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Abstract. In this paper, we study the diffusive Streeter-Phelps equations, consisting of two weakly coupled
diffusion-advection-reaction equations that describe biological oxygen demand (BOD) and dissolved
oxygen (DO) in a river. The Streeter-Phelps equations were first introduced in 1925 but are still
used in river quality modelling to this day. We investigate travelling wave solutions to this system
with non-linear BOD decay instead of traditional linear decay. We prove the existence of spectrally
stable monotone wavefront solutions to the BOD equation and corresponding solutions to the DO
equation. We also discuss the existence and instability of non-monotone travelling waves and give
an approximation of stable solutions to the BOD equation. Our analytical findings are illustrated
numerically.

1. Introduction. Biological oxygen demand (BOD) and dissolved oxygen (DO) are im-
portant indicators of river water quality, and are often studied through the use of mathematical
models. BOD is defined as the amount of oxygen required for microorganisms to break down
an organic pollutant in a body of water. BOD concentration is therefore proportional to the
amount of pollution in a river. When a pollutant enters a river, microorganisms such as bac-
teria break down the pollutant through aerobic metabolic processes, using up oxygen. Thus,
there is a spike in BOD at the instant the pollutant enters the river. As the bacteria break
down the pollutant, oxygen is consumed, leading to a rapid decrease of DO and a gradual
decay of BOD. After a certain period of time (usually on the order of days), the pollutant is
fully degraded and DO and BOD concentrations gradually return to their natural levels. This
process is illustrated by the Streeter-Phelps [15] oxygen sag curve shown in Figure 1.1.

Figure 1.1. A visual depiction of the Streeter-Phelps oxygen-sag curve, showing how BOD and DO levels
in a river are affected by the addition of a pollutant.
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A model of two diffusion-advection-reaction equations introduced in [4] is commonly used
to describe the interaction between BOD and DO concentrations in a flowing river. The model
is given by

∂b

∂t
+ v

∂b

∂x
= K

∂2b

∂x2
− k3b+ ba,(1.1)

∂c

∂t
+ v

∂c

∂x
= K

∂2c

∂x2
− k1b+ k2(cs − c),(1.2)

where b and c are BOD and DO concentrations respectively, v is the average river velocity, K
is the diffusion constant, k1, k2 and k3 describe DO decay, BOD decay, and re-aeration rates
respectively, ba is the BOD addition rate, and cs is the DO saturation level. Also, x ∈ R and
t > 0 represent the space and time coordinates, respectively. While molecular diffusion is often
negligible in river quality modelling, diffusion terms are included to describe longitudinal and
turbulent dispersion [10]. Longitudinal dispersion describes the spreading of particles in the
same direction as the river, whereas turbulent dispersion refers to particles spreading within
the cross-sectional area of the river.

Equations (1.1) and (1.2) are one-way coupled through a linear reaction rate proposed in
[15] that describes BOD decay due to an organic pollutant entering the river. This model,
however, does not fit BOD data that exhibit an initial lag phase on the deoxygenation curve.
This initial delay in BOD degradation is commonly observed experimentally, likely as a result
of bacterial growth kinetics [2]. To account for this process, [2] proposed an alternate BOD
decay term following Monod kinetics [12]. The decay term is given in dimensionless form by

g(b) :=
b(1− b)

κ+ b
(1.3)

where b is dimensionless BOD concentration and κ is a positive dimensionless constant rep-
resenting the half-saturation concentration level. With this reaction term in place of the
traditional linear decay term, (1.1) and (1.2) become

∂b

∂t
+ P

∂b

∂x
=

∂2b

∂x2
−Dg(b),(1.4)

∂c

∂t
+ P

∂c

∂x
=

∂2c

∂x2
− D̂g(b) + S(1− c),(1.5)

in dimensionless form. Here, c is the dimensionless DO concentration and

P =
advection rate

diffusion rate
, D =

reaction rate

diffusion rate
, S =

total mass transfer rate

diffusion rate

are the positive dimensionless Péclet, Damköhler II, and Sherwood numbers, respectively.
Also, D̂ = bs

cs
D where bs is the BOD concentration saturation level. The non-

dimensionalization leading to (1.4) and (1.5) is given in Appendix A.
The non-linearity of (1.3) gives rise to multiple steady states in the model, suggesting the 

potential existence of travelling wave solutions which do not arise from the traditional linear 
model. The objective of this paper is to determine the wave speeds for which (1.4) and (1.5) 
permit stable travelling wave solutions.
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This paper is organized as follows. In section 2, we derive the travelling wave equations
for (1.4) and (1.5). Then, we prove the existence of travelling wave solutions to (1.4) and (1.5)
in section 3 and section 4, respectively. The spectral stability of these solutions is shown in
section 5, and in section 6, we give an analytical approximation of solutions to (1.4). Finally, a
discussion of our results and the connection between (1.4) and the generalized Fisher-KPP (F-
KPP) equation [6], [9] is given in section 7. Numerical results are given throughout the paper,
where we used MATLAB’s ode45 and pdepe solvers [16] to produce numerical solutions to the
ordinary differential equations (ODEs) and partial differential equations (PDEs), respectively.

2. Derivation of Travelling Wave Equations. Travelling waves are solutions to PDEs
that maintain their shape while propagating through space and time with constant speed.
They arise from reaction terms that permit steady states of the model. Travelling wave
solutions depend solely on the combination of x and t defined by z := x − ρt where ρ is a
constant wave speed. It is assumed without loss of generality that ρ > 0, and thus, due to the
definition of z, waves travel downstream in the positive direction along the z-axis. Travelling
waves commonly arise in the form of wavefronts or pulses, as illustrated in Figure 2.1.

Figure 2.1. A wavefront (left) and a pulse (right)

The study of travelling waves solutions to (1.4) and (1.5) begins with imposing the ansatz,

z := x− ρt, b(x, t) = B(z), and c(x, t) = C(z)

which converts the PDE system to the ODE system,

B′′(z) + ρ̂B′(z) = Dg(B(z)),(2.1)

C ′′(z) + ρ̂C ′(z) = D̂g(B(z))− S(1− C(z)).(2.2)

Here, ρ̂ := ρ − P represents the difference between the speed of wave propagation and the
speed of the river and g(B) was defined by (1.3). The travelling wave equations (2.1) and
(2.2) are subject to the following asymptotic boundary conditions:

lim
z→±∞

g(B(z)) = 0, lim
z→±∞

B′(z) = 0,(2.3)

lim
z→±∞

C(z) = 1, lim
z→±∞

C ′(z) = 0.(2.4)

These conditions ensure that solutions to the travelling wave equations asymptotically connect 
the rest states of the model.
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3. Existence of Travelling Waves. The existence of travelling wave solutions to (1.4) is
guaranteed through its connection to the generalized F-KPP equation, discussed in section 7.
Here, we include the complete analysis specific to (1.4).

To show the existence of travelling waves, we look for either heteroclinic or homoclinic
trajectories that asymptotically connect equilibria in the phase plane. These trajectories
correspond to solutions of (2.1) that satisfy (2.3). By defining V (z) := B′(z), (2.1) can be
written as a system of two first order ODEs,

B′(z) = V (z),(3.1)

V ′(z) = −ρ̂V (z) +D
B(z)(1−B(z))

κ+B(z)
.(3.2)

By setting B′(z) = 0 and V ′(z) = 0, we find equilibria of (B, V ) = (0, 0) and (B, V ) = (1, 0).
The Jacobian matrices are obtained for each equilibrium as

J(0,0) =

(
0 1
D
κ −ρ̂

)
and J(1,0) =

(
0 1

− D
κ+1 −ρ̂

)
with corresponding eigenvalues,

λ(0,0) =
−ρ̂±

√
ρ̂2 + 4D

κ

2
and λ(1,0) =

−ρ̂±
√
ρ̂2 − 4D

κ+1

2
.(3.3)

The Jacobian of the equilibrium at (0, 0) has real eigenvalues of opposite sign for any value of
ρ̂, so (0, 0) is a saddle point in the phase plane. The classification of (1, 0) however, depends

on the relative sizes of ρ̂ and ρ∗ := 2
√

D
κ+1 , as summarized in Table 3.1. The following

subsections are devoted to studying the existence of travelling waves for each case. For the
sake of intuition, we start with the case where (1, 0) is a stable node, followed by the case of
an unstable node. We then look at the cases where (1, 0) is a centre or spiral.

Table 3.1
Local stability of (B, V ) = (1, 0) for different wave speeds

Value of ρ̂ Sign of Eigenvalues Classification of (1,0)

ρ̂ ≤ −ρ∗ Both positive Unstable Node

−ρ∗ < ρ̂ < 0 Both complex with Re(λ) > 0 Unstable Spiral

ρ̂ = 0 Complex conjugates Centre

0 < ρ̂ < ρ∗ Both complex with Re(λ) < 0 Stable Spiral

ρ̂ ≥ ρ∗ Both negative Stable Node

3.1. Case 1: ρ̂  ≥ ρ∗. When ρ̂  ≥ ρ∗, travelling waves, if they exist, travel sufficiently 
faster than the river (ρ ≥ P + ρ∗). The phase portrait arising from (3.1) and (3.2) consists of 
a saddle point at (0, 0) and a stable node at (1, 0), so we search for a trajectory that leaves the 
unstable manifold of (0, 0) and converges to (1, 0). To prove the existence of this trajectory, 
we construct a positively invariant triangular region as shown in Figure 3.1. This method was
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Figure 3.1. Illustrations of a positively invariant trapping region enclosing a heteroclinic trajectory con-
necting (0, 0) to (1, 0) (left) and the corresponding travelling wave (right).

outlined, for instance, in [7] for the case of the F-KPP equation. The vertices of the region
are (0, 0), (1, 0), and (α, 0) where α is an unknown positive constant. For the region to be
positively invariant, the vector field of solutions in the phase plane must point into the region
along the entire boundary. Along V = 0 with 0 < B < 1,

B′ = 0,

V ′ = D
B(1−B)

κ+B
> 0

so trajectories point vertically upwards into the region. Along B = 0 with V > 0,

B′ = V > 0,

V ′ = −ρ̂V < 0

so trajectories point downwards and to the right, thus entering the region. Along the third
line segment defining the boundary, V = α(1−B) with 0 < B < 1, we have

B′ = α(1−B) > 0,

V ′ = −ρ̂α(1−B) +D
B(1−B)

κ+B

so trajectories point to the right. For trajectories to enter the region along this line segment,
we must choose a value for α so that the vector field points downwards at a slope steeper than
the slope of the boundary line. Mathematically, this means we need a value of α such that
dV
dB < −α. The slope of the vector field along V = α(1−B) is

dV

dB
= −ρ̂+

DB

α(κ+B)
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by the chain rule. So we require

− ρ̂+
DB

α(κ+B)
< −α

⇐⇒ α2 − ρ̂α+
DB

κ+B
< 0

⇐⇒ α ∈

 ρ̂−
√
ρ̂2 − 4 DB

κ+B

2
,
ρ̂+

√
ρ̂2 − 4 DB

κ+B

2

 .(3.4)

Choosing α = ρ̂
2 for example, results in a boundary line with a slope less steep than the slope

of the vector field along the line. Notice that the bounds on α as in (3.4) are imaginary when

ρ̂ < 2
√

DB
κ+B , but we will now show that this cannot happen in the region of interest, and is

thus not an issue. In this case, we have ρ̂ ≥ 2
√

D
κ+1 and we know 2

√
DB
κ+B = 2

√
D

κ+1 only

when B = 1. If we define f(B) := 2
√

DB
κ+B , then f ′(B) > 0 so f(B) increases monotonically

for all B > 0. Thus, f(B) = 2
√

DB
κ+B < 2

√
D

κ+1 ≤ ρ̂ for 0 < B < 1. Therefore, ρ̂2 ≥ 4 DB
κ+B so

the relevant bounds on α are real, and thus, well-defined.
We now have a positively invariant triangular region in the phase plane with vertices of

(0, 0), (1, 0), and (0, ρ̂2). A trajectory that leaves the saddle point, (0, 0) will do so tangent
to the unstable eigenvector associated with the positive eigenvalue of the Jacobian matrix at
(0, 0), given by

v =

(
1
λ+

)
, where λ+ =

−ρ̂+
√

ρ̂2 + 4D
κ

2
.

Therefore, a trajectory leaving (0, 0) enters the trapping region. There are no periodic orbits
within the region, since B increases monotonically while V = B′ > 0. Then, by the Poincaré-
Bendixson theorem, a trajectory that enters the positively invariant region must converge
to the equilibrium at (1, 0). Since the unstable manifold is one-dimensional, there is only
one trajectory that originates from (0, 0) and enters the B > 0, V > 0 quadrant. Thus, we
have established the existence of a unique monotone increasing wavefront, B(z), satisfying
the conditions,

lim
z→−∞

B(z) = 0, lim
z→∞

B(z) = 1, and lim
z→±∞

B′(z) = 0.

As previously discussed, this travelling wave moves along the positive z-axis. Physically 
speaking, this means that water with low BOD concentration invades water with high BOD 
concentration as the wave moves downstream, and so this travelling wave describes purifica-
tion of the river. The phase portrait and travelling wave solution are shown numerically in 
Figure 3.2 for the case of specific parameter v alues. These waves are also observed when the 
BOD PDE, (1.4) is solved numerically, as presented in Figure 3.3.
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Figure 3.2. Phase portrait (left) and numerical solution (right) of (2.1) with D = 1, κ = 0.5, and ρ̂ = 2.3.

Figure 3.3. Numerical solution of (1.4) when D = 1, P = 5, κ = 0.5. Boundary conditions of b(0, t) = 0
and b(50, t) = 1 were imposed, as well as an initial condition of u(x, 0) = 0.5 tanh(x) + 0.5. A surface plot is
shown in the left panel, and a plot of several waves with equidistant time steps is shown in the right panel.

3.2. Case 2: ρ̂ ≤ −ρ∗. When ρ̂ ≤ −ρ∗, travelling waves, if they exist, travel sufficiently
slower than the river. This case is similar to Case 1, only essentially reversed. We look for a
trajectory that leaves the unstable node at (1, 0) and converges to the saddle point at (0, 0)
along its stable manifold. The existence of this trajectory is shown by the construction of
a negatively invariant trapping region with vertices (0, 0), (1, 0), and (0,−α) as shown in
Figure 3.4. A similar argument was used in [5] as a general technique to show the existence
of a heteroclinic orbit between an unstable node and a saddle point. Proceeding similarly as
in Case 1, along V = 0 with 0 < B < 1,

B′ = 0,

V ′ = D
B(1−B)

κ+B
> 0

so trajectories point vertically upwards, and thus, out of the region. Along B = 0 with V < 0,

B′ = V < 0,

V ′ = −ρ̂  < 0
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Figure 3.4. Illustrations of a negatively invariant region enclosing a heteroclinic trajectory that connects
(1, 0) to (0, 0) (left) and the corresponding travelling wave (right).

so trajectories point downwards and to the right, leaving the region. Finally, along V =
α(B − 1) with 0 < B < 1,

B′ = α(B − 1) < 0,

V ′ = −ρ̂α(B − 1) +D
B(1−B)

κ+B

so trajectories point to the left. Using the arguments from Case 1, it can be shown that trajec-
tories along V = α(B−1) point out of the trapping region if α = − ρ̂

2 , so the triangular region

defined by vertices (0, 0), (1, 0), and (0, ρ̂2) is negatively invariant. A trajectory converging
to (0, 0) along its stable manifold must do so tangent to the eigenvector associated with the
negative eigenvalue of the Jacobian matrix at (0, 0), given by

v =

(
1
λ−

)
, where λ− =

−ρ̂−
√

ρ̂2 + 4D
κ

2
.

This eigenvector points to (0, 0) from the region, and thus, a trajectory tangent to it must
have originated from somewhere in the region. Since there are no other equilibria or periodic
orbits, the trajectory must have originated from the unstable node at (1, 0). By the arguments
in Case 1, this trajectory is unique. So we have the existence of a unique monotone decreasing
wavefront, B(z) with the conditions

lim
z→−∞

B(z) = 1, lim
z→∞

B(z) = 0, and lim
z→±∞

B′(z) = 0.

This wave describes contamination of the river, since water with high BOD concentration 
invades water with low BOD concentration as the wave travels downstream. The phase 
portrait and travelling wave solution for this case are shown in Figure 3.5 for certain parameter 
values. Figure 3.6 shows these waves as numerical solutions to the PDE, (1.4).

3.3. Case 3: ρ̂  = 0. In this case, waves travel at the same speed as the river. We 
have a saddle point at (0, 0) and centres at (1, 0). The existence of a heteroclinic orbit is 
clearly not possible in this case, so we instead look for a homoclinic orbit that originates along 
the unstable manifold of (0, 0) and asymptotically converges along the stable manifold of the
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Figure 3.5. Phase portrait (left) and numerical solution (right) of (2.1) with D = 1, κ = 0.5, and ρ̂ = −3.2

Figure 3.6. Numerical solution of (1.4) when D = 1, P = 5, κ = 0.5. Boundary conditions of b(0, t) = 1
and b(50, t) = 0 were imposed, as well as an initial condition of u(x, 0) = −0.5 tanh(x) + 0.5. A surface plot is
shown in the left panel, and a plot with several curves with equidistant time steps are plotted in the right panel.

saddle as z → ∞. This trajectory corresponds to a travelling wave in the form of a pulse
rather than a wavefront [7]. In this case, the BOD system is reduced to

B′ = V,

V ′ = D
B(1−B)

κ+B

which is a conservative system. The trajectories of this system are equivalent to the level
curves of an energy function given by H(B, V ), where

∂H

∂V
=

dB

dz
and

∂H

∂B
= −dV

dz
.(3.5)

Notice

∂H

∂B
· dB
dz

= −∂H

∂V
· dV
dz

=⇒ ∂H

∂B
· dB
dz

+
∂H

dV
· dV
dz

= 0 =⇒ dH

dz
= 0
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so H(B, V ) is constant with respect to z. Solving (3.5) and applying the boundary conditions,
(2.3) results in an equation for the homoclinic orbit in the phase plane,

V 2 = −D

[
B2 + 2(κ+ 1)

(
κ ln

(
B + κ

κ

)
−B

)]
.

The existence of this trajectory implies the existence of a unique travelling wave solution
in the form of a pulse to (1.4). This wave describes temporary contamination followed by
purification as it travels down the river. The phase portrait and pulse solution are shown in
Figure 3.7.

Figure 3.7. Phase portrait (left) and numerical solution (right) of (2.1) with D = 1, κ = 0.5, and ρ̂  = 0.

3.4. Cases 4 and 5: 0 < |ρ̂| < ρ∗. When the speed of the wave is sufficiently cl ose to 
the speed of the river, (1, 0) is a spiral in the phase plane and we end up with wavefronts that 
oscillate indefinitely about t he horizontal l ine, B (z) =  1 . These types o f s olutions have not 
been well studied in similar models, and are often rejected on the basis of physical irrelevance. 
This is because the range of the oscillatory solutions can exceed the intended bounds on 
solutions to a problem.

For example, in the case of the F-KPP equation which is a population model, travelling 
wave solutions with dimensionless speeds of less than 2 are rejected on the basis of physical 
and mathematical irrelevance. In the physical sense, oscillations force these solutions to be 
negative at times [13], which is nonsensical in terms of populations. Additionally, [8] proves 
the instability of these non-monotone travelling wave solutions which mathematically supports 
their rejection.

In our model, solutions that oscillate around the dimensionless BOD saturation level, 
b(x, t) = 1 are still physically meaningful. The existence of these solutions has been difficult 
to prove analytically, so we give here an intuitive argument based on phase portraits and 
numerical solutions of (2.1). In the case where 0 < ρ̂  < ρ∗, we have a stable spiral at (1, 0) so 
we are interested in a trajectory that connects (0, 0) to (1, 0). Based on the phase portrait, 
a trajectory originating at (0, 0) converges to (1, 0) while oscillating around it. Conversely, 
when 0 > ρ̂  > −ρ∗, (1, 0) is an unstable spiral, so a trajectory that converges to (0, 0) 
would have originated from (1, 0) while oscillating around it. Phase portraits in these cases 
are shown in Figure 3.8 and strongly suggest the existence of a trajectory that connects the 
two equilibria. These trajectories result in oscillatory travelling wave solutions, as shown in 
Figure 3.9. The cases of the stable and unstable spirals result in purification and contamination 
waves, respectively, following from the arguments used in Cases 1 and 2.
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Figure 3.8. Phase portraits for the case of a stable spiral at (1, 0) (left) where D = 1, κ = 0.5, ρ̂ = −0.8165
and unstable spiral at (1, 0) (right) where D = 1, κ = 0.5, ρ̂ = 0.8165.

Figure 3.9. Non-monotone travelling wave solutions to (2.1) where D = 1, κ = 0.5, ρ̂ = −0.8165 (left)
and ρ̂ = 0.8165 (right).

4. Solution to the Dissolved Oxygen Equation. Since we now know that solutions to
(2.1) exist and satisfy (2.3) for all values of ρ̂, we can solve the travelling wave equation for
DO, (2.2) in terms of B(z), subject to the conditions, (2.4). Equation (2.2) was given by

C ′′ + ρ̂C ′ − SC = D̂g(B)− S.

By assuming an exponential solution form of Ch(z) = erz (where r is an unknown constant)
to the homogeneous problem and using the method of variation of parameters to obtain a
particular solution, we obtain a general solution to (2.2) of

C(z) = a1e
r1z + a2e

r2z +
er2z

r2 − r1

∫
D̂g(B(z))

er2z
dz − er1z

r2 − r1

∫
D̂g(B(z))

er1z
dz + 1(4.1)

where a1, a2 are integration constants, and r1 =
−ρ̂+

√
ρ̂2+4S
2 > 0, r2 =

−ρ̂−
√

ρ̂2+4S
2 < 0 are

the roots of the characteristic polynomial of (2.2).
The integration constants associated with the integrals in (4.1) are chosen in a way that

results in

C(z) = a1e
r1z + a2e

r2z +
er2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds− er1z

r2 − r1

∫ z

∞

D̂g(B(s))

er1s
ds+ 1.
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Taking the limit as z → ∞ of C(z) results in a2e
r2z → 0 since r2 < 0. Also,

lim
z→∞

er1z

r2 − r1

∫ z

∞

D̂g(B(s))

er1s
ds =

1

r2 − r1
lim
z→∞

∫ z
∞

D̂g(B(s))
er1s ds

e−r1z
.

By l’Hôpital’s rule and the Fundamental Theorem of Calculus, this expression is equivalent
to

1

r2 − r1
lim
z→∞

D̂g(B(z))e−r1z

−r1e−r1z
=

1

r2 − r1
lim
z→∞

−D̂g(B(z))

r1
= 0

by (2.3). Thus, we have

lim
z→∞

C(z) = lim
z→∞

(
a1e

r1z +
er2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds+ 1

)
.

Now, ∣∣∣∣ limz→∞

er2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds

∣∣∣∣ ≤ lim
z→∞

D̂||g(B)||∞er2z

|r2 − r1|

∫ z

−∞
e−r2sds

= lim
z→∞

D̂||g(B)||∞er2z

|r2 − r1|

(
− 1

r2
e−r2z +

1

r2
er2(∞)

)
=

D̂||g(B)||∞
r2(r2 − r1)

where ||g(B)||∞ is the supremum of |g(B(z))| over z. We then define

l := lim
z→∞

er2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds ∈

[
−D̂||g(B)||∞

r2(r2 − r1)
,
D̂||g(B)||∞
r2(r2 − r1)

]
(4.2)

so l is a finite constant. Therefore, applying the right-sided boundary condition, lim
z→∞

C(z) = 1

from (2.4) gives

lim
z→∞

C(z) = lim
z→∞

a1e
r1z + l = 0 =⇒ a1 =

−l

lim
z→∞

er1z
.

Since lim
z→∞

er1z = ∞ and l is a finite constant, this implies that a1 must be zero for the

boundary condition to hold. By the same reasoning, it can be shown that implementing the
left-sided boundary condition, lim

z→−∞
C(z) = 1 implies a2 = 0. Therefore,

C(z) =
er2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds− er1z

r2 − r1

∫ z

−∞

D̂g(B(s))

er1s
ds+ 1.(4.3)

and we have

lim
z→∞

C(z) = lim
z→∞

(
er2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds− er1z

r2 − r1

∫ z

∞

D̂g(B(s))

er1s
ds+ 1

)
= l − 0 + 1.
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Now, we know that C(z) converges to a finite constant as z → ±∞. To verify that this
constant is 1 (i.e. lim

z→±∞
C(z) = 1), consider

C̄ ′′ + ρ̂C̄ ′ = S(1− C̄)(4.4)

which is equivalent to (2.2) for z → ±∞ since we know g(B(z)) → 0. The only constant
solution of (4.4) is C̄(z) = 1 so C(z) → 1 as z → ∞. Therefore, lim

z→∞
C(z) = 1 and so it

follows that l + 1 = 1, and thus, l = 0. Now, differentiating (4.3) with respect to z results in

lim
z→∞

C ′(z) = lim
z→∞

(
r2e

r2z

r2 − r1

∫ z

−∞

D̂g(B(s))

er2s
ds− r1e

r1z

r2 − r1

∫ z

∞

D̂g(B(s))

er1s
ds

)
= r2l + 0 = 0.

The same argument can be made to show that lim
z→−∞

C(z) = 1 and lim
z→−∞

C ′(z) = 0. Therefore,

we conclude that a solution exists to (2.2) and (2.4) whenever a solution to (2.1) exists that
satisfies (2.3).

Thus, we have shown that travelling wave solutions exist to (1.4) and (1.5) for any wave
speed, although not all of these are stable, as will be discussed in section 5. Figure 4.1 shows
the pulse-type travelling wave solution to (1.5) when solved numerically. This solution agrees
with the DO sag curve as depicted in Figure 1.1.

Figure 4.1. Numerical solution to (1.5). A surface plot is depicted on the left, and the solution at t = 5 is 
shown in the b − x plane on the right. Parameter values of D = 1, D̂ = 1, P = 1, κ = 0.1, and S = 1 were 
implemented.

5. Stability of Travelling Waves. Now that the existence of travelling waves has been 
established, the next question we have to address is their stability. We start with the case 
of monotone waves (Cases 1 and 2) and show the spectral stability of solutions to (1.4) and 
(1.5) by imposing perturbations to travelling wave solutions of each PDE and showing that 
the perturbations die out as t → ∞. This method is commonly used to show spectral stability, 
and is demonstrated in [7] and [13] for the F-KPP equation.
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To start, we assume solutions to (1.4) and (1.5) of b(x, t) := b(z, t) and c(x, t) := c(z, t),
respectively, where z = x− ρt. Substituting b(z, t) into (1.4) and c(z, t) into (1.5) gives

Lb : =
∂b

∂t
− ∂2b

∂z2
− ρ̂

∂b

∂z
= −Dg(b)(5.1)

Lc : =
∂c

∂t
− ∂2c

∂z2
− ρ̂

∂c

∂z
= −D̂g(b) + S(1− c).(5.2)

We then define b(z, t) := B(z) + v1(z, t) and c(z, t) := C(z) + v2(z, t) where B(z) and C(z)
are travelling wave solutions to their respective PDEs. Also, v1(z, t) and v2(z, t) are small
perturbations, where 0 < |vi(z, t)| << 1 and lim

z→±∞
vi(z, t) = 0 for i = 1, 2. Substituting b(z, t)

and c(z, t) into (5.1) and (5.2) gives

LB + Lv1 = −Dg(B)−Dg(B + v1) +Dg(B)(5.3)

LC + Lv2 = −D̂g(B)− D̂g(B + v2) + D̂g(B) + S(1− C − v2).(5.4)

Since B(z) and C(z) satisfy (2.1), (2.2) and do not depend on t, (5.3) and (5.4) simplify to

Lv1 = D (g(B)− g(B + v1))(5.5)

Lv2 = D̂ (g(B)− g(B + v2))− Sv2.(5.6)

We linearize g to obtain g(B+ vi) = g(B)+ g′(B)vi+O(v2i ) and since vi is small, g(B+ vi) ≈
g(B) + g′(B)vi for i = 1, 2. Then,

Lv1 ≈ −Dg′(B)v1

Lv2 ≈ −D̂g′(B)v2 − Sv2.

By assuming a separation of variables ansatz, v1(z, t) = y1(z)f1(t) and v2(z, t) = y2(z)f2(t),
two separate ODEs are obtained for each equation, given by

y′′1 + ρ̂y′1 + (λ1 −Dg′(B))y1 = 0,(5.7)

f ′
1 + λ1f1 = 0(5.8)

and

y′′2 + ρ̂y′2 + (λ2 − D̂g′(B)− S)y2 = 0,(5.9)

f ′
2 + λ2f2 = 0(5.10)

where λ1 and λ2 are eigenvalues with corresponding eigenfunctions, y1 = y1(z) and y2 = y2(z).
Equations (5.8) and (5.10) are solved to obtain f1(t) = c1e

−λ1t and f2(t) = c2e
−λ2t where c1

and c2 are integration constants. Then, v1(z, t) = y1(z)e
−λ1t and v2(z, t) = y2(z)e

−λ2t. To
determine the signs of λ1 and λ2, the Liouville-Green transformations, y1(z) = h1(z)e

−ρ̂z/2,
and y2(z) = h2(z)e

−ρ̂z/2 are applied in (5.7) and (5.9) to obtain

−h′′1 +

(
Dg′(B) +

ρ̂2

4

)
h1 = λ1h1(5.11)

.− h′′2 +

(
D̂g′(B) + S +

ρ̂2

4

)
h2 = λ2h2.(5.12)

299



Then, by the Rayleigh quotient,

λ1 =

∫ ∞

−∞
h′21 +

(
Dg′(B) +

ρ̂2

4

)
h21dz − h1h

′
1

∣∣∣∞
−∞

||h1||2
(5.13)

=

∫ ∞

−∞
h′21 +

(
Dg′(B) +

ρ̂2

4

)
h21dz

||h1||2

λ2 =

∫ ∞

−∞
h′22 +

(
D̂g′(B) + S +

ρ̂2

4

)
h22dz − h2h

′
2

∣∣∣∞
−∞

||h2||2
(5.14)

=

∫ ∞

−∞
h′22 +

(
Dg′(B) +

ρ̂2

4

)
h22dz

||h2||2

since v(z, t) → 0 =⇒ h(z, t) → 0 as z → ±∞. In the case of monotone waves, we have
ρ̂2 ≥ 4D

κ+1 , so

Dg′(B) +
ρ̂2

4
≥ D

(
g′(B) +

1

κ+ 1

)
= D

(
−B2 − 2κB + κ

(κ+B)2
+

1

κ+ 1

)
.

Since B < 1 in this case,

Dg′(B) +
ρ̂2

4
≥ D

(
−B2 − 2κB + 2κ+B

(κ+B)2

)
= D

(1−B)(2κ+B)

(κ+B)2
> 0.

Similarly,

D̂g′(B) + S +
ρ̂2

4
≥ D

(
bs
cs

· (1−B)(2κ+B

(κ+B)2

)
+ S > 0.

Therefore, from (5.13) and (5.14), λ1 > 0 for each h1(z) and λ2 > 0 for each h2(z), so the
problems (5.11) and (5.12) have only positive eigenvalues. Thus, v1(z, t) = y1(z)e

−λ1t → 0
and v2(z, t) = y2(z)e

−λ2t → 0 as t → ∞. This means that sufficiently small perturbations to
initial conditions in (1.4) and (1.5) will die out, and the solutions, b(z, t) and c(z, t) converge to
the travelling waves, B(z) and C(z) as t → ∞. This implies the spectral stability of travelling
wave solutions to (1.4) and (1.5) when |ρ̂| ≥ ρ∗ (Cases 1 and 2).

Conversely, the non-monotone wave solutions to (1.4) that occur when |ρ̂| < ρ∗ (as in
Cases 3, 4 and 5) are unstable. This result follows directly from [8] who proved the instability
of a large class of non-monotone travelling waves. Therefore, travelling wave solutions to (1.5)
are also unstable for |ρ̂| < ρ∗.

6. Approximate Solution of Monotone Travelling Waves. In this section, we obtain an
approximation of the monotone wavefront solution to (2.1) by a perturbation method. This 
method is demonstrated in [11] and [13], for example. The idea is to determine an approximate
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travelling wave solution in the form of a power series in some small parameter, ϵ. We begin
by defining ϵ := D

ρ̂2
. In the case of the monotone wavefronts, we have ρ̂2 > 4D

κ+1 so it follows

that ϵ = D
ρ̂2

≤ κ+1
4 < 1

2 since 0 < κ < 1. Substituting ϵ into (2.1), we obtain√
ϵ

D
B′′(z) +B′(z)−

√
ϵ

D
Dg(B(z)) = 0.

Making the change of variables s :=
√

ϵ
Dz and f(s) := B

(√
D
ϵ s

)
results in

ϵf ′′(s) +Df ′(s)−D2g(f(s)) = 0.(6.1)

We then write f(s) as a power series in terms of ϵ,

f(s) = f0(s) + ϵf1(s) + ϵ2f2(s) + ...

and substitute into (6.1),

ϵ(f ′′
0 + ϵf ′′

1 + ϵ2f ′′
2 + ...) +D(f ′

0 + ϵf ′
1 + ϵ2f ′

2 + ...)−D2g(f0 + ϵf1 + ϵ2f2 + ...) = 0.(6.2)

Grouping by powers of ϵ and linearizing the last term, (6.2) becomes

Df ′
0 −D2g(f0) + ϵ

(
f ′′
0 +Df ′

1 −D2g′(f1)
)
+ ϵ2

(
f ′′
1 +Df ′

2 −D2g′′(f2)
)
+ ... ≈ 0

and thus

Df ′
0 −D2g(f0) +O(ϵ) ≈ 0.(6.3)

Since ϵ < 1
2 , (6.3) can be approximated by

f ′
0(s) = Dg(f0(s)), f(0) =

1

2

when ϵ → 0. The boundary condition is imposed for convenience without loss of generality,
since any travelling wave solution can be scaled by a horizontal shift along the z-axis. Equation
(6.1) is separable, and is solved to obtain an implicit equation for f0(s) as

(1− f0(s))
κ+1

f0(s)κ
≈ 1

2e
−Ds(6.4)

once the boundary condition is imposed. In the case of simpler expressions, one would then
use the result obtained for f0(s) to solve sequentially for f1(s) when ϵ2 → 0, f2(s) when
ϵ3 → 0, and so on, resulting in increasingly more accurate approximations of f(s). However,
due to the implicit form of (6.4), solving for higher order terms becomes very difficult, so here,

we obtain only a first order approximation of f(s) with an error of O
(

D
ρ̂2

)
where D

ρ̂2
< 1

2 .

This approximation is given by

(1− f(s))κ+1

f(s)κ
≈ 1

2e
−Ds.
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Figure 6.1. Numerical solution (blue) and perturbation solution (orange) of (2.1). For a), b) and c),
κ = 0.5 and ρ̂ = 2ρ∗. D = 0.1 in a), D = 1 in b), and D = 10 in c). For d), e) and f), D = 1 and ρ̂ = ρ∗.
κ = 0.1 in d), κ = 0.5 in e) and κ = 0.9 in f).

so an approximation for the monotone travelling wavefront, B(z) is

(1−B(z))κ+1

B(z)κ
≈ 1

2e
−D

ρ̂
z
.(6.5)

This equation also allows us to estimate the slope of the wave for different wave speeds.
Differentiating both sides of (6.5) and solving for B′(z) results in

B′(z) ≈ DB(1−B)

ρ̂(B + κ)

and so we observe that the closer the wave travels to the speed of the river, the steeper 
its slope. Figure 6.1 compares the analytical approximation obtained from the perturbation 
method with the numerical solution to (2.1) under the same set of parameter values. It is 
seen from both the analysis and numerics that the approximation, (6.5) is more accurate for
|ρ̂| ≫ ρ∗ but is still a decent representation of the solution for any value of ρ̂  where |ρ̂| ≳ ρ∗. An 
approximation for the travelling wave solution, C(z) to (1.5) could be obtained by substituting 
the approximation for B(z) into (4.3), but due to the implicit form of (6.5), this would not 
give an analytical equation.

7. Discussion and Conclusion.

7.1. Summary of Results. We have shown that travelling waves exist to (1.4) as purifi-
cation waves when travelling faster than the river and as contamination waves when travelling 
slower than the river. Furthermore, these waves must travel sufficiently faster or  slower than 
the river in order to be stable, as waves travelling close to the speed of the river are unstable.
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Figure 7.1. Summary of the travelling wave solutions to (1.4) for a given speed, ρ.

The speed, classification, and stability of the different types of waves is summarized in Fig-
ure 7.1. We also showed that a spectrally stable travelling wave solution to the linear equation,
(1.5) exists for all wave speeds and resembles the dissolved oxygen sag curve as depicted in
Figure 1.1.

7.2. Connection to the Generalized Fisher-KPP Equation. Here, we briefly discuss
the relationship between the BOD equation, (1.4) and the widely studied generalized F-KPP
equation given in dimensionless form,

∂u

∂t
=

∂2u

∂x2
+ f(u)(7.1)

where f(u) satisfies

f(0) = f(m) = 0, f ′(0) > 0, f ′(m) < 0, and f ′′(u) < 0(7.2)

for some m ∈ R. The existence of travelling wave solutions to (7.1) is known [9], [1], [17], [3].
The asymptotic stability of the travelling waves is also well established [17], [14], [18].

Under the change of variables, (x, t) → (x̄ := x− P · t, t̄), equation (1.4) becomes

∂b

∂t̄
=

∂2b

∂x̄2
−D

b(1− b)

κ+ b
.(7.3)

Then, with the transformation, b = 1− b̄, (7.3) becomes

∂b̄

∂t̄
=

∂2b̄

∂x̄2
+D

b̄(1− b̄)

κ− b̄+ 1
.(7.4)

Taking f(b) := D b̄(1−b̄)

κ−b̄+1
, the conditions, (7.2) hold for b̄ ∈ [0, 1] with m = 1. Then, the

existence and stability of travelling wave solutions to (7.4) that asymptotically connect the 
equilibria at b̄ = 1 and b̄ = 0 is guaranteed. This result implies the existence of travelling 
waves to (1.4) but with opposite orientation due to the transformation on b. In other words, 
wavefront solutions of (7.4) that connect b̄ = 1 to b̄ = 0 correspond to solutions of (1.4) that 
connect b = 0 to b = 1.
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The advection term as well as the opposite orientation of solutions and added complexity
of the non-linearity in (1.4) required modification of the usual analysis on the F-KPP equation.
For example, the advection term leads to two additional cases to consider when studying the
existence of travelling waves in section 3. Additionally, due to the sign of the non-linear term,
we were not able to outwardly reject the existence of oscillatory travelling waves that occur
when 0 < |ρ̂| < ρ∗ since these oscillations never force the solution to become negative as they
do in the case of the F-KPP equation. Finally, because of the slightly more involved non-linear
term in (1.4), in section 6, we were only able to obtain a first-order approximation of travelling
wave solutions given in implicit form. In the case of the F-KPP equation, an approximation
of at least second order can be obtained fairly easily, as demonstrated, for example, in [11].

7.3. Travelling Waves to the DO Equation. While the analysis behind the travelling
wave solutions to (1.4) is based on well studied techniques, the existence of travelling wave
solutions to (1.5) is an interesting result that makes this paper distinct. Travelling waves are
not a common topic of study in river quality modelling, since traditional linear models such as
(1.1), (1.2) do not give rise to such solutions. The travelling waves solutions of the linear DO
equation, (1.5) only result as a consequence of the coupling to the non-linear BOD equation,
(1.4) and are entirely driven by the travelling wave solutions of (1.4). Additionally, travelling
waves in systems of PDEs are often difficult to study. In our case, the one-way coupling of
(1.4) and (1.5) simplifies the analysis, allowing us to study the equations separately.

7.4. Future Work. Further work could be done to establish a relationship between initial
conditions and wave speed, so that one could automatically determine the types of travelling
waves permitted to the BOD equation, (1.4) based on initial data. In the case of the F-KPP
equation, for example, it was first proven by [9] with later work done by [1] that initial data
with compact support permits waves travelling at a dimensionless speed of 2. It would be
interesting to determine if a similar result can be obtained for this model. Another possibility
for future work is to add a coupled ODE to the PDE system, (1.4) and (1.5), modelling a
microorganism population in the river that feeds on an organic pollutant, and investigate
whether travelling waves are still permitted.

Appendix A. Dimensional Analysis. Here, we derive the dimensionless system given by
(1.4) and (1.5). We start with the dimensional system, (1.1) and (1.2) but with the linear
BOD decay term replaced by the Braun-Berthouex [2] decay term. We have

∂b

∂t
+ v

∂b

∂x
= K

∂2b

∂x2
− µb(bs − b)

km + b
(A.1)

∂c

∂t
+ v

∂c

∂x
= K

∂2c

∂x2
− µb(bs − b)

km + b
+ kc(cs − c)(A.2)

where µ represents the growth rate of a microorganism population feeding on BOD, bs is the
BOD concentration saturation level, km is the BOD half-saturation constant, and kc is the
DO reaeration rate constant. We define dimensionless variables,

B̃ =
b

b∗
, C̃ =

c

c∗
, X̃ =

x

x∗
, and T̃ =

t

t∗
(A.3)
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where b∗, c∗, x∗, and t∗ have the same dimensions as b, c, x, and t, respectively and will be
determined later on. Substituting (A.3) into (A.1) and (A.2) results in

b∗

t∗
∂B̃

∂T̃
+ v

b∗

x∗
∂B̃

∂X̃
= K

b∗

(x∗)2
∂2B̃

∂X̃2
− µb∗B̃(bs − b∗B̃)

km + b∗B̃
(A.4)

c∗

t∗
∂C̃

∂T̃
+ v

c∗

x∗
∂C̃

∂X̃
= K

c∗

(x∗)2
∂2C̃

∂X̃2
− µb∗B̃(bs − b∗B̃)

km + b∗B̃
+ kc(cs − c∗C̃).(A.5)

Multiplying (A.4) by t∗

b∗ and (A.5) by t∗

c∗ results in

∂B̃

∂T̃
+ v

t∗

x∗
∂B̃

∂X̃
= K

t∗

(x∗)2
∂2B̃

∂X̃2
− t∗

b∗
µb∗B̃(bs − b∗B̃)

km + b∗B̃

∂C̃

∂T̃
+ v

t∗

x∗
∂C̃

∂X̃
= K

t∗

(x∗)2
∂2C̃

∂X̃2
− t∗

c∗
µb∗B̃(bs − b∗B̃)

km + b∗B̃
+ kc

t∗

c∗
(cs − c∗C̃).

We define x∗ = L where L is a measure of length, t∗ = L2

D , b∗ = bs, and c∗ = cs to obtain

∂B̃

∂T̃
+

vL

K

∂B̃

∂X̃
=

∂2B̃

∂X̃2
− µL2

K

B̃(1− B̃)
km
bs

+ B̃

∂C̃

∂T̃
+

vL

K

∂C̃

∂X̃
=

∂2C̃

∂X̃2
− bs

cs

µL2

K

B̃(1− B̃)
km
bs

+ B̃
+

kcL
2

K
(1− C̃).

We choose P = vL
K , D = µL2

K , D̂ = bs
cs

µL2

K , S = kcL2

K , and κ = km
bs
. Then,

∂b

∂t
+ P

∂b

∂x
=

∂2b

∂x2
−D

b(1− b)

κ+ b

∂c

∂t
+ P

∂c

∂x
=

∂2c

∂x2
− D̂

b(1− b)

κ+ b
+ S(1− c)

where the tildes and capitalization of the variables are omitted to obtain (1.4) and (1.5).
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