y = 0, |S1− S0| Y = 1, |S1− S0|
Ind. 0.025 0.025

Sep. 0.019 0.127

Suff. 0.142 0.038

Training Accuracy: 73.5%
Test Accuracy: 73.0%

Figure 5: Comparative Analysis of Non-Robust and Robust Classifiers

We compare nonrobust training on this synthetic dataset with robust training (using the305

TRS method) and random perturbation for 11 different perturbation radii, with the radius306

increasing in 0.01 increments from 0.1 up to 0.2. These experiments were run with a total of307

10 training epochs and a learning rate of 0.01 in the outer optimization problem. Four plots of308

fairness metric differences versus radius are shown in Figure 4, as well as plots of the training309

and testing accuracy versus radius. For many radii in the lower end of the plotted range,310

many of the fairness differences are worse in the training data with robust training than with311

nonrobust. However, some fairness improvement can be seen with robust training.312

In all cases, at least two of the three fairness metrics show a downward trend for robust313

training. This suggests that while robust training may worsen fairness for a very small radius,314

fairness improvement is possible at more appropriate radii. At a radius of 0.18, all of the315

robust fairness differences are better than the corresponding nonrobust ones in the training316

data, although it does lead to a decrease in test accuracy from around 78% to 73% (Figure 5).317

The nonrobust classifier is visualized in Figure 5a versus the robust classifier in Figure 5b.318

In Figure 5b, robust optimization is improving fairness by raising the bar, giving a positive319

classification to only the most qualified individuals. It eliminates nearly all of the false positive320

Bs that exist with the original dashed classifier and greatly increases the quantity of blue Bs321

in the red region, equalizing false negative rates. Increasing the radius even further to 0.2322

with 20 epochs of training, the robust classifier eventually classifies nothing positively. Our323

robust classifier is not helping the disadvantaged As in the process of improving fairness – it324

This manuscript is for review purposes only.

FAST & FAIR 191

Ind (y = 0) Sep (y = 0) Sep (y = 1) Suf (y = 0) Suf (y = 1)
Fairness Metric

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
iff

er
en

ce

Training Fairness Differences For Each Method, 2d example, r = 0.18
Non-robust
Rand Pert
Robust

(a) Training fairness differences

Ind (y = 0) Sep (y = 0) Sep (y = 1) Suf (y = 0) Suf (y = 1)
Fairness Metric

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
iff

er
en

ce

Testing Fairness Differences For Each Method, 2d example, r = 0.18
Non-robust
Rand Pert
Robust

(b) Test fairness differences

Figure 6: Fairness differences (r=0.18). Left bar is nonrobust, middle is random, right is
robust.

is only hurting the advantaged Bs. While this does not provide an indication of how robust325

training would work on every dataset, it does illustrate that robust optimization may improve326

fairness in an unexpected or unintended way.327

There is an advantage to solving the inner optimization problem well instead of just328

using random perturbations. In Figure 4, the fairness differences for random perturbations329

are either the same or stay close to the nonrobust differences. This stands in contrast to330

robust training, where fairness differences are initially high and then get significantly lower,331

surpassing nonrobust differences. Figure 6 also exhibits this advantage.332

4.2. Adult Dataset. We also extended our numerical experiments to real-world datasets.333

The Adult dataset [11] consists of demographic data about individuals that are used to classify334

whether their annual income is more than $50, 000. Note that the dataset predominantly335

consists of white males in the age range of 25-60. It contains 48,842 instances and each336

instance is described using 15 attributes. We want to look at the 5 continuous numerical337

attributes (age, education-num, capital-gain, capital-loss, hours-per-week) for analysis. The338

income (salary) data is converted into binary form (1 for ≤ 50k, 0 for > 50K), and the339

protected attribute can be sex or race.340

Unlike our synthetic data, the adult example yielded mixed results in terms of fairness341

improvement. For the training data, Figure 7a and Figure 7b show that only three out of342

the six differences were measured to be better with robust training. There was a similar343

result for the test data as seen in Figure 7c and Figure 7d. Despite only having a 50%344

improvement rate, the majority of the fairness metrics exhibit a downward trend, and when345

there is an improvement robust optimization outperforms random perturbation significantly.346

The expected accuracy-robustness trade-off is present (Figure 7e), with both the training347

and test robust accuracy decreasing with increasing radii. However, unlike in the synthetic348

dataset, the decay appears to be linear and does not spike at certain radii, and does not yield349

This manuscript is for review purposes only.

192 A. J. MINCH, H. A. VU, AND A. WARREN

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Training Fairness Differences vs. Radius, Adult example

(a)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Training Fairness Differences vs. Radius, Adult example

(b)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Test Fairness Differences vs. Radius, Adult example

(c)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Test Fairness Differences vs. Radius, Adult example

(d)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Tr
ai

n
Ac

cu
ra

cy
 (%

)

Train Accuracy vs. Radius, Adult
Robust Accuracy
Nonrobust Accuracy

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs. Radius, Adult
Robust Accuracy
Nonrobust Accuracy

(e) Adult robust training accuracy.

Figure 7: Fairness ((a)-(d)) and accuracy (e) trends in the adult dataset for nonrobust and
robust training.

better accuracy for smaller radii. Overall, there is still reasonable case for improving fairness350

metrics at the expense of classifier accuracy.351

4.3. LSAT Data. Another extension to a real-world dataset comes from the Law School352

Admissions Council (LSAC) [12]. This dataset was collected to explore the reasons behind353

low bar passage rates among racial and ethnic minorities. We train our classifier to predict354

whether or not a student will pass the bar, based on their Law School Admission Test (LSAT)355

score and undergraduate GPA. We are using GPA and LSAT scores because they are the356

strongest predictors for passing the bar examination. Our primary interest lies in examining357

five key features of the dataset: the bar exam pass/fail prediction made by a DNN, the gender358

of the student, their LSAT score, the true bar exam pass/fail value for the student, and their359

race. For the purpose of our experiment, the race feature is made binary to indicate a student360

as either white or non-white, which is used as the sensitive attribute.361

Unlike the two previous examples, there is not a lot of fluctuation with LSAT robust362

results (Figure 8). Surprisingly, robust optimization seems not to deviate from nonrobust363

training. As we have seen, using a random perturbation yields fairness results that are very364

similar to the results of non-robust training. For this dataset, robust optimization also per-365

forms very similarly to just picking a random perturbation. This is especially the case with366

This manuscript is for review purposes only.

FAST & FAIR 193

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Training Fairness Differences vs. Radius, LSAT example

(a)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.0

0.1

0.2

0.3

0.4

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Training Fairness Differences vs. Radius, LSAT example

(b)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Test Fairness Differences vs. Radius, LSAT example

(c)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Test Fairness Differences vs. Radius, LSAT example

(d)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs. Radius, LSAT
Robust Accuracy
Nonrobust Accuracy

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Tr
ai

n
Ac

cu
ra

cy
 (%

)

Train Accuracy vs. Radius, LSAT
Robust Accuracy
Nonrobust Accuracy

(e) LSAT robust training accuracy.

Figure 8: Fairness ((a)-(d)) and accuracy (e) trends in the LSAT dataset for nonrobust and
robust training.

the independence and separation metrics. The only two notable deviations come from the367

sufficiency metric in Figure 8a and Figure 8b of the training dataset. This might be attribut-368

able to our definion of the sensitive attribute as white vs nonwhite, which creates a very small369

dataset due to the dominance of white individuals in the original dataset. For this specific370

example, robust optimization does not improve fairness, and in fact performs worse since it371

loses accuracy when yielding the same fairness results.372

4.4. Efficiency Comparison. We gathered time data to see if the TRS method converged373

faster than PGD on our datasets. On each of the three datasets above - synthetic, Adult,374

and LSAT - we computed for each radius the average epoch time elapsed for TRS, PGD, and375

random perturbation. To compare the speed of the TRS method and PGD, we examine the376

ratio of the average PGD epoch time to the average TRS epoch time, looking at the extreme377

values of this ratio to get a range of how much faster the trust region subproblem was than378

PGD across all radii. The results are shown in Table 1.379

Random perturbation is the fastest adversarial training method in all three datasets. This380

is expected, as it does not actually solve the optimization problem; its only computation task381

is generating a random vector and rescaling it. It is also noteworthy that using the TRS382

method consistently is computationally faster than using PGD. Over all radii shown, training383

This manuscript is for review purposes only.

194 A. J. MINCH, H. A. VU, AND A. WARREN

Table 1: Average Epoch Times. For each dataset, the first three rows show the average epoch
times for each of the three robust optimization approaches, where a lower value indicates faster
computational performance. The fourth row shows the ratio of PGD to TRS time, where a
ratio greater than 1 indicates that the TRS approach was faster than the PGD approach for
the given radius. The gray values highlight the minimum ratio of PGD to TRS time over all
radii, while the yellow values highlight the maximum ratio.

Radii .10 .12 .14 .16 .18 .20

S
y
n
th

e
ti
c PGD 2.680 3.597 4.228 4.486 5.061 5.080

TRS 1.945 1.875 1.806 1.891 1.742 1.752
RND 0.0387 0.0366 0.0387 0.0389 0.0387 0.0375

PGD/TRS 1.377 1.919 2.340 2.373 2.904 2.900

A
d
u
lt

PGD 512.970 593.173 697.399 1146.856 1689.761 1854.932
TRS 60.372 61.557 57.723 58.707 57.492 59.061
RND 0.0947 0.101 0.0972 0.0919 0.0974 0.0939

PGD/TRS 8.497 9.636 12.082 19.535 29.391 31.407

L
S
A
T

PGD 1.129 1.559 2.844 3.575 3.347 2.752
TRS 0.396 0.396 0.421 0.371 0.414 0.385
RND 0.0107 0.0123 0.0154 0.0122 0.0162 0.0104

PGD/TRS 2.852 3.936 6.762 9.639 8.094 7.150

with TRS is between 1.4 and 2.9 times faster than PGD in the synthetic dataset, between384

8.5 and 31.4 times faster in Adult, and between 2.9 and 9.6 times faster in LSAT. The very385

short average epoch times for the LSAT dataset are due to the significantly smaller scale of386

the input data. All of the smallest factors of time improvement of TRS relative to PGD387

(highlighted in gray) are greater than 1 suggesting that the trust region subproblem has a388

consistent advantage over PGD in computational speed.389

Looking at the PGD/TRS ratios, the factor of improvement that TRS has in computa-390

tional time over PGD appears to be higher in the real-world datasets than in the synthetic391

dataset. The real-world datasets, and especially Adult, are trained on larger amounts of data,392

so the advantage of TRS over PGD seems to scale with the size of the dataset. This advantage393

of the trust region subproblem also improves with larger perturbation radii. In particular,394

the minimum factor of improvement (gray) always occurs with the smallest radius, and the395

maximum factor of improvement (yellow) always occurs with one of the three largest radii.396

5. Conclusion. In our affine linear model setup, we were able to see improvement in397

fairness by using robust optimization. In the synthetic dataset, whenever there was an im-398

provement, the gain was a significant reduction in fairness difference magnitudes (which are399

ideally zero). In our numerical experiments extending to real-world datasets, we have shown400

that robust training performs similarly to non-robust training even in the worst-case scenario401

(LSAT dataset). Across all three datasets, the accuracy of robust optimization decreased402

as the radius increased, the majority of the fairness metrics displayed a downward trend as403

the perturbation radius increased, and when fairness improved with robust training, precise404

This manuscript is for review purposes only.

FAST & FAIR 195

solutions to the inner optimization problem outperformed randomly selected solutions. Fur-405

thermore, we were able to quantify the fact that, with the help of hessQuik, using second-order406

information is much faster for solving our class of optimization problem.407

We acknowledge that while we were able to achieve positive results with our experiments in408

both synthetic and real-world datasets, there are a few mathematical limitations to our results409

that prevent generalization to higher-dimensional applications. We used a neural network in410

our training with only one hidden layer, our experiments were conducted using a linear and411

binary classifier, and our sensitive attribute was binary. This motivates future exploration412

of extending our approach to deeper neural networks, multinomial classification, and other413

fairness metrics relevant to those cases. It may help to improve fairness even further to414

introduce a regularization term to our approach to penalize violations of our fairness metrics,415

which is another avenue for further work. There limitations of our implementation. For416

PGD, we used an arbitrary step size instead of varying the step size as training proceeds.417

Additionally, we did not solve our inner optimization problems in parallel. Parallelizing the418

computations for our inner optimization problem could provide a significant reduction in419

overall computation time.420

Despite these limitations, this work demonstrates initial promise for the ability of robust421

training to bring about fairness improvement in machine learning models, and motivates422

further research on similar methodologies.423

Acknowledgments. This work was supported by NSF award DMS-2051019 and was com-424

pleted during the “Computational Mathematics for Data Science” REU/RET program in the425

summer of 2023. We would like to thank Dr. Elizabeth Newman, our mentor, and the rest of426

the faculty who participated in the program for their feedback and support.427

REFERENCES428

[1] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning: Limitations and Op-429
portunities, fairmlbook.org, 2019. http://www.fairmlbook.org.430

[2] A. Beck, Introduction to Nonlinear Optimization, Society for Industrial and Applied Mathemat-431
ics, Philadelphia, PA, 2014, https://doi.org/10.1137/1.9781611973655, https://epubs.siam.org/432
doi/abs/10.1137/1.9781611973655, https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/433
1.9781611973655.434

[3] A. Beck, First-order methods in optimization, SIAM, 2017.435
[4] N. Furl, P. Phillips, and A. J. O’Toole, Face recognition algorithms and the other-race ef-436

fect: computational mechanisms for a developmental contact hypothesis, Cognitive Science, 26437
(2002), pp. 797–815, https://doi.org/https://doi.org/10.1016/S0364-0213(02)00084-8, https://www.438
sciencedirect.com/science/article/pii/S0364021302000848.439

[5] A. Kaw, Numerical methods with applications (kaw), University of South Florida, 2011, https://math.440
libretexts.org/Under Construction/Numerical Methods with Applications (Kaw).441

[6] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards deep learning models442
resistant to adversarial attacks, in International Conference on Learning Representations, 2018, https:443
//openreview.net/forum?id=rJzIBfZAb.444

[7] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, A survey on bias and445
fairness in machine learning, CoRR, abs/1908.09635 (2019), http://arxiv.org/abs/1908.09635, https:446
//arxiv.org/abs/1908.09635.447

[8] E. Newman and L. Ruthotto, ‘hessquik‘: Fast hessian computation of composite functions, Journal448
of Open Source Software, 7 (2022), p. 4171, https://doi.org/10.21105/joss.04171, https://doi.org/10.449

This manuscript is for review purposes only.

http://www.fairmlbook.org
https://doi.org/10.1137/1.9781611973655
https://epubs.siam.org/doi/abs/10.1137/1.9781611973655
https://epubs.siam.org/doi/abs/10.1137/1.9781611973655
https://epubs.siam.org/doi/abs/10.1137/1.9781611973655
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973655
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973655
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973655
https://doi.org/https://doi.org/10.1016/S0364-0213(02)00084-8
https://www.sciencedirect.com/science/article/pii/S0364021302000848
https://www.sciencedirect.com/science/article/pii/S0364021302000848
https://www.sciencedirect.com/science/article/pii/S0364021302000848
https://math.libretexts.org/Under_Construction/Numerical_Methods_with_Applications_(Kaw)
https://math.libretexts.org/Under_Construction/Numerical_Methods_with_Applications_(Kaw)
https://math.libretexts.org/Under_Construction/Numerical_Methods_with_Applications_(Kaw)
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1908.09635
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171

196 A. J. MINCH, H. A. VU, AND A. WARREN

21105/joss.04171.450
[9] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY, USA, 2e ed., 2006.451

[10] N. Parikh, S. Boyd, et al., Proximal algorithms, Foundations and trends® in Optimization, 1 (2014),452
pp. 127–239.453

[11] T. L. Quy, A. Roy, V. Iosifidis, W. Zhang, and E. Ntoutsi, A survey on datasets for fairness-454
aware machine learning, WIREs Data Mining and Knowledge Discovery, 12 (2022), https://doi.org/455
10.1002/widm.1452, https://doi.org/10.1002%2Fwidm.1452.456

[12] L. F. Wightman, Lsac national longitudinal bar passage study. lsac research report series., 1998, https:457
//api.semanticscholar.org/CorpusID:151073942.458

[13] H. Xu, X. Liu, Y. Li, A. K. Jain, and J. Tang, To be robust or to be fair: Towards fairness in459
adversarial training, 2021, https://arxiv.org/abs/2010.06121.460

This manuscript is for review purposes only.

https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.1002/widm.1452
https://doi.org/10.1002/widm.1452
https://doi.org/10.1002/widm.1452
https://doi.org/10.1002%2Fwidm.1452
https://api.semanticscholar.org/CorpusID:151073942
https://api.semanticscholar.org/CorpusID:151073942
https://api.semanticscholar.org/CorpusID:151073942
https://arxiv.org/abs/2010.06121

	Introduction
	Background
	Notation
	Robust Optimization
	Fairness
	Independence
	Separation
	Sufficiency

	Our Approach
	Trust Region Subproblem (TRS)
	The Bisection Method Bracket

	Algorithm Analysis
	Affine model

	Other Methods
	Random Perturbation
	Projected Gradient Descent (PGD)

	Numerical Results
	Synthetic Data (Unfair2D)
	Adult Dataset
	LSAT Data
	Efficiency Comparison

	Conclusion

