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Never Heard of Methane Hydrate? 
That Might be Good News
By Malgorzata Peszynska

Methane hydrate is an ice-like crystal-
line substance (gas clathrate) made 

of water molecules encasing a molecule of 
methane. Low temperatures and high pressure 
favor the hydrate’s existence (e.g., entrap-
ment of methane molecules in the ice cages), 
making hydrate deposits abundant in deep 
ocean sediments and in Alaska (see Figure 1, 
on page 4). Upon disturbance of these favor-
able conditions, methane might escape to the 
atmosphere from hydrate-bearing sediments, 
contributing to the overall balance of other 
greenhouse gases. Methane hydrate is con-
sidered a “smoking gun” in environmental 
and (paleo-)climate studies1 [8]. Hydrates 
are also known for the nuisance they cause 
plugging up wells and pipes that carry other 
hydrocarbons to their destinations. They are 
a significant drilling hazard and contrib-
uted to the Deepwater Horizon explosion and 
oil spill. Researchers study the presence of 
hydrates due to their impact on slope stability 
of submarine formations [4]. If you haven’t 
yet heard about methane hydrate, it has likely 
not caused any recent high-profile disasters.

1  https://woodshole.er.usgs.gov/project-
pages/hydrates/

However, exciting (non-disastrous) scien-
tific news related to the study of gas hydrates 
is also possible, and mathematicians can play 
a role. Geophysicists have been studying 
hydrates for a long time, but many scientific 
mysteries surrounding their origin and evo-
lution remain. Computational models exist, 
but require interdisciplinary collaboration 
and access to first-rate information and data 
to be meaningful (see Figure 2, on page 4). 
Computational and applied mathematicians 
can build virtual laboratories for hydrates, 
but their real impact requires investment in 
the language, methodology, priorities, and 
funding models of the allied fields.

For example, the hydrate “lives” in its host 
rock. How did it get there?  Basin modeling, 
which predicts hydrate deposit formation 
from upward migration of gas over times-
cales of thousands of years and spatial scales 
of hundreds of meters, provides the answer. 
Comprehensive basin models [5] offer con-
vincing scenarios of gas hydrate formation2 
(see Figure 1, on page 4). Notwithstanding 
the enormous uncertainty in basin model-
ing, these models are very complex and 

2 http://math.oregonstate.edu/~mpesz/
gallery.html#hydrate

Physics-based Probing and 
Prediction of Extreme Events
By Mohammad Farazmand and 
Themistoklis P. Sapsis

Extreme events arise spontaneously in 
a variety of natural and engineering 

systems. They are usually unexpected, tran-
sient phenomena that take place over short 
time scales and have very large magnitudes 
when compared to typical system responses. 
In this sense, extreme events are a subclass 
of the so-called rare events. But while rare 
events are only associated with low prob-
ability, extreme events are also generally of 
very large magnitude [6]. Examples include 
extreme weather patterns, aeroacoustic 
instabilities in combustion engines, earth-
quakes, rogue waves on the ocean surface, 
and power grid overloads (see Figure 1). 
Since these events often have undesirable 
economic, environmental, and humanitarian 
consequences, their study is of great interest.

The four fundamental questions related to 
extreme events include the following:

1. Mechanism: What conditions lead to 
the occurrence of an extreme event? 

2. Quantification: What is the likeli-
hood or frequency of an extreme event 
taking place? 

3. Prediction: Are there indicators or 
triggers whose measurement would signal a 
forthcoming extreme event?

4.  Mitigation:  What control strategies 
are best suited for suppressing extreme 
events?  Can controlling the trigger lead to 
suppression? While mitigation of extreme 
events in nature appears to be out of reach, 
specialized control protocols may be 
devised to suppress those in engineered sys-
tems (such as power grids or fluid flows).

The first question is of primary focus, 
since its answer is the cornerstone for the 
subsequent three questions.

We concentrate on problems for which 
a model, in the form of a deterministic or 
stochastic dynamical system, is available. 
An extreme event is associated with unusu-
al growth (or decay) of the time series of a 

particular observable of the system. These 
dramatic fluctuations occur when the sys-
tem’s trajectory visits a subset of the state 
space that acts as the basin of attraction to 
the extreme events. These basins harbor 
certain instabilities that momentarily repel 
the trajectory from its background dynam-
ics (see Figure 2, on page 3). To under-
stand the underpinning mechanism, one 
must detect the extreme event instability 
regions of the state space.

In high-dimensional chaotic systems,  
determining the instability regions is com-
plicated. We propose a constrained opti-
mization method to probe the state space 
of high-dimensional dynamical systems 
in search of the subsets that underpin 
extreme events [5].

Let the governing equations ∂ =
t
u N u( )  

describe a system where u t X( ) Î  denotes 
the state of the system at time t  and X is 

an appropriate function space. Also, let 
I X: ®   denote an observable whose 
relatively large values constitute an extreme 
event. In order to probe the onset of extreme 
events in the state space, we seek initial 
states u X

0
Î  whose corresponding tra-

jectory u t( )  maximizes the growth of the 
observable I over a given finite time t.  To 
obtain physically relevant maximizers, one 
must further constrain the initial states u

0
 

to ensure that they belong to the system’s 
attractor; this rules out exotic maximiz-
ers that have zero probability of being 
observed under the system’s long-term natu-
ral dynamics. This constrained optimization 
problem can be written more precisely as

 
     			                 (1a)
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u X
I u I u
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Figure 1. Three examples of extreme events caused by randomly-triggered instabilities of finite 
lifetime. 1a. Extreme bursts of dissipation in Kolmogorov flow; the vorticity field is shown. 1b. 
Extreme event in dispersive wave turbulence; the magnitude of the wave field is shown. 1c. A 
rogue wave in two-dimensional directional seas. The surface shows the wave elevation. Image 
credit: Mohammad Farazmand and Themistoklis Sapsis.

Figure 1. Schematic representation of a typical hydrologic inverse problem 
where observations of hydraulic heads at wells are used to estimate aquifer 
permeability. Image credit: Youzuo Lin.

See Methane Hydrate on page 4

Geosciences Special Issue
In this special issue, read about the application of mathematics 

and computational science to various topics in the geosciences. 

In the article “Randomization in Characterizing the Subsurface” on page 
5, Youzuo Lin, Daniel O’Malley, Velimir V. Vesselinov, George Guthrie, 
and David Coblentz describe how randomized matrix algorithms can pro-
vide fairly accurate, economical, and robust computational approaches to 
characterize Earth’s subsurface. 
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5	 Graph Representations 
of Fractured Media in the 
Subsurface

	 Hydrocarbon production from 
shale formations involves 
hydrofracturing rock and 
extracting the natural gas flow-
ing out of the fractures. Gowri 
Srinivasan describes a discrete 
fracture network (DFN) model-
ing methodology that retains 
the underlying structure of 
these fractured systems. 

6	 Slings, Bullets, Blow-up, 
and Linearity

	 Mark Levi uses ordinary differen-
tial equations (ODEs) to describe 
the surprisingly long range of a 
simple sling versus the surpris-
ingly short range of a water-
bound bullet. Both phenomena 
can be attributed to the fact that 
solutions of the simple ODE 
x x= 2  blow up in finite time.

9	 Pursuing Science and  
Logic in an Age of 
Excitement and Turmoil

	 Ernest Davis reviews Karl 
Sigmund’s Exact Thinking in 
Demented Times: The Vienna 
Circle and the Epic Quest for 
the Foundations of Science. The 
book traces the lives of mem-
bers of the Vienna Circle—a 
group of philosophers, math-
ematicians, and physicists—who 
investigated the foundations 
of science in the 1920s.

11	 Are You Attending the 
SIAM Annual Meeting?

	 Read about two invited presenta-
tions to be delivered at the 2018 
Annual Meeting in Portland, 
Ore., and stay tuned for more 
information on the speaker 
lineup in upcoming issues.

12	 The High-Performance 
Conjugate Gradients 
Benchmark

	 Jack Dongarra, Michael Heroux, 
and Piotr Luszczek explain why 
High-Performance LINPACK 
rankings are no longer strongly 
relevant to real supercomputing 
performance. They propose a 
new benchmarking standard, the 
High-Performance Conjugate 
Gradients Benchmark — part of 
the TOP500 list of the world’s 
fastest supercomputers.

11 	 Professional Opportunities 
and Announcements
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Snap to Structure
The Adobe Photoshop image manipula-

tion program has a feature called “snap 
to,” which snaps edges of a selection into 
alignment with grid lines superimposed 
over the image as users move the selection 
around. This feature is an invaluable tool for 
producing perfectly aligned, professional-
quality graphics. An analogous operation 
in mathematics is what Alan Edelman calls 
“snap to structure.” Here, a mathematical 
object that is required to have a particular 
property, but fails to do so, is perturbed 
so that it has the property. An orthogonal 
projection onto the set of interest typically 
defines the perturbation.

A ubiquitous example of snap to struc-
ture occurs in floating-point arithmetic. 
When we compute the sum or product of 
two double-precision floating-point num-
bers, the exact result may have more sig-
nificant digits than we started with. The 
IEEE standard requires the exact product 
to be snapped back to double precision 
according to precisely defined rounding 
rules, with round to nearest the default.

In recent work, Jörg Liesen and Robert 
Luce [1] consider the question of whether 
a given m n´  matrix is a Cauchy matrix 
— whether its ( , )i j  element has the form 
1/( )s t

i j
-  for all i  and j  and some m-

vector s  and n -vector t.  Various com-
putations can be done asymptotically fast 
with such matrices (of which the famous 
Hilbert matrix is a special 
case). The authors also treat 
the problem of approximat-
ing a matrix by a Cauchy 
matrix, that is, snapping to 
Cauchy structure.

Snapping to a matrix 
structure is commonly described as solv-
ing a matrix nearness problem. Here, 
I take distance to be measured in the 
Frobenius norm. One of the most familiar 
examples is forming the nearest rank-k  
matrix. The Eckart-Young theorem states 
that to solve this problem one simply 
computes a singular value decompo-
sition (SVD) of the given matrix and 
sets all singular values beyond the k th
largest to zero. In the context of solving a 
linear least squares problem, snapping the 
coefficient matrix to rank k  corresponds 
to forming a truncated SVD solution.

Loss of definiteness of a symmetric 
matrix is a common problem in many 
applications. One can find the nearest posi-
tive semidefinite matrix to a given matrix 
by computing a spectral decomposition and 
setting any negative eigenvalues to zero.

Another example, which I first encoun-
tered in aerospace computations, concerns 
orthogonality. A 3 3´  direction cosine 
matrix drifts from orthogonality because 
of rounding errors and thus must be 
orthogonalized, with practitioners favor-
ing the nearest orthogonal matrix over 
other orthogonalization techniques. For a 
complex scalar z rei= q,  the nearest point 
on the unit circle is eiq.  The matrix case 
generalizes this observation: if A UH=  is 

a polar decomposition of a real, nonsingu-
lar matrix A (U orthogonal, H symmetric 
positive definite) then U is the nearest 
orthogonal matrix to A.

Snap to structure is also natural when a 
real solution is expected but the relevant 
algorithm has made an excursion into the 
complex plane, potentially leaving an imag-
inary part of rounding errors. In this case, 

snapping means setting the 
imaginary part to zero. This 
is done in the MATLAB 
function funm (for comput-
ing a function of a matrix) 
when the matrix is real and 
the result’s imaginary part is 

of the order of the unit roundoff.
Of course, much mathematical research 

is concerned with preserving and exploit-
ing known structure in a problem, making 
snapping to structure unnecessary. For 
example, geometric numerical integration 
is about structure-preserving algorithms 
for the numerical solution of differential 
equations. For a simple illustration, sup-
pose we decide to plot circles by numeri-
cally solving the differential equations 
′ =u t v t( ) ( )  and  ′ = −v t u t( ) ( )  with initial 

values u( )0 1=  and v( ) ,0 0=  for which 
u t t( ) cos=  and v t t( ) sin .=−  The for-
ward Euler method produces solutions 
spiralling away from the circle, while the 
backward Euler method produces solu-
tions spiralling into the origin. We could 
apply one of these methods and project 
the solution back onto the circle at each 
step. However, a better strategy would be 
one that produces approximations guar-
anteed to lie on the circle; the trapezium 
method has this property. For this prob-
lem, u t v t( ) ( )2 2+  is an invariant of the 
differential equations, which the trapezium 
method automatically preserves.

Despite the large body of theory on 
structure-preserving algorithms, we live 
in a world of imperfect data, use finite-
precision arithmetic, and have a limited 

choice of available software, all of which 
can result in errors that destroy structure. 
So enforcing structure at some point during 
a computation may seem sensible. But is it 
always a good thing to do?

Consider the problem of computing 
the determinant of a matrix of integers in 
floating-point arithmetic. Using the def-
inition of determinant by expansion by 
minors will give an integer result, exclud-
ing the possibility of overflow. But this 
approach is too costly except for very small 
dimensions. The determinant is normally 
computed via a pivoted LU factorization: 
PA LU=  implies det( ) det( ).A U= ±  
The computed determinant is likely to have 
a nonzero fractional part because of round-
ing errors. Rounding the result to the nearest 
integer might seem natural, but consider 
this MATLAB example involving a matrix 
whose elements are from Pascal’s triangle:

>> n = 18;  A = pascal(n);  det(A)

ans =

1.8502e+00.

If we round to the nearest integer, we 
declare the determinant to be 2. But the 
determinant is 1 (as for all Pascal matrices) 
and A is formed exactly here, so the only 
errors are within the determinant evalua-
tion. Early versions of MATLAB used to 
snap to structure by returning an integer 
result after evaluating the determinant of 
a matrix of integers. This behavior was 
changed because, as we have just seen, it 
can give a misleading result. Interesting 
rounding error effects can also occur in the 
evaluation of the determinant of a matrix 
with entries ±1.1

Photoshop sensibly allows users to dis-
able snap to structure, as one does not 
aways want elements to line up with a grid. 
Likewise, snapping to a mathematical struc-
ture is not always the correct way to handle 
a loss of that structure. Understanding why 
is one of the things that makes life interest-
ing for an applied mathematician.

Acknowledgments: I am grateful to 
Alan Edelman for stimulating discussions 
on the topic of this article.
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such that
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where t ∈ +
  is the typical timescale 

of the extreme events. The constraints 
involving C X

i
: ®  and c c

i i
, ∈ � are 

enforced to ensure that the maximizer 
belongs to the attractor (or at least to a 
small neighborhood of the attractor).

We apply this approach to the 
Kolmogorov flow, a two-dimensional 
Navier-Stokes equation driven by sinusoi-
dal shear [5]. The energy dissipation rate is 
known to exhibit intermittent bursts along 
the system’s trajectories [3]. Applying an 
instantaneous version of the optimization 
problem (1)—and exploiting the energy-
conserving nature of the nonlinear term in 
the Navier-Stokes equation—reveals that 
the spontaneous transfer of energy to the 
mean flow from a large-scale Fourier mode 
causes the dissipation bursts.

Discovery of this mechanism led to an 
indicator (the energy of the large-scale 
Fourier mode) whose low values signal an 
upcoming burst of energy dissipation. Using 
long-term simulations and Bayesian statis-
tics, we quantify the probability of future 
extreme events P

ee
 in terms of the indica-

tor’s current value. This results in short-term 
prediction of extreme energy dissipation in 
the Kolmogorov flow (see Figure 3).

The developed framework is also valu-
able in the identification of precursors for 
extreme events in nonlinear water waves, 
commonly referred to as rogue waves. Our 
approach employs the wave field’s decom-
position into a discrete set of localized 
wave groups with optimal length scales 

and amplitudes. These wave groups do not 
interact due to the prediction’s short-term 
character; therefore, their dynamics can 
be characterized individually. Using direct 
numerical simulations of the governing 
envelope equations [2], we precomputed 
the expected maximum elevation for each 
wave group. The combination of the wave 
field decomposition algorithm and the pre-
computed map for expected wave group 
elevation allows one to (i) understand how 
the probability of rogue wave occurrence 
changes as the spectrum parameters vary, 
(ii) compute a critical length scale charac-
terizing wave groups with high probability 

of evolving to rogue waves, and (iii) for-
mulate a robust and parsimonious reduced-
order prediction scheme for large waves.

Figure 4a displays the contours of the 
probability density function describing the 
occurrence of wave groups with length 
scales in the x- and y-direction—L

x
 and 

L
y

 respectively—and amplitude A
0
. These 

wave groups are the direct consequence of 
the dispersive mixing between different 
wavenumbers. The gray surface marks the 
parametric boundary above which individu-
al wave groups become unstable. Figure 4b 
shows the maximal growth occurring over 
finite time. The parameter space’s low-
dimensionality allows us to easily identify 
a critical pair of length scales that can be 
tracked to forecast waves with realistic 
probability of occurrence but also signifi-
cant growth over finite times. The resulting 
prediction scheme permits the data-driven 
prediction of rogue waves occurring due to 
nonlinear effects without solving any wave 
equations. This strategy predicts the rogue 
waves on average approximately 100 wave 
periods ahead of time [1,4].

We conclude with the following remarks:
(i) For complex high-dimensional sys-

tems, knowledge of the physical model does 
not imply knowledge of the mechanism 
underlying extreme events. Constrained 
optimization (1) offers one systematic 
method for the discovery of precursors to 
extreme events by carefully probing the 
dynamical system’s state space.

(ii) Direct numerical simulations, 
although insightful, are not adequate for 
understanding extreme events. Only a low-
dimensional subset of the many interacting 
degrees of freedom in high-dimensional 
systems contributes to extreme event for-
mation. However, because of the com-
plex coupling among all degrees of free-
dom, it is unclear how one would imple-
ment a data-driven approach to isolate 
the ones that underpin extreme events. 
Nevertheless, such a data-driven analysis 
merits further investigation.

(iii) Knowledge of the mechanism under-
pinning extreme events may enable the 
construction of indicators whose measure-
ment permits the data-driven prediction of 
upcoming extreme events. In other words, 
upon discovering an indicator of extreme 
events from the model-based optimization 
(1), prediction can be accomplished in a 
completely data-driven fashion without 
resorting to the model.
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Figure 2. Schematic description of extreme events. 2a. Time series of certain observables 
show intermittent bursts. 2b. Observed bursts correspond to the transient deviation of the 
system trajectory from the background attractor when it visits extreme event instability 
regions. Adapted from [5].

Figure 3. Prediction of extreme events in the Kolmogorov flow. 3a. Time series of the energy dissipation rate along a trajectory of the Kolmogorov 
flow. 3b. Conditional probability density of the future energy dissipation and the indicator. Note that large future dissipation correlates strongly 
with small present values of the indicator, and vice versa. 3c. Prediction of the extreme event marked with a red box in panel 3a. P

ee
 measure the 

probability of upcoming extreme events. See the online version of this article for a time evolution of the plot shown in panel 3c. Adapted from [5].  

Figure 4. Likelihood of dangerous wave groups that lead to rogue waves. 4a. Contours of 
the probability density function for the occurrence of wave groups with different size. 4b. 
Contours of maximum finite-time growth of wave groups due to nonlinear focusing phenom-
ena. The combination of statistics and dynamics offers a critical set of length scales relevant 
to the prediction of extreme wave groups. View the online version of this article to see how 
a random wave field is generated and propagated under the modified nonlinear Schrödinger 
equation. Adapted from [4].

The American Association for the 
Advancement of Science (AAAS) is 

the world’s largest general scientific society. 
At its upcoming 2018 Annual Meeting, to 
be held in Austin, Texas this February, the 
mathematics section of AAAS will sponsor 
a symposium on mathematical approaches to 
major challenges in public health, environ-
mental stewardship, and ecology. The sym-
posium, titled “Mathematics of Planet Earth: 
Superbugs, Storm Surges, and Ecosystem 
Change,” is organized by Hans Kaper and 
Hans Engler of Georgetown University.

Symposium speakers Glenn Webb 
(Vanderbilt University), Corina Tarnita 
(Princeton University), and Clint Dawson 
(University of Texas, Austin) will dem-
onstrate how mathematical modeling and 
computation—coupled with new methods 
of gathering data—can predict, explain, or 
reconstruct phenomena such as the spread 
of diseases, storm surges, and vegetation 
patterns in landscapes under ecological 
stress. The same approaches can also assess 
the effectiveness of vaccination campaigns 
or evacuation plans, and identify early 
warning signals of ecological change.  

During his talk on new developments 
in mathematical epidemiology, Webb will 
discuss models for diseases in individuals 

and communities that can track the dynam-
ics of infectious pathogens through time 
and space. These models help evaluate 
interventions such as vaccination, quaran-
tine, or medical treatment.

Tarnita will speak about the formation of 
spatial patterns in ecological systems like 
savannahs and shrublands. Mathematical 
models and data can help identify transi-
tions of characteristic vegetation patterns 
that may act as early warning indicators for 
impending catastrophic changes, such as 
collapse to desert in arid regions. 

Dawson will report on efforts to improve 
the resilience of coastal ecosystems to chal-
lenges like storm surges and land loss. 
Modeling resulting from collaborations 
spanning various fields—including mathe-
matics, computational science, engineering, 
and environmental science—can help plan 
for the protection of coastal communities 
against increasing threats due to natural, 
ecological, and socioeconomic causes.   

Collectively, the session will demonstrate 
successful applications of mathematical 
modeling and computational science, and 
joint efforts across disciplines to protect and 
improve human life and wellbeing — all 
part of an emerging effort to develop the 
“Mathematics of Planet Earth.”

Mathematics at the Upcoming 
AAAS Annual Meeting

Extreme Events
Continued from page 1
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sensitive. While many mathematicians are 
versed in Stefan nonlinear free-boundary 
problems, it takes an investment to under-
stand, analyze, and build multicomponent 
models in which the temperature is at the 
backstage rather than at the center (where 
mass fractions rule). Further, computational 
models for hydrates are quite sensitive to 
their data due to both their singularity and 
the relatively narrow envelope of physically-
meaningful solutions. To work around the 
sensitivity, one must analyze the models and 
their computational counterparts.

The study of gas hydrates is relatively 
uncharted territory for computational math-
ematics. While investigating solutions to 
the comprehensive, coupled, multiphase 
multicomponent models is out of reach 
for well-posedness analysis, one can study 
subproblems that focus on the primary diffi-
culties while freezing the model’s other ele-
ments. This strategy works particularly well 
for basin modeling at large timescales in 
which the hydrate evolution (almost) fits in 
the traditional framework of free boundary 
problems. However, there is a snag. Unlike 
freezing of water (melting of ice), which 
always occurs around 0°C, the phase behav-
ior for hydrate formation (dissociation) is 
associated with variable pressure and tem-
perature conditions. This challenge requires 

a special convex analysis construction [3, 
7]. In addition, while transport by diffusion 
is unlikely to have singular solutions (simi-
larly to the temperature in the Stefan prob-
lem), strong advection fluxes lead to large 
discontinuous deposits observed in nature 
and require a very weak notion of solutions 
to the partial differential equations.

Another challenge accompanies the 
burden (and beauty) of multiple scales. 
In many places around the world, the 
presence of hydrates has been inferred 
rather than confirmed. Unlike the free gas 
deposits visible in seismic images of the 
subsurface, the hydrate cannot be easily 
seen because its density is close to that 
of water, necessitating modeling to assist 
the interpretation of well core data [6]. 
Furthermore, the response of sediment to 
seismic waves depends on the microscopic 
(pore-scale) distribution of the hydrate and 
whether it cements the distance between 
host rock grains, thus altering the elas-
tic response. Without detailed models at 
the pore-scale, the unusual pockmark or 
chimney-like morphology of some deposits 
is hard to explain. However, at and below 
the pore-scale, the mathematical modeling 
of methane hydrate is still an art rather 
than a science. While some phase-field and 
molecular dynamics models have emerged 
[9], they are still far from the comfortable 
framework in which we prove theorems.

Going down in pore-scales from centi-
meter to meter or kilometer to micron or 
nanometer has become fairly established 
in petroleum engineering and hydrology. 
Geoscientists and imaging experts design 

flow experiments and carry out X-ray 
computed tomography imaging that dis-
plays the evolution of fluids in the void 
space between rock grains in either the 
fully-opaque three-dimensional porous 
media or two-dimensional micromod-
els, which look like pinball structures. 
The virtual laboratory for hydrates at the 
pore-scale is nearly there. Unfortunately, 
hydrates are unstable in standard condi-
tions, rendering a bank of images and 
experimental data both costly and difficult 
to acquire. First-principles modeling can 
therefore play a significant role.

Methane hydrate is also of interest 
as a potential energy source. In the last 
decade, the U.S. (at the Ignik-Sikumi well 
in Alaska), Japan, Korea, and India have 
implemented and explored hydrate projects 
[1]. However, technological difficulties and 
many open questions remain — the models 
used for production require a very different 
timescale compared to basin modeling, and 
demand another degree of complexity.

In summary, the overarching challenge 
in studying hydrates is arguably not just 
the complexity of the problem itself, but 
rather the ability to simplify and extract 
subproblems so as to move forward and 
make progress without compromising the 
results. For applied and computational 
mathematicians, the process of translating 
the hydrate model so it can fit into a math-
ematical framework amenable to analysis 
and simulation can be very rewarding. 
However, it requires vigilance from all 
participants of the interdisciplinary team. 
As we make simplifying assumptions that 
enable intricate mathematics, we must 
be careful not to render the model inap-
plicable. When implementing numerical 
schemes for the comprehensive model, it 
is hard to know if the visible discontinui-
ties are real, attributable to deficiencies of 
the scheme, or due to poor resolution 
of the phase behavior data or solver. 
Hence, it is essential for all team mem-
bers to understand each other’s objectives, 
respectfully acknowledge the existence of 
knowledge gaps, and carefully fill them in. 
Progressing from basin to production tim-
escales—or from sediment depths to the 

scale of microcracks and gas chimneys—
requires more resources across several 
fields. Observations and data are needed, 
so modeling can at least be guided even if 
validation is impossible.
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Figure 1. This two-dimensional simulation is inspired by a one-dimensional case study [2], while geometry is modeled after that of Hydrate Ridge. 
The red-to-yellow colors show the increase of methane hydrate saturation (Sh) caused by the migration of methane upwards from the bottom of 
the reservoir into the hydrate zone. The blue lines delineate rock types; initially, they differentiate between fine-grained (clay) and coarse-grained 
(silt) sediment. Fractures form at the bottom over time. The uneven migration and hydrate formation are due to the heterogeneity of the rock 
and the complicated dependence of thermodynamics on the host rock. Image credit: Malgorzata Peszynska.

Figure 2. Interdisciplinary objectives and multiple scales in gas hydrate studies and modeling. The molecules pictured in the middle include water 
(H20), methane (CH4), and carbon dioxide (CO2); the latter is present because of its relevance to methane production and carbon sequestration 
by the process of molecule exchange [10]. Image credit: Malgorzata Peszynska.

Methane Hydrate
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Sign Up for SIAM’s Science Policy Alerts

As most SIAM members are aware, 
science policy decisions greatly 

affect the state of scientific research. 
Hence, SIAM plays an active role in advo-
cacy for federal support of mathemati-
cal and computational science research. 
SIAM conducts a wide range of activities 
to ensure sound scientific policy in the 
society’s priority areas and the research 
community’s interests.  

Through its Committee on Science 
Policy, SIAM helps influence congres-
sional legislation and federal programs 
related to applied mathematics and com-
putational science, meets with relevant 
federal agency leaders and policymakers 
to better understand the research climate, 
and provides input on issues of concern to 
the SIAM community.  

SIAM members are indispensable in 
this effort to safeguard the interests of the 
field. Community involvement and advo-
cacy holds decision-makers accountable 
and ensures continued support for pro-
grams and policies vital to the discipline. 

The scientific community’s success-
ful push to preserve graduate student 
tax benefits is a recent example. When 
the House-passed bill threatened to tax 

tuition waivers used by graduate students 
to offset educational costs, students across 
the country staged walkouts and protests. 
This motivated several Republican House 
members to urge that the provision be 
excluded from the bill’s final version.  

Over 60 scientific and engineering soci-
eties sent a letter to Congress opposing 
the tuition waver tax, emphasizing that the 
proposition would increase the financial 
burden on graduate students and hinder the 
pursuit of STEM degrees. Several organi-
zations also issued action alerts encourag-
ing members to implore their representa-
tives to uphold the tax-exempt status of 
graduate tuition waivers. Ultimately, the 
provision was eliminated from the Senate 
version of the bill, which was signed into 
law by President Trump at the end of 2017.

In order to keep members informed and 
engaged regarding important issues affect-
ing the discipline—and offer guidelines on 
how they can take action—SIAM provides 
timely information to the community via 
the science policy electronic mailing list.1 

Sign up for the mailing list!

1  http://www.siam.org/about/science/sci_
policy_form.php
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Randomization in Characterizing the Subsurface
By Youzuo Lin, Daniel O’Malley, 
Velimir V. Vesselinov, George 
Guthrie, and David Coblentz

Current methods for characterizing 
Earth’s subsurface, such as standard 

inverse techniques, are not sufficiently 
accurate to meet the needs of modern appli-
cations in the fields of energy exploration, 
environmental management, and global 
security. While increasing the quantity of 
field measurements and robustness of the 
applied data-/model-analysis methods can 
improve accuracy, such approaches can be 
computationally impractical for large data 
sets and complex site conditions. Therefore, 
there is a need to develop economically-
feasible and robust computational methods 
while maintaining accuracy. For example, 
in-field drilling for geothermal operations 
may yield high failure rates, resulting in 
unacceptably high costs; errors and/or large 
uncertainties in the estimated subsurface 
characteristics are the main impediment 
to the successful siting of an in-field well. 
This problem is not uniquely geothermal. 
Accurate characterization of uncertain sub-
surface properties is also critical for moni-
toring storage of carbon dioxide, estimat-
ing pathways of subsurface contaminant 
transport, and supervising ground-based 
nuclear-explosion tests.

We have developed various methods to 
characterize the subsurface, including effi-
cient computational strategies to identify sub-
surface permeability given a set of hydraulic 
heads, as shown in Figure 1 (on page 1), and 
a data-driven subsurface geological feature 
detection approach using seismic measure-
ments, as shown in Figure 2 (right). A major 
challenge for many subsurface applications 
is the large number of observations and high 
feature dimensionality.

Randomized matrix algorithms—which 
aim to construct a low-rank approxima-
tion of an input matrix—have received 
a great deal of attention in recent years. 
The low-rank approximation, often called 
a matrix “sketch,” is usually the product of 
two smaller matrices, which yields a good 
approximation that represents the original 

output’s essential information. Therefore, 
one can employ a sketching system as a 
surrogate for the original data to compute 
quantities of interest. We have employed 
randomization techniques to solve various 
large-scale computational problems. Here 
we provide examples to demonstrate two 
major applications in solving real-world 
subsurface problems.

Randomized Subsurface 
Permeability Estimation

A porous medium’s permeability is a 
physical quantity needed to predict flow and 
transport of fluids and contaminants in the 
subsurface. The permeability’s estimation is 
often posed as a regularized inverse problem
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However, solving (4) can be both prohibi-
tively expensive and memory demanding. 

To combat this problem, we developed a 
novel randomized technique that enables an 
efficient computational method [1].

Our approach aims to construct a sketch-
ing matrix, the elements of which are drawn 
randomly from a Gaussian distribution. We 
then replace the data d with Sd  and the 
forward f( )x  with Sf( ).x  Therefore, the 
linear system in (2) and (4) can be substi-
tuted correspondingly with

       x̂ = +X QH ST Tβ ε
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(2) and (5) and (4) and (6) seem almost iden-
tical, except for the introduction of matrix 
S.  However, a simple computational cost 
analysis can reveal the significant impacts 
of the randomized matrix. Assume that 
the number of model parameters is m;  the 
number of observations is n,  which yields 
the size of the Jacobian matrix H n m∈ ×�� � ; 
and the covariance matrix is Q n m∈ ×�� � . 
We also denote the rank of the sketching 
matrix by k,  and k n� �.  The drift matrix 
X m p∈ ×� � �,  where p  is small. The dimen-
sion of the original system matrix in (4) 
is (( ) ( )), n p n p+ × +  while the dimen-
sion of the randomized system in (6) is 
(( ) ( ))k p k p+ × +  — much smaller than 
the original system. Therefore, the compu-
tational cost of solving (6) is significantly 
lower than that of solving (4); this is the 
power of randomization in solving tradi-
tional inverse problems, as illustrated in [1]. 

Figure 2. Diagram of the data-driven procedure to learn geologic features from seismic mea-
surements. Image courtesy of [2] and [3].

Graph Representations of Fractured Media in the Subsurface
By Gowri Srinivasan

Fractures are the primary pathways for 
fluid flow in otherwise low-perme-

ability subsurface media, such as shale 
or granite. Applications where flow and 
transport through fractured media are cen-
tral to informed decision-making via pre-
dictive capability have recently inspired a 
great deal of interest. Due primarily to the 
increased availability of natural gas, which 
produces 50 percent less carbon dioxide 
than coal, U.S. emissions have dropped to 
their lowest levels in 20 years. As a result, 
the production of hydrocarbons from shale 

formations—which involves hydrofractur-
ing rock to establish fracture connectivity 
and extracting the natural gas flowing out 
of the fractures—is a topic of ongoing 
debate and research. Moreover, as countries 
like North Korea continue to improve their 
ability to conduct low-yield nuclear tests, 
chemical signature detection (e.g., xenon 
migration through fractured rock) provides 
the definitive smoking gun when used with 
conventional seismic methods. 

Ignoring the topological and geometrical 
properties of these fracture networks and 
modeling subsurface fractures as a con-
tinuum with certain effective properties 

falls short of capturing key behaviors [6], 
including flow channeling and arrival times 
of particles advecting with the flow. It is 
thus desirable to retain the underlying struc-
ture of these fractured systems, resulting 
in the emergence of an alternative discrete 
fracture network (DFN) modeling method-
ology. Recognition that fracture geometry 
and network topology play a critical role in 
determining quantities of interest relating to 
flow and transport in fractured subsurface 
media is a key distinguishing factor of DFN 
modeling from standard continuum models.

Until recently, DFN models were limited 
to one-dimensional pipe-network approxi-

mations [2], two-dimensional systems, or 
relatively small three-dimensional (3D) 
systems [1]. However, recent advances in 
high-performance computing have enabled 
flow and transport simulations in large, 
explicit 3D DFN representations [5]. The 
3D DFN software dfnWorks [5], which 
recently won an R&D 100 Award, assigns 
each network fracture a shape, location, 
aperture, and orientation by sampling distri-
butions whose parameters are based on site 
characterization. Figure 1a shows a typical 
network consisting of 7,200 fractures of 
varying size, orientation, and permeability. 
Once meshed, this system has nearly 16 
million nodes and 32 million triangular ele-
ments. Figure 1b depicts a close-up of the 
mesh representation; the flow equations are 
solved explicitly on this detailed representa-
tion. The increase in model fidelity comes 
at a huge computational cost because of the 
large number of mesh elements required 
to represent thousands of fractures with 
sizes that range over several orders of 
magnitude (from mm to km) and accurately 
resolve large pressure gradients at fracture 
intersections. Given that most sites can 
only be characterized statistically, comput-
ing uncertainty bounds for the purpose of 
decision-making requires thousands of runs.

One can think of a graphical representa-
tion of a fracture network, where nodes and 
edges inherit geophysical and geometric 
properties of that network, as a coarse-
scalerepresentation that preserves the key 
topological properties [3]. Optimal assign-

See Randomization on page 6

See Graph Representations on page 7
Figure 1. Computer model of a discrete fracture network generated by dfnWorks. 1a. Illustrative discrete fracture network with varying permeabili-
ties. 1b. Close-up of the meshing on the network. Image credit: Jeffrey Hyman.
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which are from seismic measurements 
and x

i
dÎ  ,  and the associated labels 

y = ∈ ×[ ] ,y y
n
T n

1
1� �  which in this 

example denote the location of the dipping 
angle of geologic faults. The kernel ridge 
regression (KRR) is utilized to learn the 
mapping function [2, 3]. We directly state 
the dual problem of KRR without derivation
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where K is a kernel function and l > 0  is 
a regularization parameter. The problem in 
(7) has a closed-form solution
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Finally, for any unknown data x′ ∈ d ,  the 
prediction made by KRR can be obtained by
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However, the direct utilization KRR pre-
diction in (7) is computationally expen-
sive, because of the inversion of the 
large-scale matrix in (8). We employ 
the Nyström method—a randomized ker-
nel matrix approximation tool—to the 
geologic detection task, aiming to solve 
large-scale problems using modest com-
putational resources.

The Nyström method computes a 
low-rank approximation K T» yy  in 
 ( )nds ns+ 2  time. Here, s n  is user-
specified; larger values of s  lead to better 
approximation but incur higher compu-
tational costs. We can compute the tall-
and-skinny matrix y ∈ ×



n s  as follows. 
First, we sample s  items from { , , }1  n  
uniformly at random without replacement; 

The developed methods are available in the 
open source code Mads.1 

Subsurface Geological Feature 
Detection Using Randomized 
Data-Driven Methods

Seismic waves are more sensitive to the 
acoustic/elastic impedance of the subsur-
face than other geophysical measurements 
(see Figure 2, on page 5). Hence, seismic 
exploration has been widely used to infer 
heterogeneities in media impedance, which 
indicate geologic structures.

Analyzing and interpreting seismic mea-
surements for identifying prospective geo-
logical features is challenging. The dif-
ficulties arise from the processing of large 
amounts of seismic data and the incorpora-
tion of subjective human factors. Different 
geologic features play different roles in 
characterizing subsurface structure. In par-
ticular, identifying geological fault zones is 
essential to many subsurface energy appli-
cations. In carbon sequestration, potential 
leaks of stored carbon dioxide can create 
geologic faults, so knowing fault locations 
is necessary to monitor carbon dioxide stor-
age. We have developed a novel data-driven 
geological feature detection method and suc-
cessfully applied it to seismic measurements 
[2, 3], as illustrated in Figure 2 (on page 5). 
Both historical and simulated seismic data 
are fed into learning algorithms. A detection 
function f * ( )x  is the output of the training 
process, where x  represents the pre-stack 
seismic measurements. The function creates 
a link from the seismic measurements to the 
corresponding geological features.

Suppose one has n  historical fea-
ture vectors X x x1

T
n
T T= ∈ ×[ ] ,� �n d  

1  http://mads.lanl.gov

let the resulting set be .  Subsequently, 
we construct a matrix C n s∈ ×

  as 
c
il i l
= k( , )x x  for i nÎ { , , }1   and 

l Î ;  let W s s∈ ×


 contain the rows of 
C indexed by .  Figure 3 illustrates the 
approximation. Finally, we compute the 
low-rank approximation y =C W( ) .† /1 2

With the low-rank approximation obtained 
via the Nyström method, we can efficiently 
calculate an approximated solution
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where the latter equality follows from the 
Sherman-Morrison-Woodbury matrix iden-
tity. It is worthwhile mentioning that the 
n n´  matrix of yyT  in (8) has been 
replaced by the matrix of y yT s s∈ ×

 , 
which is much smaller. This significant-
ly reduces the computational costs. More 
details and results can be found in [2, 3].
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Slings, Bullets, Blow-up, and Linearity
The sling is a simple weapon — essen-

tially a pendulum with two strings 
instead of one, each of which holds a side 
of a cradle enclosing a projectile. When one 
spins the pendulum and releases a string, 
the discharged projectile can travel over 400 
meters. The sling was the world distance 
champion for millennia until the English 
long bow, and then the firearm, surpassed 
it. Speaking of the latter, a bullet shot into 
water has an unexpectedly short killing 
range despite its enormous speed.

Both of these phenomena—the surpris-
ingly long killing distance of a sling and 
the surprisingly short killing distance of a 
water-bound bullet—involve near-infinite 
(on the human scale) velocities. Both can 
be “explained” by the fact that solutions 
of the simple ordinary differential equa-
tion (ODE) x x= 2  blow up in finite time, 
something usually presented as a mere 
scholastic curiosity.

Launching the Sling
The caricature of the sling in Figure 1 

shows the hand moving in a circle so as to 
make the cradle describe a concentric circle 
(to achieve this, the hand must accelerate 
a certain way). I claim that the speed v  
then satisfies the ODE mentioned above: 
v kv= 2, with a constant k.  Indeed, Figure 
1 gives us a a

centripetaltangential
= tan ;q  and 

since a v
tangential

=   and a v R
centripetal

= 2/ ,  
this yields

        
v kv k R= =2, tan / .q

And the solution

 
  
              

v
v

v kt
=
−
0

0
1

does in fact approach infinity as 
t t v k→ =∞ 1

0
/  in the idealized non-rela-

tivistic world of infinitely fast hands and 
infinitely strong strings. The “shadow” of 
this infinite speed is seen in the fact that 
a good slinger can launch at over 1 5/ th 
the speed of sound (comput-
ed from the aforementioned 
>400 m  distance. In fact, the 
actual speed is higher, given 
that the calculation ignores 
the air resistance).

Shooting into the Water
Continuing with the weapons-related 

theme, let us ask: what depth renders harm-
less a bullet shot down into the water? 
Assume that (i) the water drag on the bullet 
is proportional to the square of the speed; 
(ii) the terminal sinking velocity of the bul-
let is 1 m sec/ ,  and (iii) the safe velocity 
of the bullet is v

s
m sec=10 /  (the speed 

gained in dropping 15 feet, painful but prob-
ably not dangerous). With these assump-
tions, the safe depth turns out to be

        xs
v
vs

≈ +0 1 1 0. ln .( ),	  
(1)

in meters. Before deriving this expression, 
let us find safe depths for various bullet 
speeds. For v

0
310= m sec/  (about three 

times the speed of sound), xs» 46 cm. 
For the escape velocity v

0
11» km sec/ , 

x
s
»69 cm.  Every increase in the order 

of magnitude simply adds about 23 cm  to 
the safety depth. And for a bullet travelling 
at the speed of light (here I am abandoning 
the last touch with reality), the safe depth 
is just 2 m!  This drastic loss of speed 
of the bullet is identical, up to the time-
reversal, to the sling projectile’s drastic 
gain of speed.

Derivation of (1)
The bullet shot straight down obeys 

Newton’s law: mv cv mg=− +2 ,   or
				     	

       
v kv g k

c
m

=− + =2 , ,
      				     

(2)

where v x=   and the x - 
axis points down. From the 
terminal velocity condi-
tion − + =kv g

term
2 0,  we  

find  k g v m= ≈ −/ .
term
2 110  

Neglecting g  in (2), we get
 

 
            v kv k m=− ≈ −2 110, .  
 
Substituting the initial condition v v( )0

0
=  

and the time ts  of reaching velocity vs  into 
the solution of this ODE gives

v
v

kv t
t k v v

kvs
s

s s
s

=
+

⇒ = − <− − −0

0

1 1
0
1

1
1

( ) .

Integrating v  gives x k kv t= +−1
0

1ln( ), 
and substituting t kvs s<1/  into this 
expression gives (1).

The Hidden Linearity
The ODE x x= 2  (a special case of 

the Riccati equation) hides linear growth, 
which can be expressed in two equivalent 
ways. Algebraically, the equation simply 
amounts to the linear growth of  1/ ,x  

namely to 
d

dt x

1
1= . Geometrically, this 

ODE governs the evolution of the slope 
x v u= /  of solution vectors in the ( , )u v -
plane of the trivial system  u v=− =1 0, . 
Figure 3 offers an essentially equivalent 
realization. The blow-up of the solution 
occurs when the plane is overhead.

As a concluding remark, the assumption 
dv dt kv/ =− 2  amounts to a more natu-
ral-sounding statement: the kinetic energy 
E decays exponentially with the distance 
dE dx kE/ .=−2

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. The velocity v  blows up in finite 
time T = the tension of the string, giving rise 
to the accelerations a

tangential
 and a

centripetal
.

Figure 2. Shooting into water.

Figure 3. Geometry of the finite-time blow-
up. The slope x  of the line of sight satisfies 
the “sling” ODE.

Randomization
Continued from page 5

Figure 3. Illustration of the Nyström approximation. Image courtesy of [2] and [3].
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ment of edge weights, a topic of research 
itself, can enhance the effectiveness of 
the reduced graph representation to emu-
late the DFN. Furthermore, the weighted 
graph framework seamlessly lends itself 
to numerically solving flow and transport 
equations on the nodes, resulting in effi-
cient and accurate DFN emulators to use 
instead of the computationally expensive 
DFN model. The reduced computational 
burden is particularly valuable in the con-
text of uncertainty quantification.

Graphs provide a simple and elegant way 
to characterize, query, and utilize connec-
tivity — one of the fundamental aspects of 
a fracture network. The suitable choice of 
mapping—which nodes represent attributes 
of the DFN and which attributes are edges 
connecting those nodes—depends on the 
question being asked. Figure 2 illustrates 
three possible graph representations that 
result from a small eight-fracture network. 
The most general representation in Figure 
2a is a bipartite graph with two node sets, 
one representing the fractures (top) and the 
other representing the intersections (bot-
tom), with edges connecting a fracture 
node to an intersection node if the fracture 
includes that intersection. 

The mapping in Figure 2b represents each 
DFN fracture as a graph node and each 
fracture intersection as an edge connecting 
the nodes. This can be viewed as a projec-
tion of the bipartite representation on the 
fracture nodes. One can easily extract mea-
sures of network connectivity (degree) and 
importance of individual fractures (central-
ity) under this mapping. Predictions of first 
arrivals are critical for applications such as 
nuclear nonproliferation, since trace gases 
like xenon migrate in high concentrations 
early on. In this case, one can use a map-

ping based solely on the topology 
shown in Figure 2b to determine the 
shortest paths between source and 
sink through a fracture network [4]. 
Figure 2c depicts a mapping that 
represents fractures as collections 
of edges and each intersection as a 
graph node; this is a projection of 
the bipartite representation onto the 
intersection nodes. Such mapping 
allows graph edges to inherit hydro-
logical properties, such as perme-
ability and in-plane geometry, and 
can simulate flow and transport in 
a computationally efficient man-
ner. For DFN transport modeling, 
the breakthrough curve is a typi-
cal quantity of interest (QOI) that 
describes the mass breakthrough of 
the transported species as a function 
of time as it crosses a control plane 
at the outlet. The appropriate map-
ping depends on the QOI.

Figure 3 illustrates both the 
probability distribution function of 
arrival times at the outlet and the 
cumulative distribution function for 
a few of the relevant graph-based 
reduced-order models. A compari-
son to the high-fidelity DFN model 
is also shown to gauge the effec-
tiveness of these models in emulat-
ing QOIs. The aggressive shortest 
path, which represents 10 percent 
of the entire network, can serve 
as a surrogate at very early times 
but deviates significantly beyond 
one percent of the total simula-
tion time. This further underscores 
large-scale structure’s dominance 

among the factors controlling transport 
within the network, especially at early times. 
Furthermore, one can use the structure to 
identify flow channels. Machine learning 
(ML) approaches have shown initial success 
in reducing the network size to 25 percent 
by classifying fractures as participating in 
the flow [7]. The pruned network predicted 
by ML techniques is a less aggressive reduc-
tion in fractures and tracks the DFN model 
well in regard to peak arrival. 

In field applications such as hydraulic 
fracturing or environmental remediation, the 
entire breakthrough curve is typically of 
interest to measure production or remediation 
efficiency, respectively. The graph-based 
flow and transport models can run with up 
to five orders of magnitude of computational 
savings, even though the tradeoff is a sys-
tematic—but remediable—discrepancy from 
the mesh-based DFN solution. The corrected 
graph transport solution provides the closest 
match to the DFN solution at both early and 
peak arrival times, although discrepancies 
exist in the tail behavior. As mentioned 
previously, each of these methods is an 
acceptable surrogate for the full DFN model, 
and choosing the appropriate model depends 
heavily on the questions being asked.

It is important to note that one can always 
compare the aforementioned graph-based 
reduced models with the original higher 
fidelity DFN representation. The recent 
explosion of ML in geosciences and other 
fields raises the question of whether the 
developed emulators can predict QOIs out-
side of the training data, and what might 
be considered an extrapolation beyond the 
training regime. This criticism is particu-
larly well-founded when learning from lim-
ited experimental data or already approxi-
mated models. However, 3D DFN models 
have been extensively used and validated 
against field observations, e.g., at the Äspö 
Hard Rock Laboratory in southern Sweden. 
This affords reasonable confidence that the 
“ground truth” furnished by the high-fidelity 
DFN models provides a solid foundation for 
additional insight into fractured systems.
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Figure 3. Comparison of the particle arrivals at control plane for the different networks. Image credit: Daniel O’Malley.

Graph Representations
Continued from page 5

Figure 2. Graph representations of a small eight-
fracture network. 2a. A bipartitite graph representation. 
2b. Each fracture is represented by a node, and each 
edge is an intersection of fractures. 2c. Each fracture 
intersection is represented by a node, and fractures are 
a clique of edges. Image credit: Aric Hagberg.
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Pursuing Science and Logic in an 
Age of Excitement and Turmoil

 Exact Thinking in Demented Times: 
The Vienna Circle and the Epic Quest 
for the Foundations of Science. By Karl 
Sigmund. Basic Books, New York, NY, 
December 2017. 480 pages. $32.00.

I n 1920s Vienna, a group of philoso-
phers, mathematicians, and physicists 

called “the Vienna Circle” embarked on a 
formidably ambitious project to investigate 
the foundations of science. Just as Alfred 
North Whitehead and Bertrand Russell had 
shown that mathematics can be built up 
from set theory in Principia 
Mathematica, Vienna Circle 
members aimed to demon-
strate that one could logical-
ly build up scientific theory 
from basic observations. Their philosophy, 
known as “logical positivism” or “logical 
empiricism,” idolized science, logic, and 
empiricism. It dismissed as meaningless 
any theorizing or speculation that was not 
empirically based, with a particular con-
tempt for “metaphysics.”

Exact Thinking in Demented Times, by 
mathematician Karl Sigmund, is a group 
biography of Vienna Circle participants 
and their predecessors, associates, and 
adversaries. It is both deeply researched 
and enormously entertaining, with vivid 
personal portraits, 
remarkable incidents 
and anecdotes, and 
a dramatic interpre-
tation of an exciting 
and tragic histori-
cal period. Douglas 
Hofstadter helped 
polish Sigmund’s 
English translation 
and contributed a 
fascinating preface 
describing his own 
intellectual encoun-
ters with the Vienna 
Circle and their idol/
nemesis, Ludwig 
Wittgenstein.

At any given time, 
10 to 20 people were 
involved with the 
Vienna Circle, which 
held regular meetings 
from 1924 to 1936. 
Central figures at the 
start included physicist Moritz Schlick, 
who served as chair; sociologist Otto 
Neurath; and mathematicians Otto Hahn 
and Philipp Frank. Rudolf Carnap joined 
the Circle in 1926 and became the lead-
ing exponent of logical positivism — his 
book, The Logical Structure of the World, 
became a bible for the movement. In 
1929, the Circle announced themselves 
to the world by publishing a manifesto 
entitled “The Scientific Conception of the 
World: The Vienna Circle,” which laid 
out their views and goals.

Looming over the Vienna Circle were 
four of the great intellectual giants of the 
first half of the twentieth century: Albert 
Einstein, Kurt Gödel, Karl Popper, and 
Wittgenstein. Sigmund wisely gives him-
self much latitude to digress outside the 
Circle proper, and includes substantial 
additional accounts of the lives and works 
of these four figures.

Einstein was not directly involved with 
the Circle, but he interacted with many par-
ticipants over the years; his revolutionary 
discoveries about the nature of time, space, 
atoms, and light inevitably and profoundly 
impacted any study of physics. While Gödel 
was a member of the Circle for some years 
and attended meetings, he apparently stuck 
firmly to a Platonist conception of math-
ematics. His great discoveries in logic were 
met with excitement by the group’s math-

ematicians, but hardly affected the overall 
philosophy. Popper was never invited to 
join the group or attend their meetings, 
and first came to prominence with a char-
acteristically hard-hitting attack on logical 
positivism. Nonetheless, he was on collegial 
terms with the Circle and considered them 
as philosophical comrades-in-arms, fighting 
the same good fight.

Wittgenstein’s impact on the Circle was 
enormous, and a substantial portion of 
Exact Thinking in Demented Times tracks 
the complex evolution of the Circle’s rela-

tions with him. To many in the 
Circle, including Schlick and 
Hahn, Wittgenstein’s Tractatus 
Logico-Philosophicus seemed 
a revelation; Neurath, howev-

er, found many of its oracular pronounce-
ments to be mere “metaphysics.” The 
Circle spent several semesters of meet-
ings working through it line by line, and 
naturally wanted to bring Wittgenstein into 
their discussions. This led to complications 
since Wittgenstein never believed that any-
one but himself actually understood him 
properly, and had radically changed his 
views since Tractatus.

While many of Wittgenstein’s acolytes 
viewed him as a secular saint, Sigmund 
depicts him as somewhere between 

utterly horrible and 
completely impos-
sible. The following 
characteristic anec-
dote serves as an 
example. In 1944, 
Wittgenstein held 
a philosophy chair 
at the University 
of Cambridge. 
While there, he was 
approached by Rose 
Rank (formerly a 
dedicated member of 
the Circle and always 
extremely poor), who 
was then working 
in Britain on a fac-
tory assembly line. 
She asked him if he 
could recommend 
her for a fellowship. 
Wittgenstein replied 
that there was noth-
ing he could do for 

her, and added that he saw no disgrace in 
earning a living from manual labor.

Early chapters of the book describe the 
Circle’s intellectual predecessors, starting 
with Ernst Mach and Ludwig Boltzmann 
and their debate about the reality of 
atoms. Exact Thinking in Demented Times 
is full of fascinating figures and inci-
dents, some close to the narrative’s main 
thread and others more distant. Sigmund 
painstakingly describes the struggles of 
Circle participants to obtain regular aca-
demic appointments, and offers charm-
ing vignettes of the characters’ personal 
romances. He recounts the remarkable 
story of Gustav Klimt’s scandalous Faculty 
Paintings (1900-07, destroyed in 1945) at 
the University of Vienna, which depicted 
the arts and sciences as “naked men and 
women drifting in forlorn trances through 
an uncanny void.” He gives an account of 
three Viennese novelists—Robert Musil, 
Hermann Broch, and Leo Perutz—who 
were each influenced by their study of 
mathematics and wrote works with math-
ematician protagonists.

In the final chapters, the Vienna Circle 
and logical positivism come to an end 
in two distinct ways. The rising tide of 
Nazism, culminating in the Anschluss of 
1938—the “demented times” of the title—

Exact Thinking in Demented Times: The 
Vienna Circle and the Epic Quest for the 
Foundations of Science. By Karl Sigmund. 
Courtesy of Basic Books.

BOOK REVIEW
By Ernest Davis

See Science and Logic on page 12
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Georgetown University
Department of Mathematics and Statistics

The Department of Mathematics and Statistics 
at Georgetown University announces a search 
for the position of Director of Graduate Studies 
(DGS) in Mathematics and Statistics. The DGS 
is a full-time administrative position with respon-
sibility for managing the M.S. degree program 
in mathematics and statistics at Georgetown. 
The DGS is expected to teach at least one gradu-
ate course per year and oversee all operations 
involving the graduate program. Responsibilities 
include—but are not limited to—recruiting, 
admissions, curriculum development, and sched-
uling of courses. There is a full-time assistant 
who handles many of the administrative and 
clerical duties and reports to the DGS. 

To apply, go to the following link, where a 
full description of the position is posted: https://
georgetown.wd1.myworkdayjobs.com/en-US/
Georgetown_Faculty/job/Main-Campus/
Director-of-Graduate-Studies--Mathematics-
--Statistics---Georgetown--College_JR03031. 
Establish an account and follow the prompts.

California Institute of Technology
Department of Computing and Mathematical 
Sciences

The Department of Computing and 
Mathematical Sciences (CMS) at the California 
Institute of Technology invites applications for 

the position of lecturer in computing and math-
ematical sciences. This is a (non-tenure-track) 
career teaching position with full-time teaching 
responsibilities. The start date for the position is 
ideally September 1, 2018, and the initial term of 
appointment can be up to three years. 

The lecturer will teach introductory computer 
science courses—including data structures, algo-
rithms, and software engineering—and work 
closely with the CMS faculty on instructional 
matters. The ability to teach intermediate-level 
undergraduate courses in areas such as software 
engineering, computing systems, and/or compil-
ers is desired. The lecturer may also assist in 
other aspects of the undergraduate program, 
including curriculum development, academic 
advising, and research project monitoring. The 
lecturer must have a track record of excellence in 
teaching computer science to undergraduates. In 
addition, the lecturer will have opportunities to 
participate in research projects in the department. 
An advanced degree in computer science or a 
related field is desired but not required.

Applications will be accepted on an ongoing 
basis until the position is filled. 

Please view the application instructions and 
apply online at https://applications.caltech.edu/
job/cmslect.

The California Institute of Technology is an 
equal opportunity/affirmative action employer.  
Women, minorities, veterans, and disabled per-
sons are encouraged to apply.

Send copy for classified advertisements and announcements to marketing@siam.org. 
For rates, deadlines, and ad specifications visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical sciences 
can click on “Careers and Jobs” at the SIAM website (www.siam.org) or proceed directly 

to www.siam.org/careers.

Professional Opportunities 
and Announcements

Seeing Through Rock: Mathematics 
of Inverse Wave Propagation

The following is a short introduction 
to an invited lecture to be presented at 
the upcoming 2018 SIAM Annual Meeting 
(AN18) in Portland, Ore., from July 9-13. 

Most of what we know about Earth’s 
interior comes from measuring 

physical fields on or near the surface and 
inferring subsurface structures from these 
measurements. Apart from inspecting out-
crops, the optical band of the electro-
magnetic spectrum is useless—you cannot 
actually see through rock, despite the title 
of this talk—but there are many other 
choices for probing fields. Seismic fields 
(roughly speaking, elastic waves in Earth) 
have a few key advantages 
as subsurface probes. They 
cover relatively long dis-
tances—measurable waves 
of the lowest frequency 
excite all of Earth—and 
combine this range with 
resolution, propagating a 
few hundred wavelengths 
before disappearing into 
Earth’s background seismic 
noise. To some extent, they 
exhibit space-time local-
ity and directionality (that 
is, locality in phase space) 
and definite velocity, which 
makes them waves.

 Whether elastodynamics or a more 
complex model of wave physics is ade-
quate to predict measured seismic data, 
and what information about Earth’s struc-
ture might result from doing so, is an 
inverse problem. One can only answer 
these questions affirmatively by exhibiting 
a distribution of elastic (or other) parame-
ters for which the solution of the associated 
partial differential equations (PDEs) actu-
ally predicts the seismic measurements to 
satisfactory accuracy. Joe Keller proposed 
this “find the question given the answer” 
definition of “inverse problem” in his 1976 
American Mathematical Monthly article. 
However, Keller’s examples do not clarify 
how instances of such problems involving 
nonlinear relations between billions of data 
points and billions of parameters, mediated 
by complex systems of PDEs, might be 
wrestled into computational practicality.

As I will explain in my 2018 SIAM 
Annual Meeting talk, answers to this ques-
tion began taking shape in the 1980s, as 
Albert Tarantola and many others elabo-
rated the “outer loop” point of view men-
tioned in Bruce Hendrickson’s November 
2017 SIAM News piece.1 The outer loop 
perspective posits that posing data fit 
as an optimization problem over choic-
es of elastic parameters invites selection 
by iteration over solutions of the elas-
todynamic (or similar) wave equations. 
Tarantola’s classic text, Inverse Problem 
Theory and Methods for Model Parameter 
Estimation, republished by SIAM in 2005, 
shows how tools from control theory make 

the computation of arti-
facts needed for local 
(descent-based) optimi-
zation more feasible. 

The first practicable 
algorithms required 
another 20 years of com-
putational and math-
ematical advances and 
inspired a very active 
research area known as 
full waveform inver-
sion, with branches in 
industrial and academic 
seismology. The com-
putational needs were 

obvious consequences of the world’s three-
dimensionality. The mathematical issues 
were more surprising — already evident 
in the 1980s, they stem from the sim-
ple observation that perturbation of wave 
speed effectively differentiates the wave-
form. Combined with the nonlinearity of 
the elastic wavefield as a function of the 
coefficients in the (linear) wave equa-
tion, this hypersensitivity with respect to 
wave velocities—which are functions of 
the coefficients—can cause local optimiza-
tion to stagnate far from a useful elastic 
model of Earth, no matter how many Pflops 
are expended. I will review some of the 
numerous ideas advanced to overcome this 
obstacle, and show why they might work 
via simple examples.

— Bill Symes, Rice University

1  https://sinews.siam.org/Details-Page/
the-future-of-scientific-computation

Bill Symes, Rice University

How Paradoxes Shape Mathematics and 
Give Us Self-verifying Computer Programs

The following is a short introduction 
to the I. E. Block Community Lecture, to 
be presented at the upcoming 2018 SIAM 
Annual Meeting (AN18) in Portland, Ore., 
from July 9-13. 

A paradox is a seeming contradiction, 
and the liar’s paradox is among the 

best-known. “This statement is false” — the 
statement is true exactly when it is false. A 
paradox is often self-referential, making a 
statement about itself.

Paradoxes can be so 
amusing that we might be 
tempted to believe they are 
nothing more than a game. 
However, they became a 
serious business more than 
a century ago, through a 
paradox similar to the bar-
ber paradox: a barber named 
Bertie shaves exactly those 
who do not shave them-
selves. Does Bertie shave 
himself? If he does, then 
he doesn’t; if he doesn’t, 
then he does. This paradox 
triggered a deep crisis in the 
foundations of mathematics. Bertrand Russell 
and Alfred North Whitehead spent years 
rebuilding mathematics from the ground up; 
after a decade of effort, they finally produced 
a paradox-free proof that 1 1 2+ = .

Other clever paradoxes expose the dis-
turbing limits of computation and math-
ematics. Researchers such as Alan Turing 
and Kurt Gödel discovered these math-
ematical bombshells.

To avoid paradox, most current math-
ematicians work within restrictive sys-
tems that banish self-reference. Rebelling 
against these restrictions, some have avoid-
ed paradox in mathematics by placing the 
entire mathematical universe inside a “nut-

shell” that sits within a 
still larger universe, and 
then continuing with an 
ever increasing expanse 
of universes, each a nut-
shell in the next.

Today, we design com-
puter programs that verify 
the lack of bugs in other 
computer programs. Can 
computer programs be fed 
into themselves to verify 
their own correctness? Or 
does paradox stop us in 
our tracks? One approach 
to self-verification is the 
design of computer lan-

guages that avoid paradox through nutshell 
universes. Other ideas for program self-
verification come from the century-old 
proof that 1 1 2+ = .

Researchers in artificial intelligence are 
carrying paradoxes into new 
realms. Can beneficial artifi-
cial intelligence turn malev-
olent when it starts modify-
ing its own computer code?

In my talk at the 2018 
SIAM Annual Meeting, I 
will present some of my 
favorite paradoxes and 
explain how they play into 
self-verifying computer 
programs.

— Thomas Hales, 
University of Pittsburgh

Look for feature arti-
cles by other AN18 invit-
ed speakers introducing 
the topics of their talks in 
future issues.

Thomas Hales, University of 
Pittsburgh

Drawing Hands, a lithograph by M.C. Escher, is an example 
of a paradox. Thomas Hales will explore the relation between 
paradoxes and mathematics at the 2018 SIAM Annual 
Meeting. Public domain image.
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The High-Performance Conjugate Gradients Benchmark
By Jack Dongarra, Michael A. 
Heroux, and Piotr Luszczek

The High-Performance LINPACK (HPL) 
Benchmark has been a measure of 

supercomputing performance for more than 
four decades, and the basis for the biannual 
TOP500 list of the world’s fastest super-
computers for over 25 years. The benchmark 
is one of the most widely recognized and 
discussed metrics for ranking high-perfor-
mance computing (HPC) systems. When 
HPL gained prominence as a performance 
metric in the early 1990s, there was a strong 
correlation between its predictions of sys-
tem rankings and the ranking realized by 
full-scale applications. In these early years, 
computer system vendors pursued designs 
that would increase HPL performance, thus 
improving overall application function.

Similarity of computations was par-
tially responsible for this correlation. For 
example, frontal matrix solvers were com-
monly used in engineering applications 
and often consumed a large fraction of 
compute time. The computational and data 
access patterns of these solvers are similar 
to HPL. Moreover, memory system and 
floating-point computation performance 
was much more balanced. For example, the 
Cray YMP and C90 (1990s systems) could 
perform two reads and a write per clock 
cycle, enabling near-peak performance for 
writing the weighted sum of two vectors 
as another vector, the so-called AXPY 
operation. On today’s modern processors, 
that operation executes at about one to 
two percent of peak speed. HPL has a 
computational complexity of O n( )3  and 
a data access complexity of O n( ),2  so 
simply running larger problems meant that 
its performance was minimally impacted 
by this trend. Many real applications have 
moved to more efficient algorithms with 
computational complexity closer to O n( ) 
or O n n( log )

2
 and similar data access 

complexity, and have realized a much 
smaller performance gain from computer 
system improvements. Even so, the net 
performance improvement in time to solu-
tion of new algorithms on new platforms 
has far exceeded HPL improvements. In 
contrast, time to solution for HPL is now 
measured in days, and is a serious concern 
for benchmarkers on leadership platforms.

We expressed the following in [1]:
 
HPL remains tremendously valuable as a mea-

sure of historical trends and as a stress test, 
especially for the leadership class systems that 
are pushing the boundaries of current technology. 
Furthermore, HPL provides the HPC community 
with a valuable outreach tool, understandable to 
the outside world. Anyone with an appreciation 
for computing is impressed by the tremendous 
increases in performance that HPC systems have 
attained over the past few decades in terms of 
HPL. At the same time, HPL rankings of com-
puter systems are no longer so strongly correlated 
to real application performance, especially for the 
broad set of HPC applications governed by dif-
ferential equations.

These tend to strictly demand high band-
width and low latency as they possess 
the aforementioned lower computational 
complexity. In fact, we have reached a 
point where designing a supercomputer for 
good HPL performance can lead to design 
choices that are either ill-suited for the 
real application mix or add unnecessary 
components or complexity to the system. 
Left unchecked, we expect the gap between 
HPL predictions and real application perfor-
mance to increase in the future.

Many aspects of the physical world are 
modeled with partial differential equations, 
which help predictive capability, thus aiding 
scientific discovery and engineering optimi-
zation. The High-Performance Conjugate 
Gradients (HPCG) Benchmark is a comple-
ment to the HPL Benchmark and now part of 
the TOP500 effort. It is designed to exercise 
computational and data access patterns that 

more closely match a different yet broad set 
of important applications, and to encour-
age computer system designers to invest in 
capabilities that will impact the collective 
performance of these applications.

We articulated the subsequent ideas in [1]:

The setup phase [of HPCG] constructs a logi-
cally global, physically distributed sparse linear 
system using a 27-point stencil at each grid 
point in the 3D domain, such that the equation at 
point ( , , )i j k  depends on the values of its loca-
tion and 26 surrounding neighbors. The matrix 
is constructed to be weakly diagonally domi-
nant for interior points of the global domain, 
and strongly diagonally dominant for boundary 
points, reflecting a synthetic conservation prin-
ciple for the interior points and the impact of 
zero Dirichlet boundary values on the boundary 
equations. The resulting sparse linear system has 
the following properties:

• A sparse matrix with 27 nonzero entries per 
row for interior equations and seven to 18 nonzero 
terms for boundary equations

• A symmetric, positive definite, nonsingular 
linear operator

• The boundary condition is reflected by sub-
tracting one from the diagonal

• A generated known exact solution vector with 
all values equal to one

• A matching right-hand-side vector
• An initial guess of all zeros.
The central purpose of defining this sparse 

linear system is to provide a rich vehicle for 
executing a collection of important computational 
kernels. However, the benchmark is not about 
computing a high fidelity solution to this problem. 
In fact, iteration counts are fixed in the benchmark 
code and we do not expect convergence to the 
solution, regardless of problem size. We do use 
the spectral properties of both the problem and 
the preconditioned conjugate-gradient algorithm 
as part of software verification.

The HPCG reference code is complete, 
standalone, and derived from mini-applica-
tions developed in the Mantevo project.1 It 
measures the performance of basic opera-
tions in a unified code:

• Sparse matrix-vector multiplication
• Vector updates
• Global dot products
• Local symmetric Gauss-Seidel smoother
• Sparse triangular solve (as part of the 

Gauss-Seidel smoother).
The code is also driven by a multigrid 

preconditioned conjugate gradient algo-
rithm that exercises the key kernels on a 
nested set of coarse grids. The reference 

1  https://mantevo.github.io

implementation is written in C++ with MPI 
and OpenMP support.

Computer system vendors have invested 
significant resources to optimize HPCG, 
including the adaptation of their math 
kernel libraries to provide optimized func-
tionality that can benefit the broader com-
munities using these libraries.

HPL follows the peak performance of the 
machine relatively closely — a fact that is 
well known to benchmarking practitioners 
and most HPC experts. The performance 
levels of HPCG are far below those seen by 
HPL. This should not be surprising to those 
in the high-end and supercomputing fields 
and is attributable to many factors, includ-
ing the commonly-cited “memory wall.”

HPCG has already been run on many 
large-scale supercomputing installations in 
China, Europe, Japan, and the U.S. (and off-
planet in an orbiting satellite). The above 
chart shows the top 10 systems on the cur-
rent HPCG Benchmark list, as of November 
2017. A full list and more details are avail-
able online.2 HPCG results have been inte-
grated into the TOP500 list.3
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drove the Circle far from Vienna. Some 
Circle members were Jewish, some were 
active in left-wing politics, and all were 
considered undesirable in the Third Reich. 
Schlick was murdered by a psychopathic 
stalker in 1936; though he was neither 
Jewish nor politically active, Nazi writers 
defended the murder as a justifiable reac-
tion to his perverse philosophy. The rest of 
the Circle fled, sooner or later, into exile, 
ending up in either the U.S. or the U.K.

Ultimately, the philosophers were more 
deadly than the politics. A series of tren-
chant, unanswerable critiques of logical 
positivism by Popper, Willard Van Orman 
Quine, Thomas Kuhn, and others left the 
Circle entirely demolished — to a degree 
unusual in philosophy, where victories 
and defeats are typically partial and pro-
visional. The word “positivist” became a 

pejorative, akin to narrow-mindedly ignor-
ing everything except superficial, easily-
quantifiable measurements. Positivism 
also became associated with the behavior-
ist theory of psychology, which flourished 
and perished over much the same time 
period. Strikingly, the word “positivism” 
is almost never used in Sigmund’s book.

Nonetheless, the problem of character-
izing the relation of observational evidence 
to scientific theory is real, important, and 
unsolved. No one questions that the Vienna 
Circle very much overestimated the scope 
and power of the type of analysis it was 
pursuing. However, that does not negate 
the possibility that this kind of analysis is 
worth pursuing when analyzing the foun-
dations of physical science.
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