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Abstract

We formulate a continuous time, discrete in space model for two spa-
tially interacting species. The spatial interaction is described in terms
of a measure for the desire or ability of a population to move from one
location into a neighboring site. This can depend on local densities of
both populations in the current and the target site. Refining the spatial
resolution and passing to a continuous in space model, one obtains a sys-
tem of partial differential equations with cross diffusion terms. We show
that certain cross-diffusion models that have been used in the literature
to describe interacting species can be derived as special cases with our
approach.

1 Introduction

In Mathematical Biology and in Theoretical Ecology, the spatial dispersal of
populations is frequently described by dividing the space into discrete sites and
modeling the movement of the population based on the probability that an
individuum moves from the site it currently occupies into a neighboring site
[1, 4, 5, 6, 7, 9, 10]. This is often referred to as a microscopic description
because the pattern of movement of the population emerges from individuum
level assumptions. For single species systems, macroscopic, population level,
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models in the form of partial differential equations are often derived from such
microscopic models by refining the spatial discretisation more and more and by
passing to the continuous limit.

In this paper, we will present a similar approach to derive macroscopic mod-
els for biological or ecological systems in which two interacting species occupy
the same spatial environment. We start with micro-level assumptions about
the probability of individuals to move from one discrete site into another one,
depending on the current population densities of both species in both sites.
Performing the same steps that are usually taken in modeling single species sys-
tems, we derive a general macroscopic model consisting of two partial differential
equations with cross-diffusion.

While several of these PDE models have been used in the literature to de-
scribe interacting populations, they are to the best of our knowledge ad hoc and
usually not derived from a description of microscopic behavior. Using our mi-
croscale description we will give such a derivation for two cross-diffusion models,
namely the Shigesada-Kawasaki-Teramoto model [8] and the Chattopadhyay-
Chatterjee model [2]. This is the primary goal of this study.

2 A microscopic continuous time, discrete in space

model for two interacting populations

Our starting point is a microscale master equation model for the movement of
two interacting populations. Models of this type have been studied extensively
to model the dispersal of single populations [1, 4, 5, 6, 7, 9, 10]. We formulate this
in a one-dimensional context but point out that the generalization to the two-
dimensional or three-dimensional setting is straightforward, but algebraically
more involved.

Our spatial environment is represented by discrete non-overlapping sites, or
locations, x; where i € Z. Since we are considering only finite environments, we
use i = 1, ....,n. The densities of both populations in the ith site are denoted by
u; and v;. They can vary in time. Therefore, u;(t) and v;(¢) can be considered
grid or lattices functions. We treat time ¢ as a continuous variable.

Rules governing the movements of the two species are then formulated, based
on microscopic behavior on the level of the individuum. These rules take into
account the population density of each species at both the site a population
currently resides in (the departure site), and the site the population is moving
into (the arrival or target site). The master equation describes the population
change of a particular species in a particular site, by balancing the amount of
the population which leaves the site to move into neighboring locations, and
the amount which arrives from neighboring sites. The difference between these
amounts is the population change of the species in the site.

The master equations for two interacting species read
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(b) species v

Figure 1: Schematic of movements of populations between neighboring lattice
cells. The flux of species u that moves from cell i to cell i + 1 is denoted T, T,
ete.

{ B = T uiy + Tigui — (T, + T us + K, )
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where ’Ei and Sii are the rates at which species u and v move from the ith site
into the neighboring sites ¢ 4+ 1, cf also Figure 1.

These dispersal rates in general can depend on the density of both popula-
tions in sites ¢ and ¢ + 1. To account for this we make the general ansatz

7?: = aq(ui,vi)p(uiil,viil),
SE = Br(ui,vi)m(uis1, vit1)-

Here the non-negative functions g, p,r,m are the “jump probabilities” which
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control the local movements of a species from one site on the lattice to a neigh-
boring site and are taken to be continuous. The function g(u;,v;) is a measure
of the desire of species u to leave the cell it is currently in (z;), while p(u;, v;)
represents the favorableness of the cell z; for the incoming individuals of species
u. The functions r(u;, v;) and m(u;,v;) have identical meanings, but for species
.

These functions can be understood as probabilities for an individuum to
move between sites ¢ and ¢+ 1. The coefficient « is a scaling factor that depends
on time-scale and length-scale, i.e. distance between two sites h. In dispersal
lattice models of this kind, « scales with h2, such that limj_,o ah? = ag > 0.
For a given grid «g is a constant. The same applies for 5.

The terms K¥ and K} in (1) are the net growth terms for species u and v
respectively. These growth terms can be used to describe local interaction of
both species, such as predator prey dynamics, competition for a substrate, and
many others. The focus of our study is on the spatial dispersal. Therefore, we
will always simplify and take K}' = K} = 0.

As a demonstration of the application of this model, several combinations of
jump probabilities representing different dispersal strategies of the two species
are considered and illustrated by computer simulations (Figures 2, 3). The
simulations are run using Matlab where the differential equations are solved
numerically by the Runge-Kutta 45 method.

All simulations are run on a finite lattice consisting of 100 cells. On the
first and last cell, zero-flux boundary conditions are applied at ¢ = 1 and i =
100 which compare to homogeneous Neumann conditions in partial differential
equations. These boundary conditions are implemented by adjusting (1) in such
a way that no net flow of populations takes place across the lattice boundaries.
This is done by creating “ghost cells” at ¢ = 0 and ¢ = 101 such that uy = u;,
V9 = V1, U100 = U101, and vigg = V11 for all time. Also, since all cells on the
lattice are considered to have volume equal to one and K} = K7 = 0, the total
mass of a species ), u;(t) is constant by these boundary conditions (likewise
for v).

All the simulations given in this paper eventually lead to spatially and tem-
porally homogeneous equilibriums, but with different transient behaviors. These
transient behaviors are of the most interest in the context of this paper as they
show how different dispersal strategies, expressed in terms of the jump proba-
bilities, affect the movements of the populations differently.

Each simulation is also run with the same initial conditions. At time zero,
species u and v are organized in one pocket each, separated around the middle of
the lattice. Initially, each species is spread across 20 sites. The two populations
are separated by 10 empty cells. The exact initial conditions are

ui(0) = 0.5, 26 <i < 45,

ui(0) = 0,0<i<25, 46 << 100, @
v;(0) = 0.5, 56 < i< 75,

v;(0) = 0,0<i<55 76<i< 100.
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In the first model, we mimic the dispersal strategies that one might encounter
in predator-prey interaction, where species u represents the prey population and
v the predator population. The jump probabilities used are

plu,v) = e,

q(u,v = 1- é6_5“,

TI’(L(U 1)1) = 1— 27 5u (3)
’ 5 ’

r(u,v) = e %

These functions relate to the prey seeking locations with low predator density
(py <0, g, > 0) and diffusing randomly in the absence of predators (p(u,0) = 1,
q(u,0) = 0.2), and predators seeking locations with high prey density (m,, > 0,
r,, < 0) and randomly diffusing in the absence of prey (m(0,v) = 0.2, r(0,v) =
1). An alternative, qualitatively similar model, again with u representing the
prey species and v the predator, but with linear jump probabilities is

p(ua U) = 1- v,

Q(ua U) = ?10 + %U, (4)
m(u,v) = 35+ zu,

r(u,v) = 1-—u.

In the simulations (Figure 2) of these two models, we see similar results. The
two populations spread randomly at a constant rate until they meet. This de-
scribes random searching for food. Once they encounter each other, the predator
population’s preference to reside in cells with the highest prey populations takes
over. The predator population moves towards the prey, and the prey respond
by moving to the left on the grid, away from the predators. This process is
much more pronounced in the case of exponential jump probabilities as they
change much faster at low concentrations of v and v than functions in the linear
chase scenario. It is important to note that the location of the peak of the
predator population does not change notably in either the linear or exponential
chase scenarios. This is because the populations located in these cells have not
been in contact with any prey population yet. The degree to which individ-
uals change their behavior depends on how much interaction they have with
the other species and a population of a species can only “see” a population of
another species if they are located in the same cell or neighboring cell.

In the first model, with exponential jump probabilities, once the prey pop-
ulation has moved to the left of the grid (Figure 2(a)), there is nowhere left to
“run” from the predators. The predator density then begins to increase in this
location. This causes the prey population to diffuse out of the corner of the grid.
This process eventually leads to the prey slightly outnumbering predators on
the right hand side of the lattice and vice versa on the left hand side as shown
in Figure 2(b). The populations then continue diffusing towards a spatially and
temporally homogenous equilibrium (data not shown).

In the first two examples, the dispersal strategy of a species changed in
response to the density of the other species but it was independent of its own
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5000

Locations

(a) Exponential Chase Scenario (b) Exponential Chase (extended)

1500

(¢) Linear Chase (d) Linear Chase (extended)

Figure 2: Simulations using jump probabilities from Section 2. Species v is
shaded blue and species u is orange. Figures (a),(b): jump probabilities given
by (3), 300 and 1500 time steps, respectively. Figures (c), (d): jump probabilites
from (4), 300 and 1500 time steps, respectively.

density. The next model compares the diffusion pattern of two spatially non-
interacting species, where the dispersal strategy of species u only depends on
the density of its own species in the arrival and target site, but not on the
density of the other population. This is an example of a system where the
cross diffusion effect is elminated as well as a demonstration of an aggregation
strategy, with species u preferentially seeking sites with higher concentrations
of its own species (up to a density of 0.5) while also randomly diffusing at a slow
rate. Species v is assumed to be an unbiased random walker with constant jump
probabilities that are neither affected by its own density nor by the density of
the other species. We have
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pgu, U; = i1’>.6u(1 —u) + %,

q(u,v) = 1-—u,

m(u,v) = 1, (5)
r(u,v) = L

In the simulation of this aggregation model (Figures 3(a), 3(b)), we see
species v smoothly spreading out, as expected. The peak of species u stays at
0.5 for the entire simulation. This is because species u has no preference about
which cell to aggregate to, as initially it has constant population densities across
all sites it inhabits. The self-diffusion term in the p function leads to species
u spreading out slowly from this plateau, however this self-diffusion is partially
counteracted by its aggregation strategy. In this model, the aggregation is
limited for large values of w, which is responsible for the limitation of u. In
a true aggregation model without such constraint, the entire population would
eventually accumulate in one or two neighboring sites (data not shown).

In the last example that we show, the dispersal strategies of both species
depend simultaneously on the densities of their own and the other species. Both
species are seeking cells which are the least populated. Each species’ strategy
takes into account the total population of a cell as all the jump probabilities
are functions of both u and v. Species v spreads at a faster rate because of the
coefficients in the exponential of the r(u,v) function. We take

p(ua U) = e’

qu,v) = 1—e %"

m(u,v) = e ¥ (6)
r(u,v) = 1— e t0um10v,

This model of spreading species is illustrated in Figures 3(c) and 3(d). Since
both species spread by considering the total population density in a cell, there
is less crossover of the two species on the lattice in this simulation than in the
case where they only self-diffuse. Once the two populations meet in the center
of the lattice, they each begin to more strongly spread away from the center, as
there is already a significant population located there (i.e. the other species).

3 Deriving macroscopic models by passing to
the continuous limit, » — 0

In the spatially discrete model (1) the dispersal strategy is described based on
the probabilities of individuals to move between neighboring sites. We now will
derive a macroscopic model starting from this micro level description. This
has been done frequently in the literature for single species models describing
a variety of dispersal strategies, e.g. [1, 4, 5, 6, 7, 9, 10]. Usually one obtains
parabolic partial differential equations in the macroscopic description. In the
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1500

Locations

(a) Aggregator and Fickian Diffuser (b) Aggregator and Fickian Diffuser (extended)

P 1500

Locations

(¢) Two Spreading Species (d) Two Spreading Species (extended)

Figure 3: Simulations using jump probabilities from Section 2. Species v is
shaded blue and species u is orange. Figures (a), (b): jump probabilities given
by (5), 300 and 1500 time steps, respectively. Figures (c), (d): jump probabilites
from (6), 300 and 1500 time steps, respectively.

single species case, if the probability for an individual to move between sites
does not depend on the local population density, one obtains a PDE with lin-
ear (Fickian) diffusion, otherwise one obtains a nonlinear diffusion equation.
The macroscopic partial differential equation models are derived by refining the
spatial grid resolution, i.e. one introduces more and more sites, decreasing the
distance between neighboring sites, h — 0.

The starting point is the master equation from (1),
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8ui

o = T+ T — (T + T w, (7)
where 7,5 = aq(ui, v;)p(uit1, vit1),

(“)v,» _

ot = Sitlvifl +S+1Uz+1 (S;r +8; v, (8)

where Sii = Br(ug, vi)m(uwit1,vix1).

We only demonstrate the procedure for (7), as the steps required for (8) are
identical. For simplicity of notation, let ¢; = q(ui,v;), pi = p(u;,v;). This
allows (7) to be written as

ou;
81&1 = a(gi—1piti—1 + Git1PiUiv1 — (GiPit1 + GPi—1) ;). (9)

To make the transition from a spatially discrete to a continuous model we first
introduce two continuous functions u(t,x) and v(t, ) that interpolate the grid
functions w;(t) and v;(t), respectively, i.e.

u(t,x;) = ui(t), vt z;) = vi(t).
Assuming sufficient smoothness, we formally expand these two functions around

x; in terms of the variable h, which is the distance between two neighboring cells.
We use % as a short-hand for %(t, x;) and obtain

Bul(t) + E@zul(t)
ox 2 Ox?

81}1(15) + h7282v1(t)
oz 2 Ox?

’ll,(t, Ilfiil) = ul(t) +h + O(hs), (10)

’U(t,l’iil) = ’l)z(t) T+ h + O(hg) (11)

Next, we approximate q(u;+1,vi+1) and p(u;+1,vi+1) by 2"% order Taylor poly-
nomials about u; and v;,

0 0
q(uit1,vit1) = q(ug,vi) + (Uixr — Uz)afz(uwvz) + (Vik1 — Ui)%(“h”i)
1 5 02 9?2
+ 5[(“1&:1 —u;)? auZ (i, v;) + 2(wie1 — u) (Vix1 — v; qv
82q
+ (Ui:tl ) 8 Q(U’L?vl)]
dp Op
P(Uit1,vix1) = plug,vi) + (uit1 — Ui)%(uhvi) + (vix1 — 'Ui)%(uiavi)
1 82]) 92
+ 5[(ui¢1 —u;)? 2 (Ui, v;) + 2(wit1 — u) (Vit1 — Uz‘)m( ;
2

+ (v = v0) g (i, )]
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The equations (10), (11), (12), and (13) are then substituted into (7). We obtain

ou; 5 0%u; . dq Jp
o ah 02 [p ou (’U,“ Uz)uz + Digi — qla (ul? Ul)ul]
Bu 8%q 0q *p
27 ) — s TRV
h [p’L a 2 (Uz, v1)uz + 2p7, 6 (U'L) U’L) q’L 8“2 (U'L’ U'L)ul]

8 v; Op
2 2 g 2 Ve
h [-pl (u’b7 2) Z ql av (u’b7 vl)u’b}
81}z 82q *p
+ ah? 9 [piw(uuvz) g 5 (Wi, vi)ui]
Ou; Ov; 0%q dq 02
2 i 7
+ ah 9z O [2 L 9udv (uza Uz)uz + 2pla (

Dropping O(h?) terms and passing to the continuous limit, A — 0, and re-
arranging the order of terms we obtain

v = ao% (pquq« +u(pgl — 58 us +u(pGt — q%)vq«), 15)
%;’ = By o (mrvm + v(mgz - r%?)vz + v(mg; — ’I"%ZL)’LLI>.

The reaction-diffusion equation for v is derived identically.

Note that in (15) the probabilities g, p of individuals of species u to move into
neighboring sites depends on the density of the individuals of species v. This
introduces cross-diffusion terms. Cross-diffusion vanishes locally as w vanishes,
which is a necessary condition for cross-diffusion systems to guarantee positivity
of solutions [3]. Due to the specific structure of the cross-diffusion terms, these
can also be understood as convective transport terms for species u where the
transport velocity —ayq 1(p% — q%)vw depends on the gradient of other species.
If p and ¢ do not depend explicitly on u, e.g. in the case scenarios in the previous
section, this convective velocity only depends on the other species. If p and ¢ do
not depend on the other species, as in the aggregator example in the previous
section, the cross-diffusion effect is eliminated.

4 Inverse problem

We investigate now whether certain macroscopic PDE models for dispersal of
two interacting species that can be found in the literature can be derived from
our microscopic master equation (1), which is based on a dependency of p and ¢
on the densities of both species in the arrival and departure site. We accomplish
this by finding appropriate functions m, p, q,r.

The first example for which we carry out this analysis is the case where both
species disperse according to linear, or Fickian, diffusion. This is undoubtedly
the most frequently used model to describe two interacting species. In this
model the dispersion of the species does not depend on the densities of either

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

(14)

P v s 3
Uiy U ) 2%8 av(ulvvl)ul]+0(h )

60



species. In Fickian diffusion, the dispersal flux of a species is proportional to
the negative of the density gradient, i.e. gradients are smoothly obliterated.

Another model that has been frequently used in the literature is the cross-
diffusion model of Shigesada-Kawasaki-Teramoto [8]. For the single species case
this model has been originally derived from a microscopic behavior description
which differs from our approach. For the dual species macroscopic version of
this model a derivation from the microscopic behavior has not been given.

The third model that we include is the Chattopadhyay-Chatterjee model [2]
which was originally formulated for two competing species. Also for this model,
a derivation of the macroscopic model from a microscopic description has not
been given.

4.1 Fickian Diffusion

The first of these models we attempt to recover is Fickian diffusion. Fickian
diffusion is the random diffusion of a species which spreads out from higher
concentrations to lower concentrations. The model is written

du _ p 0%u
dt - 13§27 (16)
d _ 9

{ a = Dege

where the constants Dy and D are positive self-diffusion coefficients for species
u and v respectively.

For (16) to be recovered from (15) by the jump probabilities p, ¢, m, and r,
the equations that must be satisfied are

Di/ag = pq+u(pqu — qpu), (17)
P4y = (Pv, (18)
Dy/By = mr+v(mr, —rmy), (19)
mry, = TMy. (20)

Clearly, the simplest jump probabilities that can be used to recover Fickian
diffusion are constant functions. Then, since all partial derivatives of the jump
probabilities are zero, the only equalities to be satisfied are Dy = agpg, and
Dy = Bymr. This can be accomplished by the constant functions

q=7p
m=r
for example.

Since these jump probabilities do not vary with respect to the concentrations
of u or v in either the arrival or departure site, neither species has any preference
as to where it moves along the lattice. However, due to the nature of the master

|
%
~
8

(21)

|
%
~
=
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Figure 4: An illustration demonstrating the effect of Fickian diffusion. A diffu-
sion coefficient of 1 is used for each species which relates to jump probabilities
p=q=m=r =1, from (21). As expected, the simulation shows both
species diffusing from places of high density to places of low density. This oc-
curs symmetrically between both species, and neither species is affected by the
movements of the other. The initial conditions and 100-cell grid are also the
same as were used in Section 2 as given in (2). Species v is shaded blue and
species u is orange.
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equation, the higher the volume in a particular cell, the higher the amount of a
species will leave the cell. This leads to each species spreading itself out along
the lattice, moving from cells with higher densities to cells with lower densities.

The constant functions p and ¢ are the most obvious and simplest jump
probabilities to recover Fickian diffusion, but not the only ones. In the general
case, an expression for ¢(u,v) is obtained by solving (18) as an ordinary dif-
ferential equation in the independent variable v where u is considered to be a
constant parameter. This yields ¢(u,v) = e/ (p(u, v) where f(u) is formally an
arbitrary function of u. If f is chosen such that f’(u) # = for all w in (0,1],then
substituting this expression into (17) gives functions for p and ¢

Dy /a
p(u,v) = \/ef(“)(l—ﬁ-u(}/(u)y

. ef(“)Dl/ozo
1= Tr@

The functions m(u,v) and r(u,v) are solved similarly, and found to be

mu,v) = D3/ Bo
’ S+ vg(0)

eg(v) DQ/BO
14 vg'(v)’
where g(v) is an arbitrary function of v and ¢'(v) # The choice of con-
stant functions for f(u) and g(v) leads to all jump probabilities being constant
functions.
However, it is easy to verify that these non-constant choices of m, p, g, r lead

to a linear diffusion system. Note that p and ¢ do not depend on v. Therefore,
no cross-diffusion effects are introduced.

r(u,v)

=1

4.2 The cross diffusion model of Shigesada, Kawasaki, and
Teramoto

The next model we investigated is from Shigesada et al [8]. In this paper,
the effect of diffusion on pattern formation between two competing species is
again considered. The model in its original form also contains an environmental
potential function of the heterogenous environment considered in the paper. For
the purposes of this paper, the environmental potential function will be ignored
(we assume a homogeneous environment) and jump probabilities will be found
to recover the diffusion terms alone. The partial differential equation used in
the paper without the environmental potential function is
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% = 8@(D11uac + 2D12UU1 + Dlguz’U + DlguUI), (22)
% = 5 (D21vz + 2D23vv; + Dagugv 4 Dosuv,),
so to recover (22) from (15), the jump probabilities must satisfy
D1y +2Dppu+ Disv = pg+u(pgu — qpu), (23)
Diz = (pgo — qpo), (24)
Doy 4 2Do3v 4 Dagu = mr + v(mr, — rmy), (25)
Doy = (mry —rmy). (26)

Here we implicitly included o and Sy in the coefficients D;;.

Proposition 1. The Shigesada-Kawasaki- Teramoto model can be recovered from
the master equation (1) with polynomial jump probability functions.

Proof. We make the quadratic ansatz

p(u,v) = a1+ asu+ azu® + agv + asv? + aguv,
q(u,v) = by + bou + bgu® + byv + bsv? + bguw,
where the coefficients a;, b; are constants. We substitute this into (15) and

compare coefficients. Then, the equation that must be satisfied, from (23) and
(24), is

Dy1 +2D12u+ (pgo — qpo)v = pq + u(PGu — qPu);
D1y +2Dpu = pg+u(pgy — qpu) — (Pqo — qpu)v,
Dy1+2Dou = q(p — upy + vpy) + p(ugqy — vgy).

Substituting the quadratic functions for p and ¢, the constants a; and b; are
obtained by comparison to yield the solution

a3 D11 9, azDi3
plu,v) = a+ U+ azu” + uv,
(u.0) ' D ’ D1
D D D
glup) = 2oz, 2hs
a1 aq aq

where a; and ag are arbitrary positive constants. Similar calculations for the
functions m(u,v) and r(u,v) show that
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/ !
a3 Doy , o asDao

m(u,v) = a}+ v+ ajv’ + —=—uv,
Das
D D D
r(u,v) = ?1 + ?QU—I— ?311,
ay ay ay

where a} and af are arbitrary constants. This requires Dis and Dz to be
non-zero.

Another solution, without this constraint, can be obtained by making a
linear ansatz for m,p,q,r. Again, by comparing coefficients, we find that the
only solution is

plu,v) = ai,
q(u,v) = ﬁ(Du + Digu + Di3v),
m(u,v) = al, &7
r(u,v) = i(Dgl + Daogu + Dagv),
where a1 and af are arbitrary constants.
O

This proof shows that the Shigesada-Kawasaki-Teramoto model can be in-
terpreted in two ways: as a model in which dispersal depends on both the
population densities in the arrival and departure sites, but also as a model in
which dispersal only depends on the population densities in the arrival site but
not on the departure site. In the next section we shall study a model where this
is not possible.

In order to obtain cross-diffusion effects at least one of p and ¢ must depend
on v. The derivatives of the function g with respect to both u and v are positive,
indicating that species u preferentially seeks cells with lower concentrations
of both species u and v. The values of D15 and D3 determine the relative
importance of species u seeking cells with low concentrations of species u or v,
respectively. The derivatives of r with respect to both v and v are also positive,
meaning species v has the same strategy, with the relative importance of lower
concentrations of species u and v given by Doy and Dog, respectively.

A simulation can be run using either of the jump probabilities obtained in
Proposition 1. Since both sets of jump probabilities lead to the same diffusion
coefficients, the behavior of species u and v will be identical assuming the sim-
ulation is run with a sufficiently large number of cells on the lattice. For this
reason a simulation is only run using the arrival site independent jump prob-
abilities given by (27) (Figure 5). For the simulation, we let a; = o} = 1 and
choose the D;;’s such that the jump probabilities are

plu,v) = 1,
q(u,v) = 0.140.75u+ 0.15v, (28)
m(u,v) = 1,
r(u,v) = 0.140.75u+ 0.15v.
Copyright © SIAM
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These values keep all the jump probabilities bounded between 0 and 1, and
create an interesting interaction between the two species. Both species have
a small element of random diffusion, and each species preferentially seeks cells
with lower concentrations. However, each species weighs the concentration of
species u more strongly in their decision making. In the simulation, since each
species spreads out heavily weighing the densities of species u, we see u spreading
in a nearly Fickian manner. Species v spreads more slowly (and hence has a
higher peak) because the density of species u is relatively small in all the cells it
inhabits, causing the r function to return small values and slow down diffusion.

(a) Shigesada Simulation (b) Shigesada Simulation (extended)

Figure 5: 300 and 1500 time step simulations using the departure site indepen-
dant jump probabilities from the Shigesada et al cross diffusion model (28). The
initial conditions and 100-cell grid are also the same as were used in Section 2
as given in (2). Species v is shaded blue and species u is orange.

4.3 The cross diffusion model of Chattopadhyay and Chat-
terjee

The last model we investigate is from Chattopadhyay and Chatterjee [2]. In
this paper, species v spreads by Fickian diffusion with diffusion coefficient Dy,
while the other species, u, is modeled by a cross-diffusion term, Dq2(w), which
vanishes if v vanishes. Species u also spreads by Fickian diffusion with diffusion
coefficient D17. The original model reads

du O*u 0 o
w an + %(Du(u)%) +u(er — anu — arzv),
d 0?
dit) = DQQT;Q} +v(cz — az1u — azv),
where D12(u) = Dj, ;. So the model can be rewritten without the competitive

growth term as
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{ @ = D (Diug + Dis vy, (20)
dv o — 0 (Do)
di am( 22Uz ).
To recover (29) from (15), the equalities which must be satisfied are
Din = pq+u(pqu — qpu), (30)
P2~ (g~ gp) 51
ctu P4y — 4pv),
Dy = mr+v(mr, —rmy,), (32)
mr, = Ty, (33)

where we again include a and By in the diffusion coeflicients D;;. Note that the
functions m(u,v) and r(u, v) have the same properties as in the case of Fickian
diffusion. So one possible solution is m = r = /Dy assuming Dy < 1.

The functions p(u,v) and g(u,v) are solved next. In the previous two cases,
the simplest solutions were obtained as functions in which the population densi-
ties in the arrival site had no effect, p = const. This is not possible here. In fact,
we will show that also the reversed assumption, that dispersal only depends on
the arrival site but not on the departure site, does not allow us to recover the
Chattopadhyay-Chatterjee model.

Proposition 2. (29) cannot be recovered from (15) by taking either p(u,v)=constant

or q(u,v)=constant.

Proof. Let p(u,v) = k where k is an arbitrary constant. Then, the two equalities
that must be satisfied, from (30) and (31), are

Dy = kq+ kug, (34)
Diy
—= = kq,. 35
et+u v (35)

Equation (34) can be solved as a differential equation for g, yielding g(u,v) =
@ 4 Bu 4 Lg(y) where f(v) is an arbitrary function of v. This expression for

q can be substituted into (35), giving the equality kﬁif-::) = f’(v) which is a
contradiction as f is a function of v only.

Similarly, setting g(u,v) = n where n is an arbitrary constant gives the
equalities

Dy1 = np—unpy, (36)
!/
12
= —_ vy 37
€Et+u np (37)
from (30) and (31).
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Equation (36) is solved as a differential equation, giving p(u,v) = cou +
% - %ug(v) where g(v) is an arbitrary function of v. This expression for ¢

can be substituted into (35), giving the equality ﬁzu) = ¢'(v) which is a

contradiction as g is a function of v only.
O

One possible way to find jump probabilities to recover (29) from (15) is to
assume they can be separated into independent functions of u and v. We let
p(u,v) = f(u)g(v) and g(u,v) = h(u)j(v). Then, the two equalities which need
to be satisfied are

Dyy = gj(fh+u(fh' —hf")),
D/12 _ -/ -7
G T fh(gi" —ig"),

from (30) and (31), respectively. This implies that the following must hold for
arbitrary constants A; and As:

9i'—id = A, (38)
_ D1y
fh = et )’ (40)
fh4u(fh —hf) = %. (41)
2

The functions g(v) and j(v) are solved first. Expressions for g and g’ are
obtained from (39) and substituted into (38), giving the ordinary differential
equation j' = 2)‘712 j. The functions can then be solved and are given as

. A

jlv) = «a exp(lezv),
e “\

g(v) = o exp( o v),

where ¢; is an arbitrary constant.
Next, the functions f(u) and h(u) are solved. Expressions for f and f’ are
obtained from (40) and substituted into (41), giving the ordinary differential

Dy (e4u) 1 1 )

equation h' = h(m ~ %4 — 3(erwy). From this, h(u) is solved, after

which f(u) is solved from (40). The expressions for f(u) and h(u),

DijAje—Ag D]
1171€ 279 Dll)\l

h — C3 -3 2Xo D]
(u) coe®(e4+u)" 2u 12 exp(2/\2D,12u),
Diy e D1tk
f(u) = A CoeCs (€+u) 2u 2P72 exp(_2)\2D/12U’)a
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lead to the jump probabilities

plu,v) 1 Diade (c 4y)=} ud 0P exp(—afu — fv)
q(u,v) = c(e+ u)_% uBe—3 exp(afu + pv), (42)
m(u, U) = v DQQ,
r(u,v) = +/Dag,
where ¢ = ¢1c2e% and the substitutions o = g}l ,and 8 = 2)‘712, have been made
12

for clarity.

The qualitative properties of these functions depend heavily on the values
chosen for the parameters, and the ¢ function blows up for some choices of
parameters as u — 0. Fortunately, the blow-up in ¢ is dampened by a simul-
taneous vanishing of p, and the overall jump probability pq is bounded. One
obtains for the dispersal rate in the continuous limit 7? = D’ui—f(e +u) L.

A simulation is run using these jump probabilities (Figure 6). The jump
probabilities obtained in the inverse problem of this model present some prob-
lems since the ¢ function can blow up as u — 0. For this reason, the population
densities of species u are kept well above zero, and values of the variables are
chosen carefully. The exact initial conditions are taken to be

w;(0) = 0.75, Vi,
vi(0) = 0.5, 0<i<25 46<i<55 76<i< 100, (43)
vi(0) = 0.5, 26 <i<45, 56 <i < T5.

Values for the parameters are chosen so that all the jump probabilities are
between zero and one as long as the density of species u is above 0.5 in all sites
on the lattice:

D = 04,
D/12 = 0.1,
Dy = 0.01,
c = 0.03,
e = 0.001,
A= =1

These values give the jump probabilities

1730 (0001 +U)7% UO'48 67211‘70.5717

p(u,v) )
q(u,v) = 35 (0.001 4 u) "2 y 048 g2ut0-5v, (44)
m(u,v) = 0.1,
r(u,v) = 0.1,
from (42).
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(a) Chattopadhyay and Chatterjee (b) Chattopadhyay and Chatterjee (extended)

Figure 6: Simulations using jump probabilities from the Chattopadhyay and
Chatterjee model (44) for 300 and 10000 time steps. The initial conditions are
given by (43). Species v is shaded blue and species u is orange.

The simulation shows species v spreading slowly by Fickian diffusion, and
species u aggregating in places with low concentrations of species v, as expected.
The self diffusion of species u is less apparent in this simulation due to the nature
of the initial conditions.

5 Conclusions

We used the spatially discrete master equation to derive a macro scale model
governed by a set of two partial differential equations, which were found to con-
tain cross diffusion terms. We were able to show that Fickian diffusion, as well
as the models in [2] and [8] were special cases of this macro scale model. That
is, these macro scale models commonly used to model dual species interaction
can be derived from the local rules of a micro scale spatially discrete master
equation model.

In the future, the approach in the inverse problem could likely be used to
find jump probabilities which recover many other reaction-diffusion systems.
The model used in this paper could also be extended further by increasing
the number of spatial dimensions from one to two. In addition, growth terms
could also be included, such as those used in predator-prey, competition, and
chemotaxis models.
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