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The Turbulent Tale of Icy Clouds

Fusing Artificial Intelligence and 
Optimization with Trustworthy 
Optimization Proxies
By Pascal Van Hentenryck

Recent years have seen significant 
interest in the fusion of machine 

learning (ML) and optimization for a vari-
ety of engineering applications [2, 11]. 
Optimization technologies are widely 
successful in industry; they help to dis-
patch power grids, route transportation 
and logistics systems, plan and operate 
supply chains, and schedule manufactur-
ing systems. However, these technologies 
still face computational challenges in cer-
tain applications. For instance, real-time 
constraints may prevent the production of 
solutions, or planners and operators in the 
loop might require fast interactions with 
the underlying decision support systems.

Fortunately, engineering applications 
typically operate on physical infrastruc-
tures that change relatively slowly. As 
a result, optimization technologies must 
repeatedly solve the same core optimization 
problem on instances that are somewhat 
similar. These considerations have inspired 
the idea that ML could learn such para-

metric optimization problems and replace 
optimization altogether. Consider the para-
metric optimization problem

min ( )
y x yf  subject to

(1)
h y g yx x( ) ( ) ,= ≥0 0and

where x represents instance parameters that 
determine the objective function fx and the 
constraints hx and gx. We may view this 
optimization as mapping from an input x 
to an output y that represents its optimal 
solution (or a selected optimal solution). In 
response, we can train a ML model—such 
as a deep neural network—to approximate 
this mapping via empirical risk minimiza-
tion under constraints. Unfortunately, such 
an approximation is typically unsatisfac-
tory for engineering tasks; because they are 
regressions, the ML predictions are unlikely 
to satisfy the problem constraints and may 
have significant consequences when opti-
mization models assist with the operation of 
physical infrastructures.

Optimization Proxies
Optimization proxies seek to overcome 

this difficulty by combining a predictive 
component (typically a deep neural net-
work) that produces an approximation p 
with a repair layer that transforms p into 
a feasible solution p (see Figure 1). In a 
first approximation, the repair layer acts as 
a projection of p into the feasible space of 
the optimization problem. In practice, how-
ever, it is often preferable to design dedi-
cated repair layers that ensure fast training 
and inference times.

Optimization proxies have the potential 
to transform various classes of applications 
through orders-of-magnitude improve-
ments in efficiency. For example, consider 
the real-time risk assessment framework in 
Figure 2 (on page 4), which runs a collec-
tion of Monte Carlo scenarios. Each sce-
nario necessitates 288 optimizations, which 
equates to one every five minutes over a 
24-hour period. This process takes about 
15 minutes. But when we replace each opti-
mization with its proxy, we can evaluate 

Figure 1. A high-level outline of the architecture of optimization proxies. Figure courtesy of the author.

See Optimization Proxies on page 4

By Matthew R. Francis

Clouds are one of the most important 
influencers of climate on Earth as well 

as other worlds that have atmospheres. 
They comprise a major component of the 
hydrologic cycle, bounce light back into 
outer space, and trap radiation that is emit-
ted or reflected from the ground. On Earth, 
clouds are made of water in the form of 
droplets and ice crystals; these components 
sometimes exist separately and sometimes 
form a mixture, depending on the elevation 
and atmospheric conditions.

Despite the importance of clouds and 
humanity’s millennia-long interest in the 
sky, accurate mathematical descriptions of 
clouds remain elusive due to their internal 
complexity and complicated interactions 
with the atmosphere. Ice presents a par-
ticular challenge, as the shape and size of 
the grains raise difficulties in theory as 
well as experiment.

During the Ed Lorenz Lecture1 at the 
2023 Fall Meeting2 of the American 
Geophysical Union (AGU)—which took 
place in San Francisco, Calif., in December 
2023—physicist Alain Pumir of École 
Normale Supérieure de Lyon described new 

1 https://www.agu.org/honors/lorenz
2 https://www.agu.org/fall-meeting

theoretical and experimental approaches 
that explain the self-organization of ice and 
other particles under turbulence. “All of 
the processes [within clouds] that you can 
think of are affected by turbulence,” Pumir 
said, noting that cloud modeling requires 
an understanding of collective atmospheric 
phenomena. “When you have many drop-
lets, you care about collective effects. 
That’s also the case for little ice crystals.”

The way in which light coherently 
reflects and refracts from atmospheric 
ice—e.g., as sun dogs, light pillars (see 
Figure 1), lunar haloes, and other beauti-
ful phenomena—indicates that the micro-
scopic crystals align with each other under 
certain conditions. Like snowflakes, these 
ice crystals exhibit hexagonal symmetry 
down to the micron scale, while the clouds 
that contain them can stretch for many 
kilometers both horizontally and vertically. 
Modeling efforts must therefore treat the 
relevant physical properties while identify-
ing any superfluous aspects. “The worst 
greenhouse gas is water [vapor],” Pumir 
said, adding that the largest uncertain-
ties in climate change models come from 
clouds, which contribute to reflection and 
radiation. “How [ice crystals] align or don’t 
align has consequences in terms of reflec-
tion, either on Earth or from above.”

And it’s not just ice. In fact, many of 
Pumir’s collaborators model nonspherical 
atmospheric particles like volcanic ash or 
microplastics, which also play a role in 
cloud formation when water or ice collects 
around them as nuclei. Some scientists 
have even suggested seeding clouds with 
small particles to cool the atmosphere; in 
this context, Pumir’s research could lend 

essential insight as to whether this type of 
geoengineering project is even feasible.

Dropping Coins, Scientifically
As so often happens in science, Pumir’s 

first attempts to solve the problem were 
unsuccessful. “We did it completely 
wrong,” he cheerfully admitted, adding 

Figure 1. Light pillars—including these examples over Cambridge Bay in Nunavut, Canada—
form when light shines through atmospheric ice crystals. The crystals align as they fall through 
turbulent air, which allows for coherent light scattering. Figure courtesy of Eric Van Lochem 
and Flickr under the Attribution-ShareAlike (CC BY-SA 2.0) license.

See Icy Clouds on page 2
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3  The Operator is the Model
 Scientists frequently use 

machine learning models—
under the umbrella of artifi-
cial intelligence—to analyze 
data. In order to guarantee 
efficient human-machine cor-
respondence, researchers must 
extract human-interpretable 
models that help them make 
sense of the data at hand. Igor 
Mezić explains Koopman 
operator theory, which has 
recently emerged as the pri-
mary candidate for this task.

6  Pursuing Computational 
Goals as an LLF-SIAM 
Undergraduate Fellow

 In 2023, SIAM partnered 
with the Livermore Lab 
Foundation (LLF) to support an 
undergraduate student intern-
ship at Lawrence Livermore 
National Laboratory. Everett 
Grethel—the inaugural LLF-
SIAM Undergraduate Fellow—
describes his summer project on 
uncertainty quantification for 
heat transfer simulations and 
discusses his educational transi-
tion to computational science.

6  The Perils of Automated 
Facial Recognition

 Ernest Davis reviews two recent 
books about facial recognition 
technology: Unmasking AI: 
My Mission to Protect What is 
Human in a World of Machines 
by Joy Buolamwini and Your 
Face Belongs to Us: A Secretive 
Startup’s Quest to End Privacy 
as We Know It by Kashmir Hill. 
He draws connections between 
the texts and reflects on issues 
of personal privacy and inequal-
ity that are associated with 
facial recognition systems. 

8  Hong Kong Polytechnic 
University SIAM Student 
Chapter Hosts Dialogue 
with World-leading Scholars

 In December 2023, the Hong 
Kong Polytechnic University 
(PolyU) SIAM Student Chapter 
successfully organized an event 
called “Dialogue with World-
leading Scholars” that allowed 
attendees to interact with experts 
in the field of optimization. 
Chapter president Yixuan Zhang 
overviews the session, which 
was part of the larger Workshop 
on Nonsmooth Optimization and 
Variational Analysis at PolyU.
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Icy Clouds
Continued from page 1

that other cloud formation experts were 
happy to explain the shortcomings of his 
approach. Armed with new ideas and a 
broader web of collaborators, Pumir exam-
ined previous progress in related areas, 
such as the settling of volcanic ash. Water 
droplets and particles—whether liquid 
water, ice, or another form—fall under 
gravity but are simultaneously buoyed 
by air. Ice in particular forms hexagonal 
crystals that are wider than they are thick, 
which means that a physics-based treat-
ment must consider orientation as well as 
motion in three dimensions.

In the absence of air resistance, a nonro-
tating object simply falls without tumbling. 
But a fall through any fluid dramatically 
changes the situation, spinning the crys-
tal and ultimately yielding two preferred 
orientations: edge down or face down. 
The latter configuration is more stable, 
analogous to a dropped coin in a swim-
ming pool. However, Pumir pointed out 
the immediate breakdown of this analogy: 
the density of liquid water is close to that 
of ice crystals, whereas ice is significantly 
denser than air ( / ).r r

ice air
1000

To mitigate these problems, Pumir’s col-
laborators—led by Gholamhossein Bagheri 
at the Max Planck Institute for Dynamics 
and Self-Organization—constructed a 
device that they call the Göttingen turret. 
This apparatus injects thin, 3D-printed 
plastic disks into a chamber of air in 
a highly controlled manner. The team 
tracked the disks’ settling process with 
two pairs of state-of-the-art, high-speed 
cameras. These “million-dollar babies,” 

as Pumir put it, operate at 2,932 frames 
per second and were situated at the top 
and bottom of the chamber — locations 
that allowed them to reconstruct the disks’ 
tumbling motions (see Figure 2).

Larger-scale simulations with multiple 
particles that fall in tandem are current-
ly beyond the capability of the simple 
Göttingen turret. However, Bagheri’s 
group has used hexagons and modified 
snowflake-like shapes to perform follow-
up experiments3 for better comparison with 
real-world ice crystals.

Turbulence Brings Us Together
Meanwhile, a full theoretical treatment 

of icy clouds requires an acknowledgment 
of the translational and rotational inertia of 
crystals alongside atmospheric fluid dynam-
ics — i.e., how the crystals fall and tumble 
through turbulent air. At the same time, we 
intuitively (and mathematically) know that 
too much turbulence prevents the crystals 
from aligning and hence disrupts coherent 
light scattering. As such, the goal is to find 
the appropriate balance.

“The temptation was to say, ‘It’s a small 
particle [and] the Reynolds number (Re) is 
small,’” Pumir said, referring to the physical 
parameter that measures a fluid’s smooth-
ness and viscosity. In nonturbulent laminar 
flow, Re is much smaller than 1, while 
turbulence dominates a fluid at Re1000. 
Pumir and his colleagues focused on a mid-
dle regime—Re10—where turbulence is 
present but not dominant. “The Re is small 
but not that small, and that makes a world 
of difference,” he said.

3 https:/ /www.ds.mpg.de/3865403/
Bagheri_Mohsen

Accounting for all of these factors, the 
theorists built the following model based on 
Newtonian physics:

m
d
dt

m
v

g Fh= +

d
dt
n

n= ×w

d
dt

( ( ) ) . n Th⋅ =w

Here, v is the particle velocity, n is the 
vector that is normal to the flat face of 
the crystal, w  is the angular velocity, and 
g is the gravity vector.  is the inertia 
tensor for a flat ellipsoid, which matches 
the experimental configuration and sim-
plifies the math. The researchers treated 
the hydrodynamic force Fh and torque Th  
perturbatively:

F F Fh h h= +( ) ( )0 1C
F

T T Th h h= +( ) ( ),0 1C
T

where the zero-order terms represent objects 
that are falling with air resistance but with 
a negligible Re. The correction terms with 
coefficients { , }C C

F T  are a combination 
of empirical and theoretical analyses that 
account for small but finite turbulence [1].

In a vacuum, a coin-like shape will 
spin freely if it has an initial rotation. The 
addition of fluid resistance results in two 
energetically optimal orientations: unstable 
equilibrium when the ellipsoid is edge-
down (n  is perpendicular to g), and stable 
equilibrium when the flat side is facing 
down. This theoretical result agrees with the 
Göttingen turret experiment and explains 
why ice crystals align to produce light pil-
lars — at least, when turbulence does not 
dominate the system.

Clouds From Both Sides Now
Ed Lorenz—for whom the AGU lecture 

is named—is best known for work that 
proved that even simple atmospheric mod-
els lead to unpredictable outcomes, thus 
demonstrating that large-scale weather 
control is likely impossible. Lorenz and 
like-minded researchers helped to revolu-
tionize modern interest in chaos and non-
linear phenomena — including turbulence, 
which is intrinsically a multiscale phe-
nomenon. Turbulence affects the overall 
shape of clouds, all the way down to the 
microscopic length scales where individual 
droplets and ice crystals exist. “You can’t 
just look at one part,” Pumir said. “You 
have to do the whole problem.”

Pumir noted that the system becomes a 
competition between turbulence and nor-
mal settling. Stronger turbulence makes 
particles tumble, but theoretical analysis 
revealed that a moderate amount of turbu-
lence brings crystals together — possibly 
facilitating larger aggregations called grau-
pels and sometimes leading to precipita-
tion. However, the model found that the 
presence of larger particles, lower turbu-
lence, or a combination of both typically 
causes the coin-like object to settle with its 
broad face downward.

As demonstrated by experiment and the-
ory, understanding clouds requires compli-
cated physics: the inertia of ice particles, 
turbulence in the air, and collisions between 
crystals. The results may be messy, but as 
with light pillars, sometimes disorder is 
necessary to produce beauty.

References
[1] Bhowmick, T., Seesing, J., 

Gustavsson, K., Guettler, J., Wang, Y., 
Pumir, A., … Bagheri, G. (2024). Inertia 
induces strong orientation fluctuations of 
nonspherical atmospheric particles. Phys. 
Rev. Lett., 132(3), 034101. 
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Figure 2. High-speed camera footage of 3D-printed spheroids as they settle to the bottom 
of an air chamber. The two left panels depict the tumbling motion at the beginning of the 
fall from different viewpoints, and the two right panels show the spheroids at the end of 
the fall. Figure courtesy of [1].
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Five Key Concepts That Shaped Iterative 
Solution Methods for Linear Systems
By Yousef Saad

The advent of electronic computers in the 
mid-20th century played a pivotal role 

in defining a new era for numerical linear 
algebra. George Forsythe’s remarkable 1953 
article—enigmatically titled “Solving Linear 
Algebraic Equations Can Be Interesting”—
serves as a testament to these origins [2]; 
his writing displays amazing vision and 
addresses key topics in the nascent field, 
several of which would become foundation-
al. The article introduces the concept of the 
condition number, considers the impact of 
finite precision arithmetic, and contemplates 
the idea of acceleration. It also discusses 
iterative methods, including the conjugate 
gradient (CG) algorithm — the “newest pro-
cess on the roster” that had been discovered 
a few years earlier [5]. However, hints of 
tension are evident in the early parts of the 
paper. Forsythe seems somewhat apologetic 
about the topic, warning that “The subject of 
this talk is mathematically a lowly one.” A 
footnote also informs readers that the origi-
nal title was “Solving Linear Equations Is 
Not Trivial.” It is important to recognize that 
during the 1950s, numerical linear algebra 
(NLA) was just beginning to establish its 
presence and had not yet gained widespread 
acceptance as a legitimate field.

We can trace the evolution of iterative 
methods from Carl Friedrich Gauss’ era to 
the present day by examining a few pivotal 
concepts. Five such “big ideas” constitute 
the foundational elements of these methods.

First Big Idea: Relaxation
In the early 19th century, Gauss and 

Adrien-Marie Legendre each invented the 

method of least squares (LS) within a few 
years of each other, and both noted that an 
ordinary elimination—i.e., a direct meth-
od—can yield the solution of the resulting 
system [4]. In an 1823 letter to his former 
doctoral student Christian Ludwig Gerling, 
Gauss introduced a method of indirect elim-
ination to solve these systems. We write the 
system in question as

 
      Ax b a x

i
T

i
= =or forb

(1)
               i n=1 2, , , ,

where ai
T  is the i th row of A and 

b
n
T=[ , , , ] .b b b

1 2
  The residual vector is 

r b Ax= − ,=[ , , , ] .r r r
1 2



n
T  Gauss started 

with an initial approximation to the solution 
and then updated its components one by one 
to zero out the largest residual component at 
each time. If | | max | |,

:
r r
i j n j
= =1

 he would 
thus modify the i th component of the cur-
rent x  to x x

i i i
( ) :new = + d  so that r

i
( ) .new = 0  

The condition a x e
i
T

i i
( )+ − =δ β 0 yields

 δ
ρ

i
i

ii
a

= . This process repeats until every ri 

is sufficiently small.
In addition to highlighting its simplic-

ity, Gauss emphasized another significant 
advantage of the method: users could 
calculate updates with only a few dig-
its of accuracy, which was particularly 
appealing since calculations were done 
by hand at the time. Clearly excited by 
this new method, Gauss concluded his let-
ter by saying, “I recommend this method 
to you for imitation. You will hardly 
ever again eliminate directly, at least not 
when you have more than two unknowns.” 

Extensions of this basic approach or tech-
niques that were similar in spirit dominat-
ed the iterative method scene for decades, 
and the dawn of electronic computers in 
the 1950s brought about a renewed inter-
est in relaxation methods. These meth-
ods—aided by contributions from giants 
like David Young, Stanley Frankel, and 
Richard Varga—took center stage until 
approximately the 1970s.

Second Big Idea: Projection
Projection processes allow us to extract 

an approximate solution to a problem from 
a subspace. When we apply these processes 
to linear systems of equations, we assume 
the knowledge of some initial guess x

0 
to the solution and two subspaces K  and 
L (both of dimension m). We use these 
assumptions to formulate the following 
projected problem:

 
      Find x x K= + ∈

0
d d,

(2)
       such that b Ax L− ⊥ .

With m degrees of freedom ( )K  and m 
constraints ( ),L  (2) results in an m m´  
linear system that, under mild conditions, is 
nonsingular. We can translate it into matrix 
form by exploiting bases V v v

m
= …[ , , ]

1  
for K  and W w w

m
= …[ , , ]

1  for L. The 
approximate solution then becomes 
x x x Vy= + ≡ +

0 0
d , where y mÎ . The 

orthogonality constraints yield

    
           

W r AVy xT ( )
0

0− = → =

 
            

x VW AV W rT T
0

1
0

+ −[ ] .

This projection process has important opti-
mality properties in two particular cases.

Orthogonal Projection (OP) Methods: 
When K L=  and matrix A is symmet-
ric positive definite (SPD), we can show 
that x  minimizes  

 over all vectors x  in the affine 
space x K

0
+ , where x

*
 is the exact solution.

A representative of the OP class of meth-
ods is the well-known steepest descent 
algorithm for SPD matrices. This algo-
rithm corresponds to the application of 
a projection step with one-dimensional 
subspaces L K r= =Span{ }. We can 
describe the iteration as x x r= +a , where 
a : ( , )/( , ).= r r Ar r

Minimal Residual (MR) Methods: When 
L AK= , x  minimizes the Euclidean norm 
of the residual over the affine space x K

0
+ . 

A representative of the MR class is the min-
imal residual iteration, which corresponds 
to taking K r=Span{ } and L AK= . 
The iteration thus becomes x x r= +a , 
where a : ( , )/( , ).= r Ar Ar Ar  It does not 
break down if A  is nonsingular and will 
converge if A AT+  is positive definite.

Third Big Idea:              
Polynomial Acceleration

Consider an iterative scheme that takes 
the form x x r

k k k k+ = +
1

a . Steepest descent 
and the MR iteration are both of this form, 
where ak  is calculated in a greedy, short-
sighted way. Polynomial iteration aims 
to calculate the a

i
s by taking a more 

global view. From r b A x r
k k k k+ = − +

1
( ),a  

we obtain r r Ar I A r
k k k k k k+ = − = −

1
a a( ) . 

This leads to the relation

See Linear Systems on page 7

The Operator is the Model
By Igor Mezić

Modeling of physical processes is the 
art of creating mathematical expres-

sions that have utility for prediction and 
control. Historically, such models—like 
Isaac Newton’s dynamical models of grav-
ity—relied on sparse observations. The late 
20th and early 21st centuries have witnessed 
a revolutionary increase in the availability 
of data for modeling purposes. Indeed, we 
are in the midst of the sensing revolution, 
where the word “sensing” is used in the 
broadest meaning of data acquisition. This 
proliferation of data has caused a paradigm 
shift in modeling. Researchers now often 
use machine learning (ML) models (under 
the umbrella of artificial intelligence) to ana-
lyze and make sense of data, as evidenced by 
the explosive popularity of large language 
models that rely on deep neural network 
technology. Because these models are typi-
cally vastly overparametrized (i.e., the num-
ber of weights is massive, in the billions or 
even trillions), an individual weight does not 
mean much. To guarantee efficient human-
machine correspondence, we must extract 
human-interpretable models through which 
we can make our own sense of the data.

Koopman operator theory (KOT) has 
recently emerged as the primary candidate 
for this task. Its key paradigm is that the 
operator is the model [9, 10]. Namely, KOT 
assumes the existence of a linear opera-
tor U—essentially an infinite-dimensional 
matrix—such that any observation f  of 
system dynamics U  enables the prediction 
of the time evolution to the next observation 
f + via the equation

 f Uf+= , (1)

where f  is a function on some underlying 
state space M . Modelers must then find 

a finite number of observables that are 
useful for prediction and control. Rather 
than ask, “If position and momentum are 
observable, what equations describe their 
dynamical evolution?”, we instead inquire, 
“Given the available data, what observables 
parsimoniously describe their dynamics?”. 
This change of setting—from dynamics on 
the state space to dynamics on the space of 
observables —inspired a new modeling 
architecture that takes , rather than the 
state or phase space, as its template.

The resulting approach finds use in a 
variety of applied contexts, such as fluid 
dynamics, autonomy, power grid dynamics, 
neuroscience, and soft robotics. The theory 
relies on a beautiful combination of opera-
tor-theoretic methods, geometric dynamical 
systems, and ML techniques.

History
Driven by the success of the opera-

tor-based framework in quantum theory, 
Bernard Koopman made a proposal in the 
1930s to treat classical mechanics in a 
similar way; he suggested using the spectral 
properties of the composition operator that 
is associated with dynamical system evolu-
tion [5]. But it was not until the 1990s and 
2000s that researchers realized the potential 
for wider applications of the Koopman 
operator-theoretic approach [10]. In the 
past decade, the trend of applications has 
continued. Earlier work emphasized the 
utilization of Koopman theory to find finite-
dimensional models from data [9]. These 
models exist on invariant subspaces of the 
operator that are spanned by eigenfunctions. 
Finding an eigenfunction f of the operator 
that is associated with a discrete-time, pos-
sibly nonlinear process yields a reduced 
model of the process whose dynamics are 
governed by φ λφ+= ;  as such, the result 
is a potentially reduced order but linear 

model of the dynamics. The level sets of 
the eigenfunction on the original state space 
yield geometrically important objects like 
invariant sets, isochrons, and isostables 
[8]. This outcome led to a realization that 
geometrical properties can be learned 
from data via the computation of spectral 
objects, thus initiating a strong connec-
tion between ML and dynamical systems 
communities that continues to grow. The 
key notion that drives these developments 
is the idea of representing a dynamical 
system as a linear operator on a typically 
infinite-dimensional space of functions.

However, it is interesting to invert this 
question and start from the operator, rath-
er than the state-space model; U  is the 
property of the system, but does it have 
a finite-dimensional (linear or nonlinear) 
representation? We formalized the concept 
of dynamical system representation in 2021 
[10]. Instead of starting with the model and 
constructing the operator, we construct the 
finite-dimensional linear or nonlinear model 
from the operator. Doing so facilitates the 
study of systems with a priori unknown 
physics, like those in soft robotics [2, 4].

Operator Representations
The modeling exercise usually begins 

with a catalogue of available observations in 
vector f=( ,..., ).f f

n1
 We can organize n  dif-

ferent streams of data into the n m´  matrix 
[ ( ),..., ( )],f f1 m  where m is the number of 
“snapshots” of observations (in ML parlance, 
the observables are “features”). For simplic-
ity, we assume that these snapshots are 
taken at regular time intervals and sequen-
tially organized into columns. Assuming 
that the dynamics are evolving on some 
underlying state space M  (that we might not 
know) according to a potentially unknown 
mapping x x( ) ( ),k T+ =1  the Koopman 
(composition) operator U  is defined by 

 Then, f f( ) ( ).k U k+ =1  Is 
there an n n´  matrix A such that U Af f= ? 
This is indeed the case when f  is within the 
span of n (generalized) eigenfunctions of U  
[10]. Methodologies to find eigenfunctions 
include spectral methods [9] and (extended) 
dynamic mode decomposition [6, 13]. We 
could also ask a more general question: Is 
there a map F : 

n n®  and observables 
(functions) g :X d®

 such that

Figure 1. The Koopman-operator-based modeling architecture. Figure courtesy of the author.

See Operator is the Model on page 5
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every scenario in roughly five seconds [3]. 
Other possible applications include dash-
boards for tactical planning and operations 
in areas such as energy distribution, supply 
chains, and manufacturing. It may also 
be possible to deploy models with much 
higher fidelity, which would shift most of 
the computational burden offline during 
training. Here, I describe some of the sci-
ence and engineering concepts that underly 
optimization proxies and highlight research 
in trustworthy optimization proxies that 
guarantee feasibility and quality.

Differentiable Programming
The repair layers of optimization prox-

ies rely on differential programming: the 
use of dynamic computational graphs that 
can be automatically and transparently dif-
ferentiated. Consider a simplified version 
of the economic dispatch that is utilized 
by the Independent System Operators1 
(ISOs) in the U.S.:

(2a)

(2b)s t. . ,e p e d =

(2c)        0 p p£ £ ,

(2d)        f p d f− ≤ − ≤ +x x
th th
Φ( ) ,

(2e)        xth
³0.

   
ISOs solve this fundamental optimization 
problem to balance generation and demand 
in electricity grids while also accounting 
for reserve constraints and thermal limits. 
Constraint (2b) captures the global power 
balance, (2c) enforces minimum and max-
imum limits on each generator’s active 
power, and (2d) uses a power transfer 
distribution factor to express the thermal 
constraints on every branch. The thermal 
constraints in U.S. electricity markets are 
traditionally soft; they can be violated, but 
doing so incurs a high cost [5, 6]. Since it 
is a regression, the approximation p  in the 
proxy does not satisfy the power balance 
constraint. However, the repair layer can 
utilize control systems concepts to scale 
the generators proportionally and obtain a 
feasible solution p: 
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This layer is differentiable almost every-
where, which means that we can naturally 
integrate it into the training process of the 
ML model. This type of overall architecture 
guarantees feasibility during training and 
inference and can generate near-optimal 
feasibility for economic dispatch problems 
in mere milliseconds [3].

Self-supervised          
Optimization Proxies

One appealing feature of optimization 
proxies is the possibility of self-supervised 
learning: training proxies without labeled 
data [4, 8]. For instance, self-supervised 
learning is possible for the aforementioned 
economic dispatch if we use the origi-
nal objective function as the loss func-
tion to train the optimization proxy Pq, 
i.e., ( | ) ( ).y yxq = f  Stochastic gradient 
descent could then learn the parameters q. 
Self-supervised learning thus removes the 
need to solve the optimization problems that 
are specified by the dataset .

1 https://www.ferc.gov/power-sales-and-
markets/rtos-and-isos

Dual Feasible Solutions
An ideal outcome in optimization prac-

tice is a pair of primal and dual solutions 
with a small duality gap. Another attractive 
feature of optimization proxies is their abil-
ity to find these dual feasible solutions for 
many convex optimization problems that 
arise in engineering. Consider the following 
linear program and its dual:
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The formulation of the primal optimization 
reflects the fact that decision variables have 
lower and upper bounds in many engineer-
ing problems. As a result, it is relatively 
easy to restore feasibility in the dual space. 
Indeed, the optimization proxy for the dual 
optimization can first predict y and then use 
l and g  to determine a dual feasible solu-
tion. One study applied the same idea to the 
second-order cone relaxation of the alternat-
ing current power flow equations, wherein 
the reconstruction utilizes properties of the 
optimal solutions [9]. Experimental results 
confirm that the ensuing proxies can find 
near-optimal dual feasible solutions.

Primal-dual Learning
Optimization proxies also offer a unique 

opportunity for researchers to adapt tradi-
tional optimization algorithms to the learn-
ing context. Consider the constrained opti-
mization problem

   min ( ) ( ) ,
y x xy h yf  subject to = 0     (5)

where x represents instance parameters 
that determine the objective function fx and 
equality constraint hx.

Primal-dual learning (PDL) [8] jointly 
learns two neural networks: (i) a primal 
neural network Pq that learns the input/
output mapping of the unconstrained opti-
mizations of the augmented Lagrangian 
method (ALM), and (ii) a dual network l 
that learns the dual updates. At each itera-
tion, the primal learning step updates the 
parameters q  of the primal network while 
keeping the dual network Df fixed. After 
primal learning is complete, PDL applies a 
dual learning step that updates the param-
eters f  of the dual network Df. Training the 
primal network involves the loss function

 


p
( | , )y l r =

 
f T
x x xy h y 1 h y( ) ( ) ( ( )),+ +l

ρ
ν

2


which is the direct counterpart of the ALM 
unconstrained optimization; here, r is a 
penalty coefficient and l represents the 
Lagrangian multiplier approximations. The 
dual learning training uses the loss function

 
  
which is the direct counterpart of the update 
rule for the Lagrangian multipliers of the 
ALM. These two steps—the training of 
the primal and dual networks—are iterated 
in sequence until convergence. Note that 
PDL is self-supervised and does not require 
labeled data. Researchers have applied PDL 

to preventive security-constrained optimal 
power flow problems with automatic prima-
ry response [7] — an application that even 
state-of-the-art optimization cannot solve. 
This work highlights optimization proxies’ 
ability to deploy optimization models that 
would otherwise be too complex to meet 
real-time requirements.

Convex Optimization Proxies
Optimization models often appear as 

components in other types of optimiza-
tion models, including decomposition tech-
niques, bilevel optimization, and stochastic 
optimization. Can optimization proxies be 
similarly compositional? While we can 
encode a neural network with rectified 
linear unit (ReLU) activation functions as a 
mixed-integer program (MIP), the resulting 
non-convexities and computational chal-
lenges make this tactic undesirable. An 
intriguing alternative is the use of convex 
neural networks — or more precisely, 
input-convex neural networks. A neural 
network with ReLU activation functions 
computes a convex function if all of its 
weights are nonnegative. An input-convex 
neural network generalizes this idea by 
introducing a first layer whose weights are 
unconstrained and adding skip connections 
to all other “convex” layers. More precise-
ly, the k th layer of an input-convex neural 
network takes the form

                   x xk k kh= =−( )1

(6)
        ReLU( ).W H dk k k kx x− + +1 0

Here, xk and xk-1 denote the outputs of 
layer k  and k -1, x0 signifies the input of 
the iterative convolutional neural network 
(ICNN), dk  is the bias vector, and Wk  and 
Hk  are weight matrices. Skip connections 
feed the ICNN input x0 to each layer. 
The coefficients of Wk are nonnegative, 
whereas Hk may take positive or nega-
tive values without affecting convexity [1]. 
Once it is trained, the input-convex neural 
network provides a function and gradient 
with respect to its inputs — thereby meet-
ing the requirements of multiple applica-
tions. Input-convex neural networks can 
approximate the objective value of alternat-
ing current optimal power flow, its second-
order cone relaxation, and its direct current 
approximation with high accuracy, which 
reveals many promising avenues for practi-
cal implementation [10].

Applications
Optimization proxies can find utility in 

a variety of applications, including energy 
systems, mobility engineering, transpor-
tation, and supply chains. In mobility 
settings, the use of optimization proxies 
within a model-predictive control frame-
work can help relocate vehicles in an 
ideal manner. Reinforcement learning fine-
trains these proxies to capture long-term 
effects, and the repair layers use linear 
programming (transportation) models that 
are solvable in polynomial time. In trans-
portation and supply chain contexts, prox-
ies approximate complex MIPs with poor 
linear relaxations, resulting in an order-
of-magnitude reduction in MIP size for 
real-time solutions. And as evidenced by 

this article, researchers have studied prox-
ies for energy systems in significant depth.

Pascal Van Hentenryck delivered an 
invited lecture2 on this topic at the 10th 
International Congress on Industrial and 
Applied Mathematics,3 which took place in 
Tokyo, Japan, last year.
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Figure 2. A real-time risk assessment framework that runs a collection of Monte Carlo scenarios. Figure courtesy of the author.
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Operator is the Model
Continued from page 3

Ug F g= ( ), (2)

where X  is some latent space and g g f= ( )? 
Typically, d n³ . A simple example of 
finding a nonlinear representation of the 
Koopman operator is available in [11].

Figure 1 (on page 3) provides a graphi-
cal representation of the modeling process 
architecture. If we take our original observ-
ables f  and set g f= , it may be impossible 
to find an F that satisfies (2). In this case, the 
observations do not provide us with a “clo-
sure” — i.e., we cannot uniquely predict the 
next state of observations based on the cur-
rent state, but a more sophisticated “embed-
ding” g might do the job. Interestingly, the 
architecture is similar to the transformer 
architecture of large language models [11].

The problem of finding ( , )F g  in (2) 
is called the representation eigenproblem 
[10]. A rigorous result exposes how the 
nature of the representation depends on 
the spectrum of the Koopman operator; 
finite linear representations are possible if 
the operator has a discrete spectrum, while 
finite nonlinear representations—which 
pertain to infinite dimensional invariant 

subspaces—are needed when the spectrum 
of the operator is continuous [10].

One approach to solving the representa-
tion problem utilizes the standard neural 
network architecture to minimize

( , ) min || ( ) ( ( ))||,* *

,
β γ

β γ β γ β= + −g F gk k1

(3)

where some or all of the components g F
j k
,  

are parametrized by neural networks with 
weights γ β, . This approach can be used 
in combination with the concept of parent-
ing in learning, in that domain experts can 
suggest some key observables. Experts in 
classical dynamics would likely propose 
sin q as a good observable for learning 
rigid pendulum dynamics, for instance, but 
would presumably use neural networks or 
time-delay observables to learn appropri-
ate observables for a soft pendulum whose 
physical laws are hard to derive [2, 4]. This 
tactic enables a mixture of human-pre-
scribed and machine-learned observables.

Extensions and Relationships to 
Other Machine Learning Methods

Koopman-based ML of dynamical mod-
els is particularly suitable for an extension 
to control systems [8]. Another applicable 

extension is to ML for general nonlin-
ear maps between different spaces; ran-
dom dynamical systems have also been 
treated in the framework of the stochastic 
Koopman operator [9, 10].

Researchers have drawn multiple connec-
tions between “pure” Koopman operator-
based methodologies and other ML tech-
niques. The version of the framework that 
has a predefined set of observables is concep-
tually equivalent to the kernel methods that 
are popular in ML. One can view the class 
of autoregressive integrated moving average 
(ARIMA) models as a subset of Koopman-
based methods, and deep learning can help 
identify effective observables and make 
connections to transformer architectures 
that are common in large language models.

Furthermore, a well-known methodol-
ogy of reinforcement learning (RL) has 
connections to KOT modeling. However, 
there is a fundamental difference in the 
approaches to optimal control with KOT 
versus RL; specifically, the exploration 
strategy in RL can lead to dangerous sce-
narios. In the KOT approach, the model 
is formed first to ensure the execution of 
only safe scenarios. We then specify a cost 
function to enable optimization of the task 
while simultaneously preserving safety. 
KOT methodologies also typically require 

orders-of-magnitude fewer executions of 
learning tasks than RL.

Because of their explicit treatment of the 
time dimension, Koopman operator models 
are well suited to handle causal inference 
[12]. For example, we can use Koopman 
control models to answer counterfactual 
questions such as “What if I had acted 
differently?” In fact, generative Koopman 
control models help to overcome obstacles 
in the development of autonomous sys-
tems that exhibit human-level intelligence 
— robustness, adaptability, explainability 
(interpretability), and cause-and-effect rela-
tionships. The methodology has now pen-
etrated most dynamics-heavy fields and 
inspired recent advances in soft robotics 
[2, 4] and game modeling [1]; Koopman 
operators even furthered the study of neural 
network training [3, 7]. These successes are 
due to the effectiveness of developed ML 
algorithms as well as the depth of the under-
lying theory that enhances interpretability 
(which is prevalent in applied mathematics 
but absent from some ML approaches).

Despite the aforementioned progress, 
there is still much to do. The current decade 
promises to be an exciting one for this 
growing set of data-driven artificial intelli-
gence methodologies that will boost the dis-
covery of models of dynamical processes.

An expanded version of this article is 
available online [11].
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The Perils of Automated Facial Recognition
Unmasking AI: My Mission to Protect 

What is Human in a World of Machines. 
By Joy Buolamwini. Random House, New 
York, NY, October 2023. 336 pages, $28.99.

Your Face Belongs to Us: A Secretive 
Startup’s Quest to End Privacy as 
We Know It. By Kashmir Hill. Random 
House, New York, NY, September 2023. 
352 pages, $28.99.

Automated facial recognition is one of 
the most widely deployed and techni-

cally successful forms of artificial intel-
ligence (AI). AI systems can match faces 
with roughly the same level of accuracy as 
humans themselves. These technologies can 
find photos on the internet from a decades-
old party that even the subject has never 
seen. They are able to match low-quality 
images and photos where the individual in 
question is inconspicuously in the back-
ground, part of a large group, wearing a 
mask, or sporting a completely different 
hairstyle at a much younger age.

Facial recognition is also one of the most 
problematic AI technologies, with very seri-
ous implications for personal privacy and 
inequality. The toxic combination of power, 
ubiquity, invasiveness, and bias has brought 
forth a uniquely troubling situation. Two 
important recent books—Unmasking AI: 
My Mission to Protect What is Human in a 
World of Machines by computer scientist Joy 
Buolamwini, and Your Face Belongs to Us: 
A Secretive Startup’s Quest to End Privacy 
as We Know It by New York Times reporter 
Kashmir Hill—raise serious concerns about 
the impact of facial recognition systems and 
the difficulty of controlling them.

§
Joy Buolamwini is best known for expos-

ing the fact that many common facial rec-
ognition systems are much less accurate for 
women and people with dark skin than for 
white males. Unmasking AI is simultane-
ously an autobiography, an explanation of 
her scientific work, and a statement of prin-
ciples that should guide AI development.

While conducting undergraduate 
research with a robot that had a camera 
that utilized facial recognition technology, 
Buolamwini noticed that the robot was 
often unable to see her face — despite its 

conferences who assume she is staff, secu-
rity guards who block her entrance to events 
where she is presenting, and so on.

One particularly interesting aspect of 
Unmasking AI is Buolamwini’s struggle 
with the ethical issues that arose in her own 
research. Quantitative documentation of a 
vision program’s bias against women and 
people who are Black requires a bench-

mark collection of facial 
photographs that are tagged 
with their race and gender. 
Existing benchmarks’ biases 
towards white male faces 

rendered them unusable. In order to cre-
ate an unbiased, high-quality assembly of 
benchmark photos, Buolamwini decided to 
personally collect the images and tag them 
herself. She assigned each face a numerical 
measure of skin color and gender, acknowl-
edging that neither measure is fully objec-
tive and both are sometimes difficult to 
judge from a photograph.

Image collection presented its own set 
of complications. Buolamwini used pho-
tographs of global parliamentarians from 
official websites to avoid copyright issues 
and ensure that the subjects had consented 
to publication. Nevertheless, some concerns 

remained. For instance, there was no reason 
to suppose that, when agreeing to circulate 
their likenesses, the image subjects had also 
intended to give permission for the use of 
their photos in this context. In addition, a 
collection of parliamentarians is obviously 
not a representative sample in areas like 
age, social status, and image quality. 

Finally, Buolamwini wondered about the 
overall impact of her own work; to what 
extent would it make the world better, fair-
er, and more equitable, and to what extent 
was it merely improving the technology that 
served as a tool for surveillance capitalism?

Although Buolamwini’s research—and 
that of the scientists who have followed 
in her footsteps—has led to significant 
reductions in gender and racial bias in 
facial recognition programs, the problem 
still persists. A recent New Yorker article 
discussed the wrongful arrest of Alonzo 
Sawyer in 2022 based purely on a match by 
AI software, despite a wealth of contrary 
evidence [3]. Racial and gender bias also 
infects other kinds of AI software, such 
as image generation programs. For exam-
ple, when the authors of a Washington 
Post article entered the prompt “attractive 
people” into the popular Stable Diffusion 
model, it produced images of young, light-
skinned individuals [4].

§
On January 18, 2020, the front page of 

The New York Times featured an extraor-
dinary story about a completely unknown 
company called Clearview AI [2]. Clearview 
had downloaded billions of photos from the 
web and built an app that matched an input 
image against its collection with startling 
scope and accuracy. When Kashmir Hill, 
the author of the article, submitted her own 
photograph, the app returned “numerous 
results, dating back a decade, including 
photos of myself that I had never seen 
before.” The Clearview app creators sold 
their product—without any public notifica-
tion, scrutiny, or independent evaluation of 
its error rate or biases—to more than 600 
different law enforcement agencies and a 
handful of companies. The police depart-
ments that purchased it were very enthusi-
astic and had already used the technology 

ability to identify her white classmates. 
She later encountered the same issue in 
graduate school; though she was using 
more advanced facial detection software, it 
did not process her face until she donned a 
white Halloween mask. Buolamwini exam-
ined this problem systematically as part 
of her doctoral research and found that all 
types of facial recognition systems had sub-
stantially higher failure rates 
for women, people with dark 
complexions, and especially 
dark-complexioned women.

Buolamwini has since 
developed industry-wide techniques to ame-
liorate these biases. She currently researches 
the detection and correction of biases in 
AI systems and explores the deployment 
of AI in ways that promote societal justice 
and equity. Buolamwini’s career has been 
marked by meteoric success, including a doc-
toral degree from the MIT Media Lab at the 
Massachusetts Institute of Technology, vari-
ous TED talks, testimony to U.S. Congress, 
and a group meeting with U.S. President Joe 
Biden — all by the age of 33. Sadly, it has 
also been punctuated by the kinds of slights 
and insults that Black women in technol-
ogy encounter all too often: participants at 

BOOK REVIEW
By Ernest Davis

Unmasking AI: My Mission to Protect What is Human in a World of Machines. By Joy 
Buolamwini. Your Face Belongs to Us: A Secretive Startup’s Quest to End Privacy as We Know 
It. By Kashmir Hill. Images courtesy of Random House.

Pursuing Computational Goals as 
an LLF-SIAM Undergraduate Fellow 
By Everett Grethel

Computational science is seemingly 
emerging as a crucial subfield in nearly 

every scientific domain. A large number of 
researchers—from biologists to physicists—
are beginning to describe themselves as 
“computational.” Scientists with experimen-
tal or theoretical backgrounds may there-
fore wonder if they have the requisite skill 
sets to pursue these new lines of inquiry. 
Several years ago, I embarked on the path 
towards becoming a computational scientist 
and resolved to work at the intersection of 
machine learning and physical science.

Last summer, I was afforded the opportuni-
ty to intern at Lawrence Livermore National 
Laboratory1 (LLNL) as the 2023 inaugu-
ral LLF-SIAM Undergraduate Fellow.2 
SIAM partnered with the Livermore Lab 
Foundation3 (LLF) to support an under-
graduate student internship at LLNL’s 
world-class research facility that offers one 
lucky participant the chance to advance 
their applied mathematics knowledge and 
address relevant scientific and technological 
challenges. Bruce Hendrickson, Principal 

1 https://www.llnl.gov
2 https://livermorelabfoundation.org/

2023/10/17/llf-siam-undergraduate-fellowship
3 https://livermorelabfoundation.org

Associate Director for Computing at LLNL, 
made the initial connection between LLF 
and SIAM. Here, I will describe both my 
transition to com-
putational research 
and the Fellowship’s 
role in bringing clar-
ity to my path.

In my experience, 
students or profes-
sionals who are 
considering compu-
tational work fre-
quently have a back-
ground in the natu-
ral sciences. Often, 
they seek to develop 
a sense of intuition 
for incorporating 
computational and 
data science into 
their respective 
fields. Experience 
in the natural sci-
ences does allow for 
a relatively seamless 
transition to com-
putation because of 
the major overlap in 
prerequisite knowledge between the two 
areas. In contrast, computer scientists who 

wish to apply their expertise to other scien-
tific fields may encounter more difficulties 
due to their lack of familiarity with the 

targeted domain.
I began my jour-

ney with no back-
ground whatsoever 
in science, technol-
ogy, engineering, and 
mathematics (STEM), 
having switched my 
major from fine arts 
to computer science 
(I recently gradu-
ated with bachelor’s 
degrees in both com-
puter science and dig-
ital media and design 
from the University 
of Connecticut). 
Three key aspects 
contributed to my 
successful transition. 
First, I learned how to 
study in a manner that 
worked for me — a 
crucial part of finding 
success as a STEM 
student. Second, I 

recognized math’s relevance to my field of 
choice. Concepts in probability, multivari-

able calculus, and linear algebra take on 
new meaning when they are contextualized 
in a neural network. Third, research experi-
ences helped me appreciate the symbiotic 
relationship between computer science and 
the natural sciences. By abstracting the 
physical world’s phenomena into data, I 
realized that I can use techniques such as 
machine learning to extract new infor-
mation; conversely, physical phenomena 
can inspire novel algorithms in areas like 
genetic programming or neural networks.

My newfound understanding and appre-
ciation for STEM led me to wonder how I 
could apply computer science to real-world 
problems in other scientific domains. While 
university research certainly provided a 
foundation, the LLF-SIAM Undergraduate 
Fellowship ultimately offered a broader 
view of this enterprise. The Fellowship tar-
gets students who are interested in applied 
mathematics, computational science, and/
or data science, though LLF also sponsors 
additional Fellowships4 in other areas of 
STEM. Students are paired with an LLNL 
staff mentor whose research aligns with 
their interests and skills; they take full 
ownership of their assigned project com-
ponents and often collaborate with multiple 

4 https://livermorelabfoundation.org/stem

Last year, SIAM partnered with the Livermore 
Lab Foundation (LLF) to support an under-
graduate student internship at Lawrence 
Livermore National Laboratory. Everett 
Grethel of the University of Connecticut was 
the 2023 inaugural LLF-SIAM Undergraduate 
Fellow. Photo courtesy of LLF.
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In the context of (3), we see that the 
best a

k
s are the inverses of the roots of 

T
k+1

. Richardson was seemingly unaware of 
Chebyshev polynomials, as he selected the 
roots 1/a

i
 by spreading them in an ad hoc 

fashion within [ , ].α β
It took more than four decades for ideas 

based on Chebyshev polynomials to emerge. 
Young, Cornelius Lanczos, and George 
Shortley were among the first researchers 
to invoke the concept, though their methods 
did not yield numerically reliable algo-
rithms because they did not fully exploit 
the three-term recurrence of Chebyshev 
polynomials. While Lanczos did employ 
the three-term recurrence, his approach was 
a preprocessing scheme that was not quite 

related to Chebyshev acceleration. In fact, 
it seems that John von Neumann actu-
ally described the first acceleration scheme 
based on Chebyshev polynomials that 
exploits the three-term recurrence [1]. The 
article published in 1959 but von Neumann 
died in early 1957, so he must have devel-
oped the method in 1956 or earlier. In 
1961, Varga and Gene Golub published a 
very similar technique—called the semi-
iterative method—that acknowledged von 
Neumann’s prior work in a footnote [3]. We 
can easily derive the Chebyshev accelera-
tion algorithm from (4) and the three-term 
recurrence of the C

k
s [1, 3, 8].

Fourth Big Idea:                    
Krylov Subspace Methods

Krylov subspace methods for the 
solution of (1) are projection meth-
ods on the Krylov subspace K A b b Ab A b
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in K A b
m
( , ). Magnus Hestenes and Eduard 

Stiefel’s implementation of this method 
resulted in the conjugate gradient algo-
rithm [5]. The process invokes purely geo-
metric arguments; Hestenes and Stiefel’s 
insights from the two-dimensional case and 
their knowledge of conics inspired them to 
exploit conjugate directions.

Lanczos developed a similar method 
from a completely different viewpoint. He 
utilized an MR approach and relied on what 
is now called a Lanczos basis to imple-
ment it. Initially, critics considered the CG 
algorithm to be an unstable direct solution 
method. It therefore laid dormant until the 
mid-1970s, when it resurfaced with force.

MR Case: Several projection tech-
niques on the subspace K A b

m
( , ) emerged 

in the late 1970s, with the objective of 
minimizing the residual norm over the 
subspace. An implementation with an 
orthonormal basis K A b

m
( , ) leads to the 

generalized minimal residual (GMRES) 
method; other implementations include 
generalized CG-LS, Orthomin, Orthodir, 
and the generalized conjugate residual. 
A considerable volume of work has fol-
lowed these beginnings of Krylov meth-
ods for nonsymmetric linear systems [7].

Fifth Big Idea: Preconditioning
Krylov subspace methods can achieve 

fast convergence when matrices have spec-
tra that are clustered around 1 and are not 
highly nonnormal; resorting to precondition-
ing can exploit these properties. For exam-
ple, we can use a Krylov subspace method 
to solve a system like M Ax M b− −=1 1  
(instead of the original system), where the 
preconditioning matrix M  is close to A 
in some sense. However, systems such as 
Mx f=  are inexpensive to solve. A com-
mon approach is the incomplete lower-upper 
(LU) factorization M LU= , which stems 
from an approximate LU factorization of 
A. The combination of Krylov methods and 
various forms of preconditioning gives rise 
to one of the most important and effective 
present-day iterative methods.

Looking Forward
The new wave in NLA embraces ran-

domness and statistical analysis; in this 
context, standard “optimal” methods (such 
as CG and GMRES) are not as useful and 
those that exploit short-term recurrences 
lose their appeal. The current buoyant 
activity in randomized NLA is somewhat 
reminiscent of the golden era of iterative 
methods three decades ago. It remains to 
be seen whether this ongoing transforma-
tion will last. Nevertheless, the basic tools 
from the past still constitute key ingredi-
ents for future methods.

What will be the next “big idea” in NLA? 
Big ideas typically result from a pressing 

need to solve well-defined problems (e.g., 
the “flutter problem” in the 1940s) and the 
drive of bright, motivated researchers with 
exceptional knowledge and vision [6]. It 
is evident that machine learning and data-
driven approaches have become the primary 
catalysts in research. As for motivating 
bright researchers, it is important to actively 
share our work to capture readers’ interests 
and potentially spark inspiration for the 
next prominent star. The significance of 
thoughtfully conveying ideas and dissemi-
nating software and other artifacts cannot 
be overstated, but the fast-paced and com-
petitive nature of our discipline often leaves 
little time for such initiatives. Nonetheless, 
the gratification of witnessing their impact 
validates these efforts.

Yousef Saad received the 2023 John von 
Neumann Prize1 and delivered the asso-
ciated lecture2 at the 10th International 
Congress on Industrial and Applied 
Mathematics,3 which took place in Tokyo, 
Japan, last year.
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From left to right: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos — three major contributors to Krylov subspace methods. Image of 
Hestenes courtesy of Konrad Jacobs and Wikimedia under the Creative Commons Attribution-ShareAlike 2.0 (CC BY-SA 2.0) Germany license; 
image of Stiefel courtesy of ETH-Bibliothek Zürich, Bildarchiv and Wikimedia under the Creative Commons Attribution-ShareAlike 3.0 (CC BY-SA 
3.0) Unported license; and image of Lanczos courtesy of Ida Rhodes and SIAM.

team members. By interning at a national 
laboratory, Fellows receive a paid, full-
time, 10- to 12-week opportunity to work 
on major problems with the resources and 
support of a high-level research center. LLF 
also hosts a Fellows Week, during which 
the recipients of various LLF Fellowships 
gather to connect with each other and foster 
career-related skills.

I applied for the LLF-SIAM Under-
graduate Fellowship to acquire addition-
al research experience and gain a better 
understanding of what a career in com-
putational science might look like for 
me. Additionally, I hoped to encounter 
researchers whose work blended computa-
tion with applications to particular scientific 
domains. Though I was officially a comput-
ing intern, I was paired with Diego Oyarzun 
Dinamarca and Aldair Gongora: staff scien-
tists in mechanical and materials engineer-
ing. My assignment involved uncertainty 
quantification for heat transfer simulations 

within an overarching project about autono-
mous experimentation,5 which combines 
robotics and real-world experiments with 
machine learning methods like Bayesian 
optimization. The tasks of perform-
ing experiments and making adjustments 
are automated via robotics and machine 
learning respectively — an approach 
that accelerates the iterative process of 
experimentation to reach a particular goal.

My project sought to reduce the quantity 
of required experiments for certain heat 
transfer problems. I spent half of my time 
at a desk working with programmers, and 
the other half in a wet lab amongst chem-
ists and engineers. This dual environment 
allowed me to interact with researchers 
and interns who had a diverse array of 
expertise. Some staff members were kind 
enough to have lunch with me and answer 
my questions about their work; our conver-
sations offered insight into possible areas 
of focus for my career. I had also been 
concerned about the feasibility of working 

5 https://go.siam.org/r53HZi

in both computer and physical science, 
but I met a number of individuals who 
successfully bridged this gap and came 
from a variety of backgrounds. Some of 
these researchers were computer scientists 
who were pursuing physical science proj-
ects and possessed only minimal domain 
knowledge, while others were physical 
scientists who had taken up a computa-
tional role while still focusing on their 
domain. Despite these differences, I real-
ized that everyone and everything had its 
own niche; each approach had its own 
strengths and weaknesses that were better 
suited for certain projects and team struc-
tures than others. As I continue on my own 
career journey, I will need to figure out 
what niche I wish to fill.

My time as an LLF-SIAM Undergraduate 
Fellow provided clarity and answers to 
some of my lingering career questions. 
There is no one correct path that intersects 
computer science and the natural sciences. 
Instead, a spectrum of approaches—each 
with requirements that depend on one’s spe-

cific background—offer different types of 
opportunities. The mentorship and knowl-
edge that I gained from the Fellowship were 
invaluable, and I hope that students with 
similar aspirations in the SIAM community 
and beyond will have equally positive expe-
riences in the years to come.

SIAM looks forward to partnering with 
LLF again in 2024 to sponsor another 
LLF-SIAM Undergraduate Fellow, who 
will be selected in the coming months. If 
you have questions about philanthropically 
supporting this partnership or other under-
graduate programs at SIAM, please contact 
Abby Addy, Director of Development and 
Corporate Relations, at aaddy@siam.org or 
(267) 648-3529.

Everett Grethel is an Academic Graduate 
Appointee at Lawrence Livermore National 
Laboratory. He aims to develop meth-
ods that handle the unique challenges of 
machine learning in materials science and 
other physical sciences.

Undergraduate Fellow
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Hong Kong Polytechnic University SIAM Student 
Chapter Hosts Dialogue with World-leading Scholars
By Yixuan Zhang

I n December 2023, the Hong Kong 
Polytechnic University (PolyU) SIAM 

Student Chapter1 successfully organized 
an exciting event called “Dialogue with 
World-leading Scholars.” The session 
was part of the three-day Workshop on 
Nonsmooth Optimization and Variational 
Analysis2—which took place at PolyU 
from December 4-6—and featured five 
distinguished panel members: R. Tyrrell 
Rockafellar (University of Washington), 
Boris Mordukhovich (Wayne State 
University), Yurii Nesterov (Université 
Catholique de Louvain), Kim-Chuan Toh 
(National University of Singapore), and 
Radu Ioan Boţ (University of Vienna).

These esteemed experts in the field of 
optimization discussed their early-career 
experiences and elaborated on their pro-
fessional journeys. A question-and-answer 
format allowed for a more interactive and 
engaging experience between the students 
and speakers, the latter of whom also 
offered practical advice and encouraged 
attendees to continually learn new knowl-
edge in a variety of mathematical fields. 
Audience questions covered a wide range of 
topics, from effective strategies for research 
and publishing to career development in 

1 https://www.polyu.edu.hk/ama/research-
and-consultancy/siam-polyu-student-chapter

2 https://events.polyu.edu.hk/nova/home

officers of the chapter—president Yixuan 
Zhang, vice presidents Cunxin Huang and 
Bei Sun, secretary Yuan Gao, treasur-
er Zexian Li, and webmaster Gaohang 
Chen—would like to thank all attendees, 
including their fellow chapter members and 
other participating students and research-
ers from Hong Kong and beyond. We are 
especially grateful to the panel members 
who generously contributed their time and 

knowledge, as well as for support from the 
organizing committee of the concurrent 
Workshop on Nonsmooth Optimization 
and Variational Analysis.

2023 marked the milestone 10th anniver-
sary of the PolyU SIAM Student Chapter. 
Established in 2013, this group was the 
first SIAM student chapter to form in Hong 
Kong. The chapter generates student inter-
est in applied mathematics, computational 
science, and data science by organizing 
various activities and occasions for the 
dozens of members to gather with contem-
poraries and faculty from relevant depart-
ments both within and outside of PolyU’s 
campus. Recent activities include a variety 
of lectures, several discussion salons, and 
an online workshop during the COVID-
19 pandemic. Some of these events were 
held jointly with SIAM student chapters 
at nearby sister institutions, such as the 
Chinese Academy of Sciences, the Chinese 
University of Hong Kong, and the City 
University of Hong Kong. We invite read-
ers to stay tuned for more upcoming events!

Yixuan Zhang is a Ph.D. student in 
the Department of Applied Mathematics 
at the Hong Kong Polytechnic University 
(PolyU). She currently serves as president 
of the PolyU SIAM Student Chapter.

both academia and industry. The panelists’ 
insights provided students with a clearer 
roadmap for their future endeavors in the 
fields of applied mathematics, computa-
tional science, and data science.

The Workshop on Nonsmooth 
Optimization and Variational Analysis 
was sponsored by PolyU’s Department of 
Applied Mathematics3 (AMA); the organiz-
ing committee comprised academic staff at 
AMA who study optimization, including 
co-chairs Xiaojun Chen (faculty advisor 
of the PolyU SIAM Student Chapter and 
Chair Professor of Applied Mathematics) 
and Defeng Sun (Chair Professor of Applied 
Optimization and Operation Research). 
Throughout the first two days of the work-
shop, 16 scholars from around the world 
delivered enlightening talks that introduced 
cutting-edge progress in nonsmooth opti-
mization and variational analysis. The third 
and final day commenced with a “Research 
Salon,” during which the aforementioned 
panel members from the SIAM Student 
Chapter event addressed the positive and 
negative effects of artificial intelligence; the 
“Dialogue with World-leading Scholars” 
session immediately followed the salon.

Members of the PolyU SIAM Student 
Chapter appreciated the opportunity to con-
verse with optimization scholars, learn from 
their experiences, and glean inspiration and 
career direction. Student organizers and 

3 https://www.polyu.edu.hk/en/ama

Speakers and participants gather for a group photo at the Hong Kong Polytechnic University (PolyU) SIAM Student Chapter event, “Dialogue 
with World-leading Scholars,” which took place during the three-day Workshop on Nonsmooth Optimization and Variational Analysis at PolyU 
in December 2023. Photo courtesy of Eric Lam Kwok-lung and Peter Lo Charn-tong.

During the Hong Kong Polytechnic University (PolyU) SIAM Student Chapter’s “Dialogue 
with World-leading Scholars,” experts in optimization shared insights and advice based on 
their own career experiences. From left to right: panel members Kim-Chuan Toh (National 
University of Singapore), Radu Ioan Boţ (University of Vienna), Yurii Nesterov (Université 
Catholique de Louvain), Boris Mordukhovich (Wayne State University), and R. Tyrrell 
Rockafellar (University of Washington), as well as moderator Yixuan Zhang (president of the 
PolyU SIAM Student Chapter). Photo courtesy of Xin Qu.

to identify perpetrators and victims in cases 
of murder, assault, sexual abuse, and theft. 
Hill’s 2023 book, Your Face Belongs to Us, 
expands upon her original article, details 
her investigation, offers additional informa-
tion about the history of Clearview and its 
founder Hoan Ton-That, and provides read-
ers with updates to the narrative.

The prologue of the book, which recounts 
the first stages of Hill’s investigation, is 
particularly fascinating. When Hill learned 
about the existence of Clearview, the organi-
zation was wrapped in secrecy — despite the 
fact that it was already aggressively promot-
ing the app to police departments. The scant 
company website listed a nonexistent New 
York address. When Hill called or emailed 
police departments, they subsequently avoid-
ed all communication. She hired a private 
investigator who contacted Clearview while 
posing as a potential customer; when he tried 
to test their product with Hill’s photo, they 
immediately severed the connection.

One particularly notable characteristic of 
Clearview is the comparatively fly-by-night 
way in which it came about. In recent years, 
impactful AI products have mostly originat-
ed in large corporate labs with huge teams of 
top-notch scientists, enormous budgets, and 
a plethora of computing resources. By con-
trast, Ton-That seemingly built, deployed, 

marketed, and maintained Clearview largely 
by himself (though he was joined by then-
computational physicist Terence Liu for a 
few months). The product’s code used a 
combination of open-source software and 
techniques from the published literature; 
there is no indication that its construction 
involved any particular technical innovation.

When I first read Hill’s New York Times 
article, I assumed that it would mark the 
end of Clearview, much like how John 
Carreyou’s exposé of Theranos in The Wall 
Street Journal ultimately led to that com-
pany’s downfall [1]. In fact, the outcome 
was quite the contrary. The article’s public-
ity brought Clearview even more custom-
ers, though it did generate a certain amount 
of legal trouble for the organization. The 
American Civil Liberties Union1 (ACLU) 
filed a lawsuit against Clearview, but their 
argument was based on the narrow legal 
grounds that Clearview’s use of biomet-
ric measurements was illegal; the ACLU 
agreed with Clearview’s lawyer that simply 
scraping images from the web, matching 
them, and distributing them was protected 
free speech. The two groups eventually 
settled on the compromise that Clearview 
would not sell its app to private individuals 
or companies within the U.S., but it could 
continue selling to U.S. government agen-
cies — including police departments.

1 https://www.aclu.org

§
What will the future bring? Buolamwini’s 

book is not very hopeful in that regard, 
and Hill’s text is downright depress-
ing. Buolamwini and her colleagues at the 
Algorithmic Justice League2 (an association 
that she founded and runs) have an admirable 
mission in trying to make AI a realistic tool 
for human prosperity, dignity, and equity, 
but they face formidable headwinds as many 
large corporations and nations continue to 
develop and deploy AI systems in a seeming-
ly reckless manner. The outlook for privacy 
is even worse. Facial recognition systems 
like Clearview are powerful and easy to use; 
cameras are ubiquitously deployed by the 
police, carried by citizens in cell phones, and 
hidden in household devices; and the pub-
lic’s fascination with social media is appar-
ently inexhaustible. We may soon arrive at a 
dystopia in which anyone can examine prac-
tically everything about someone’s life and 
publish it to the world whenever they choose.

Of course, unlike with climate change or 
pandemics, society as a whole has complete 
collective agency over computer technol-
ogy. Given the will, nothing would stop 
us from eliminating all facial recognition 
software from our lives; doing so would not 
even cost much. We are in charge, not the 
AIs. But we must jointly identify our most 
important values and figure out how to 

2 https://www.ajl.org

protect them. Doing so is not an easy task, 
and we may not have much time before the 
situation becomes relatively dire.
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go.siam.org/is24 | #SIAMIS24  
ORGANIZING COMMITTEE CO-CHAIRS 
Kui Ren, Columbia University, U.S. 
Samuli Siltanen, University of Helsinki, Finland
EARLY REGISTRATION RATE DEADLINE  
April 30, 2024 
HOTEL RESERVATION DEADLINE   
April 30, 2024: 5:00 p.m. Eastern Time

SIAM Conference on
Mathematics of Data Science (MDS24)
October 21 - 25, 2024 | Atlanta, Georgia, U.S. 
go.siam.org/mds24 | #SIAMMDS24  
ORGANIZING COMMITTEE CO-CHAIRS 
Eric Chi, Rice University, U.S. 
David Gleich, Purdue University, U.S. 
Rachel Ward, University of Texas at Austin, U.S.
SUBMISSION AND TRAVEL AWARD DEADLINES  
April 1, 2024: Minisymposium Proposal Submissions 
April 29, 2024: Contributed Poster and Minisymposium Presentation Abstracts 
July 22, 2024: Travel Fund Application Deadline

Information is current as of February 5, 2024. Visit siam.org/conferences for the most up-to-date information.

Upcoming SIAM Events  
SIAM International Conference on 
Data Mining 
April 18–20, 2024 
Houston, Texas, U.S. 
Sponsored by the SIAM Activity Group on  
Data Science

SIAM Conference on  
Applied Linear Algebra 
May 13–17, 2024 
Paris, France 
Sponsored by the SIAM Activity Group on  
Linear Algebra

SIAM Conference on Mathematical 
Aspects of Materials Science 
May 19–23, 2024 
Pittsburgh, Pennsylvania, U.S. 
Sponsored by the SIAM Activity Group on  
Mathematical Aspects of Materials Science

SIAM Conference on  
Imaging Science 
May 28–31, 2024 
Atlanta, Georgia, U.S. 
Sponsored by the SIAM Activity Group on  
Imaging Science

SIAM Conference on the Life Sciences 
June 10–13, 2024 
Portland, Oregon, U.S. 
Sponsored by the SIAM Activity Group on Life 
Sciences

SIAM Conference on Mathematics of 
Planet Earth 
June 10–12, 2024 
Portland, Oregon, U.S. 
Sponsored by the SIAM Activity Group on 
Mathematics of Planet Earth

SIAM Conference on Nonlinear Waves 
and Coherent Structures 
June 24–27, 2024 
Baltimore, Maryland, U.S. 
Sponsored by the SIAM Activity Group on 
Nonlinear Waves and Coherent Structures 

2024 SIAM Annual Meeting 
July 8–12, 2024 
Online Component July 18–20, 2024 
Spokane, Washington, U.S.
SIAM Conference on Applied 
Mathematics Education 
July 8–9, 2024 
Spokane, Washington, U.S.  
Sponsored by the SIAM Activity Group on  
Applied Mathematics Education

SIAM Conference on  
Discrete Mathematics 
July 8–11, 2024 
Spokane, Washington, U.S. 
Sponsored by the SIAM Activity Group on  
Discrete Mathematics

ICERM-SIAM Workshop on 
Empowering a Diverse Computational 
Mathematics Research Community 
July 22–August 2, 2024 
Providence, Rhode Island, U.S.
SIAM Conference on Mathematics of 
Data Science 
October 21–25, 2024 
Atlanta, Georgia, U.S. 
Sponsored by the SIAM Activity Group on Data 
Science

ACM-SIAM Symposium on Discrete 
Algorithms 
January 12–15, 2025 
New Orleans, Louisiana, U.S. 
Sponsored by the SIAM Activity Group on 
Discrete Mathematics and the ACM Special 
Interest Group on Algorithms and Computation 
Theory

Nominate a Colleague for Prizes Being Awarded at the 2025 SIAM Conference on  
Computational Science & Engineering—Submit your nominations at siam.org/deadline-calendar
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Student Chapter Funding for 2023–2024
SIAM awarded more than $60,000 to over 170 chapters for events and activities taking place throughout the 2023-2024 academic year. SIAM Student 
Chapters organized meetings or seminars, invited speakers from industry, labs, and academia, ran programming workshops, professional development, 
and other interesting activities. Below are a few exciting events our chapters held in 2023 or plan to do in spring 2024. For information about obtaining 
funding for your chapter, go to  www.siam.org/Students-Education/Student-Chapters/Chapter-Resources/Detail/student-chapter-funding.

The 2024 Class of SIAM Fellows will 
be announced March 30, 2024. Learn 
more at siam.org/Prizes-Recognition/
Fellows-Program.

Students from the Pontificia Universidad Catolica de Valparaiso chapter celebrate International 
Day of Women in Mathematics.

Eastern Washington University chapter 
participated in a STEM outreach night at a 
local elementary school, with activities that 
promoted mathematics in a fun way.

membershipmembership
Network | Access | Outreach | Lead

FOR MORE INFORMATION ON SIAM MEMBERSHIP: siam.org/membership

each month. Undergraduate student members 
of any institute meet, learn and share their 
current research or talk about some interesting 
math. URC welcomes all talks from conference 
practice and preparation to general interest. 
The discussion and talks are held in a friendly 
atmosphere with faculty and the visitors.

Jaypee University of Information Technology 
has a Distinguished Speaker Seminar Series 
which enables the members to gain exposure 
and wisdom directly from the best in academics 
and industry. Under this initiative renowned 
personalities who have achieved success in both 
academic and professional spheres share their 
wisdom and insights with the Chapter members. 

The Kyoto University chapter put on a student 
poster session. The event aims to promote 
interdisciplinary exchange among students 
conducting research related to applied 
mathematics. Students from various fields such 

as physics, chemistry, 
biology, engineering, 
and information science, 
among others, are 
welcome to participate. 

A two-month-long 
student modelling 
competition for students 
at the University of 
Edinburgh (UoE) and 
Heriot-Watt University 
(HWU). The aim is to 
call students to put 

their academic knowledge and experience into 
practice and tackle problems under real-life 
industrial applications. Groups of students will 
investigate problems and data contributed by 
industrial partners and try to solve them. Then, 
a jury would evaluate the quality and impact of 
the work. The groups of students with the best 
contributions would be asked to present their 
work to a panel. 

Nominate your students for free membership in 2024! 
SIAM members (excluding student members) can nominate up to two students per year for 
free membership. Go to my.siam.org/forms/nominate.htm to make your nominations.

The SIAM Gators at the University of Florida 
host the Applied Math Book Club (ABC). Each 
meeting students discuss papers and books 
that are of interest to the group. The aim is to 
increase understanding of concepts outside 
our areas of research. 

The University of Iowa chapter organized 
weekly writing group sessions to encourage 
SIAM student chapter members and other 
graduate students to work on their research 
or assignments regularly. Students could work 
on their own research and encourage one 
another to continue. 

The chapter at University of Utah hosted 
“Utah’s Next Top Model” math modeling 
competition. This competition consists of a 
team of three or four undergraduates who will 
then create, analyze, and write a report on a 
mathematical model for an open-ended real-
world problem over the span of a weekend. 
Graduate students in the department of 
mathematics judged the reports on merits 
such as practicality of the model and clarity of 
the report. 

SIAM welcomes its newest 
student chapters:
The Cooper Union
Queens College, CUNY
Tarleton State University
TU Munich
Oklahoma State University
Universidad de Costa Rica
Texas State University
Universidad de Rosario

The chapter at Charles University held 
a Christmas Chess Tournament, bringing 
together students and professors for a day of 
strategic battles and holiday cheer.

The chapter at Duke University will hold 
a Q&A graduate panel in 2024. Several 
current graduating students will share their 
experiences and advice on going to the next 
stage — how they got their next positions, both 
academic positions and industry/private-sector. 
In addition to answering questions about 
applying to jobs, graduates also share tips, 
FAQ, and experiences about all parts of their 
time in the duke math PhD program.

The Florida Atlantic University student 
chapter has a brand-new Reading Group 
this semester. The mission is to advance 
undergraduate and graduate student 
interdisciplinary collaborations across the 
STEM fields.

Students from Heidelberg University took a 
chapter field trip to Zeiss SMT, a prominent 
company in the precision mechanics and 
optics industries. Zeiss Semiconductor 
Manufacturing Technologies (SMT) is Zeiss's 
business subgroup for the development and 
production of equipment for the semiconductor 
industry.

The Sukkur IBA University chapter hosts the 
Undergraduate Research Circle (URC) twice 

Students at West Texas A&M University participated in Math Bowl 
2023, a math competition open to all WT students who are passionate 
about mathematics and who enjoy solving challenging problems.
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Rough Volatility  
C. Bayer, P. K. Friz, M. Fukasawa,  
J. Gatheral, A. Jacquier, and  
M. Rosenbaum, Editors

Volatility has traditionally 
been modeled as a 
semimartingale, with 
consequent scaling 
properties, but a new 
paradigm has emerged, 
whereby paths of 
volatility are rougher 

than those of semimartingales. According 
to this perspective, volatility behaves 
as a fractional Brownian motion with a 
small Hurst parameter. Rough Volatility 
is the first book to offer a comprehensive 
exploration of the subject, organizing 
the material to reflect the subject’s 
development and progression. It equips 
readers with the tools and insights needed 
to delve into rough volatility models, and 
explores the motivation for rough volatility 
modeling and provides a toolbox for its 
computation and practical implementation.
2023 / xxviii + 263 pages / Soft / 978-1-61197-777-6 
List $85.00 / SIAM Member $59.50 / FM02

Machine Learning for Asset 
Management and Pricing 
Henry Schellhorn and Tianmin Kong

This textbook covers 
the latest advances 
in machine-learning 
methods for asset 
management and asset 
pricing. Cutting-edge 
material is integrated 
with mainstream finance 

theory and statistical methods to provide 
a coherent narrative. Coverage includes 
an original machine learning method for 
strategic asset allocation; the no-arbitrage 
theory applied to a wide portfolio of 
assets as well as other asset management 
methods; and techniques other than neural 
networks.
2024 / xxiv + 264 / Softcover / 978-1-61197-789-9 
List $74.00 / SIAM Member $51.80 / OT195

A First Course in Options  
Pricing Theory 
Simone Calogero 

Options pricing 
theory utilizes a wide 
range of advanced 
mathematical concepts, 
making it appealing to 
mathematicians, and 
it is regularly applied 
at financial institutions, 

making it indispensable to practitioners. The 
emergence of artificial intelligence in the 
financial industry has led to further interest in 
mathematical finance. This book presents a 
self-contained introduction to options pricing 
theory and includes a complete discussion 
of the required concepts in finance and 
probability theory.
2023 / xii + 286  pages / Softcover / 978-1-61197-763-9 
List $79.00 / SIAM Member $55.30 / OT192

Business Dynamics Models: 
Optimization-Based One Step 
Ahead Optimal Control 
Eugenius Kaszkurewicz and Amit Bhaya

This book introduces 
optimal control methods, 
formulated as optimization 
problems, applied to 
business dynamics 
problems. It includes 
solutions that provide a 
rationale for the use of 

optimal control and guidelines for further 
investigation into more complex models, as 
well as formulations that can also be used in a 
so-called flight simulator mode to investigate 
different complex scenarios. The text offers a 
modern programming environment (Jupyter 
notebooks in JuMP/Julia). 
2022 / xxii + 184 pages / Softcover / 978-1-61197-730-1 
List $89.00 / SIAM Member $62.30 / DC40

Mathematics and  
Tools for Financial 
Engineering
Petros A. Ioannou
This book presents an 
overview of fundamental 
concepts in mathematics 

and how they are applied to basic financial 
engineering problems, with the goal of 
teaching students to use mathematics and 
engineering tools to understand and solve 
financial problems. Part I covers mathematical 
preliminaries and Part II addresses financial 
topics ranging from low- to high-risk 
investments. 
2021 / xvi + 268 pages / Softcover / 978-1-611976-75-5 
List $79.00 / SIAM Member $55.30 / OT176

To order, visit the SIAM bookstore: bookstore.siam.org 
Or call toll-free in U.S. and Canada: 800-447-SIAM / worldwide: +1-215-382-9800

Do you live outside North or South America?
Order from Eurospan eurospanbookstore.com/siam for speedier service and free shipping.  

Eurospan honors the SIAM member discount. Contact customer service (service@siam.org) for the code to use when ordering.

Lectures on BSDEs, 
Stochastic Control, and 
Stochastic Differential 
Games with Financial 
Applications
René Carmona
This book will be helpful 

to students who are interested in stochastic 
differential equations (forward, backward, 
forward-backward); the probabilistic approach to 
stochastic control (dynamic programming and the 
stochastic maximum principle); and mean field 
games and control of McKean–Vlasov dynamics.
2016 / x + 265 pages / Softcover / 978-1-611974-23-2 
List Price $93.00 / SIAM Member Price $65.10 / FM01

Elementary Calculus of  
Financial Mathematics
A. J. Roberts
This book introduces the 
fascinating area of financial 
mathematics and its calculus in 
an accessible manner geared 

toward undergraduate students. Using little high-
level mathematics, the author presents the basic 
methods for evaluating financial options and 
building financial simulations.  
2008 / xii + 128 pages / Softcover / 978-0-898716-67-2  
List $70.00 / SIAM Member $49.00 / MM15

Mathematical 
Optimization and 
Economic Theory
Michael D. Intriligator
This book provides a self-
contained introduction to 
and survey of mathematical 

programming and control techniques and their 
applications to static and dynamic problems in 
economics, respectively. It shows the unity of 
the various approaches to solving problems of 
constrained optimization that all stem back directly 
or indirectly to the method of Lagrange multipliers.
2002 / xvi + 499 pages / Softcover / 978-0-898715-11-8 
List $78.00 / SIAM Member $54.60 / CL39

Computational 
Methods for Option 
Pricing
Yves Achdou and  
Olivier Pironneau
Here is a book for anyone who 
would like to become better 

acquainted with the modern tools of numerical 
analysis for several significant computational 
problems arising in finance. The authors review 
some important aspects of finance modeling 
involving partial differential equations and focus 
on numerical algorithms for the fast and accurate 
pricing of financial derivatives and for the 
calibration of parameters.
2005 / xviii + 292 pages / Softcover / 978-0-898715-73-6 
List $105.00 / SIAM Member $73.50 / FR30

Essential Reading in  
Financial Mathematics 

Credit Scoring and Its 
Applications, Second Edition
Lyn Thomas, Jonathan Crook,  
and David Edelman 

Recognized as the bible 
of credit scoring, this book 
contains a comprehensive 
review of the objectives, 
methods, and practical 
implementation of credit and 
behavioral scoring. New to the 
second edition are lessons 

that can be learned for operations research 
model building from the global financial crisis, 
current applications of scoring, discussions on 
the Basel Accords, and much more.
2017 / xiv + 367 pages / Softcover / 978-1-611974-55-3 
List $109.00 / SIAM Member $76.30 / MN02 

NEW!

Coming 
Soon
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Recently Posted Articles
Admissibility and Observability of Jeffreys Type  
of Overdamped Second Order Linear Systems
Jian-Hua Chen, Xian-Feng Zhao, and Hua-Cheng Zhou
The Nonlocal Kelvin Principle and the Dual Approach 
to Nonlocal Control in the Conduction Coefficients
Anton Evgrafov and José C. Bellido   

SIAM Journal on  
DISCRETE MATHEMATICS
Rapid Mixing of k-Class Biased Permutations
Sarah Miracle and Amanda Pascoe Streib
Bernoulli Factories for Flow-Based Polytopes
Rad Niazadeh, Renato Paes Leme, and Jon Schneider
Global Rigidity of Line Constrained Frameworks
James Cruickshank, Fatemeh Mohammadi, Harshit J. 
Motwani, Anthony Nixon, and Shin-ichi Tanigawa                   

SIAM Journal on  
FINANCIAL MATHEMATICS
Exploratory Control with Tsallis Entropy for Latent 
Factor Models
Ryan Donnelly and Sebastian Jaimungal
Order Book Queue Hawkes Markovian Modeling
Philip E. Protter, Qianfan Wu, and Shihao Yang
Short Communication: Are Shortfall Systemic Risk 
Measures One Dimensional?
Alessandro Doldi, Marco Frittelli,  
and Emanuela Rosazza Gianin   

SIAM Journal on IMAGING SCIENCES
A Majorization-Minimization Algorithm for Neuroimage 
Registration
Gaiting Zhou, Daniel Tward, and Kenneth Lange
Image Segmentation Using Bayesian Inference for 
Convex Variant Mumford–Shah Variational Model
Xu Xiao, Youwei Wen, Raymond Chan, and Tieyong Zeng
Robust Tensor CUR Decompositions: Rapid 
Low-Tucker-Rank Tensor Recovery with Sparse 
Corruptions
HanQin Cai, Zehan Chao, Longxiu Huang,  
and Deanna Needell      

SIAM Journal on  
MATHEMATICAL ANALYSIS
A Regularity Theory for Parabolic Equations with 
Anisotropic Nonlocal Operators in Lq(Lp) Spaces
Jae-Hwan Choi, Jaehoon Kang, and Daehan Park
Mean-Field Limit Derivation of a Monokinetic Spray 
Model with Gyroscopic Effects
Matthieu Ménard
An Optimal Transport Analogue of the  
Rudin–Osher–Fatemi Model and Its  
Corresponding Multiscale Theory
Tristan Milne and Adrian Nachman     

SIAM Journal on  
MATHEMATICS of DATA SCIENCE 
High-Dimensional Analysis of Double Descent  
for Linear Regression with Random Projections
Francis Bach
Online MCMC Thinning with Kernelized Stein 
Discrepancy
Alec Koppel, Joe Eappen, Sujay Bhatt, Cole Hawkins, 
and Sumitra Ganesh
Optimization on Manifolds via Graph Gaussian 
Processes
Hwanwoo Kim, Daniel Sanz-Alonso, and Ruiyi Yang      

MULTISCALE MODELING & SIMULATION:  
A SIAM Interdisciplinary Journal
Generalized Multiscale Finite Element Treatment of 
a Heterogeneous Nonlinear Strain-Limiting Elastic 
Model
Maria Vasilyeva and S. M. Mallikarjunaiah
Exponential Convergence of a Generalized FEM  
for Heterogeneous Reaction-Diffusion Equations
Chupeng Ma and J. M. Melenk
Quantum Mechanics for Closure of Dynamical 
Systems
David C. Freeman, Dimitrios Giannakis,  
and Joanna Slawinska  

SIAM Journal on  
APPLIED ALGEBRA and GEOMETRY 
Gaussian Likelihood Geometry of Projective 
Varieties
Sandra Di Rocco, Lukas Gustafsson,  
and Luca Schaffler
Reduction by Symmetry in Obstacle Avoidance 
Problems on Riemannian Manifolds
Jacob R. Goodman and Leonardo J. Colombo
On the Stability of Multigraded Betti Numbers  
and Hilbert Functions
Steve Oudot and Luis Scoccola

SIAM Journal on  
APPLIED DYNAMICAL SYSTEMS
Connecting Anti-integrability to Attractors for  
Three-Dimensional Quadratic Diffeomorphisms
Amanda E. Hampton and James D. Meiss
A Unified Approach to Reverse Engineering and 
Data Selection for Unique Network Identification
Alan Veliz-Cuba, Vanessa Newsome-Slade,  
and Elena S. Dimitrova
Bifurcation Analysis of Bogdanov–Takens 
Bifurcations in Delay Differential Equations
M. M. Bosschaert and Yu. A. Kuznetsov 

SIAM Journal on  
APPLIED MATHEMATICS
Jacobi Processes with Jumps as Neuronal Models: 
A First Passage Time Analysis
Giuseppe D’Onofrio, Pierre Patie, and Laura Sacerdote
Linear Regularized 13-Moment Equations with 
Onsager Boundary Conditions for General Gas 
Molecules
Zhenning Cai, Manuel Torrilhon, and Siyao Yang
An Inversion Scheme for Elastic Diffraction 
Tomography Based on Mode Separation
Bochra Mejri and Otmar Scherzer       

SIAM Journal on COMPUTING 
A Strong Version of Cobham’s Theorem
Philipp Hieronymi and Chris Schulz
Discrepancy Minimization via a Self-Balancing Walk
Ryan Alweiss, Yang P. Liu, and Mehtaab S. Sawhney 

SIAM Journal on  
CONTROL and OPTIMIZATION
The Global Maximum Principle for Optimal Control 
of Partially Observed Stochastic Systems Driven by 
Fractional Brownian Motion
Yueyang Zheng and Yaozhong Hu

SIAM Journal on  
MATRIX ANALYSIS and APPLICATIONS 
Communication Lower Bounds and Optimal 
Algorithms for Multiple Tensor-Times-Matrix 
Computation
Hussam Al Daas, Grey Ballard, Laura Grigori,  
Suraj Kumar, and Kathryn Rouse
More on Tensors with Different Rank and 
Symmetric Rank
Yaroslav Shitov
Weighted Enumeration of Nonbacktracking Walks 
on Weighted Graphs
Francesca Arrigo, Desmond J. Higham,  
Vanni Noferini, and Ryan Wood     

SIAM Journal on  
NUMERICAL ANALYSIS
Frequency-Explicit A Posteriori Error Estimates for 
Discontinuous Galerkin Discretizations of Maxwell’s 
Equations
Théophile Chaumont-Frelet and Patrick Vega
Structure Preserving Primal Dual Methods for 
Gradient Flows with Nonlinear Mobility Transport 
Distances
José A. Carrillo, Li Wang, and Chaozhen Wei
Numerical Methods and Analysis of Computing 
Quasiperiodic Systems
Kai Jiang, Shifeng Li, and Pingwen Zhang        

SIAM Journal on OPTIMIZATION
Convergence Rate Analysis of a Dykstra-Type 
Projection Algorithm
Xiaozhou Wang and Ting Kei Pong
Harmonic Hierarchies for Polynomial Optimization
Sergio Cristancho and Mauricio Velasco
Exact Quantization of Multistage Stochastic Linear 
Problems
Maël Forcier, Stéphane Gaubert, and Vincent Leclère   

SIAM Journal on  
SCIENTIFIC COMPUTING
A Second-Order, Linear, L∞-Convergent, and 
Energy Stable Scheme for the Phase Field Crystal 
Equation
Xiao Li and Zhonghua Qiao
Behavior of the Discontinuous Galerkin Method 
for Compressible Flows at Low Mach Number on 
Triangles and Tetrahedrons
Jonathan Jung and Vincent Perrier
A Numerical Domain Decomposition Method for 
Solving Elliptic Equations on Manifolds
Shuhao Cao and Lizhen Qin   

SIAM/ASA Journal on  
UNCERTAINTY QUANTIFICATION
Analysis of a Computational Framework for 
Bayesian Inverse Problems: Ensemble Kalman 
Updates and MAP Estimators under Mesh 
Refinement
Daniel Sanz-Alonso and Nathan Waniorek
Error Estimate of a Quasi–Monte Carlo Time-
Splitting Pseudospectral Method for Nonlinear 
Schrödinger Equation with Random Potentials
Zhizhang Wu, Zhiwen Zhang, and Xiaofei Zhao


