Special Issue on Quantum Computing

This special issue highlights research that connects applied math ematics and computational science with quantum computing, and overviews timely developments and trends in the field.

Figure 1. Parameterized quantum circuit with six quantum bits. Figure courtesy of Antoine Jacquier, Oleksiy Kondratyev, Gordon Lee, and Mugad Oumgari.
On page 2, David Hyde and Alex Pothen introduce Part I of the SIAM News Special Issue on Quantum Computing by surveying the many exciting concepts and technical developments that appear throughout the issue.
In an article on page 6, Antoine Jacquier, Oleksiy Kondratyev, Gordon Lee, and Mugad Oumgari explore quantum computing's potential impacts on the discipline of financial mathematics and delve into the details of computation - including the construction of quantum circuits (see Figure 1).

What Can Quantum Computers Do for Applied Mathematicians?

By Giacomo Nannicini

A s applied mathematicians, we are familiar with the standard model of computation that is embodied by Turing machines. The Church-Turing thesis postulates that any physically realizable computation can be performed by a Turing machine, while the extended version suggests that any such computation can be performed efficiently by a probabilistic Turing machine. Although the original Church-Turing thesis is widely accepted, quantum computers challenge the veracity of the extended version; these computers represent a reasonable, physically realizable model of computation, but we do not yet know whether a probabilistic Turing machine can efficiently simulate them. The general belief is that it cannot, but as with many other fundamental questions in computational complexity theory, this belief may very well be disproven.

Computational Model

On the surface, quantum computers are programmed much like classical (i.e., non-quantum) machines; they have a state that evolves through the application of operations, and they ultimately output some information based on the final state. However, the state, operation, and output components behave differently from their classical counterparts. Here, we concisely describe these components; more details are available in the literature [8].
Let \otimes denote the tensor product, which is the same as the Kronecker product in this context:

$$
A \otimes B=\left(\begin{array}{cc}
a_{11} & \cdots \\
a_{21} & \cdots \\
\vdots & \ddots
\end{array}\right) \otimes B=\left(\begin{array}{c}
a_{11} B \\
a_{21} B \\
\vdots
\end{array}\right.
$$

The basic unit of information for a quantum computer is the quantum bit (qubit).

Bridging the Worlds of Quantum Computing and Machine Learning

By Somayeh Bakhtiari Ramezani

 and Amin AmirlatifiTThe emergence of machine learningparticularly deep learning-in nearly every scientific and industrial sector has ushered in the era of artificial intelligence (AI). On a parallel trajectory, quantum computing was once considered largely theoretical but has now become a reality. The fusion of these two powerful disciplines has created an unprecedented avenue for innovation, ultimately giving rise to quantum machine learning (QML). This novel concept promises to revolutionize computational science, data analytics, and predictive modeling in a wide variety of areas, from optimization to pattern recognition (see Figure 1).
Quantum computing offers the necessary computational horsepower to speed up complex machine learning algorithms, and machine learning provides a toolkit for the optimization of quantum circuits or the
decoding of quantum states. Here, we postulate as to how QML-especially quantum deep learning and quantum large language models (QLLMs)-can redefine the future of machine learning.

How Quantum Computing

 Can Benefit Deep Learning Quantum Speedup in Learning Algorithms: Quantum computing can have an immediate and substantial impact on algorithmic speedup, which is particularly relevant for machine learning and deep learning applications. A number of QML algorithms are modeled after Grover's algorithm, which offers quadratic and exponential speedup in unstructured search problems; support vector machines and several clustering methods exemplify this improvement [8]. Groverlike speedup could potentially reduce the training time for large neural networks.Quantum Neural Networks (QNNs): Traditional neural networks face computa-

Figure 1. The mutual benefits of quantum computing (in green) and machine learning (in blue) have resulted in a new concept called quantum machine learning, which will influence the future directions of fields like computational science, data analytics, and predictive modeling. Figure courtesy of the authors.
tional limitations, especially as they grow in size and complexity. In contrast, QNNs leverage quantum advantages-such as superposition and entanglement-to carry out computations more efficiently [9]. Hybrid quantum-classical networks have shown promising results in proficiently tackling machine learning tasks despite the initial limitations of QNNs.

Quantum Natural Language Processing (QNLP): Deep learning and large language models like GPT-4 are becoming integral parts of our world, with applications that range from natural language processing to decision-making algorithms. While these models are undeniably transforming various fields, there is a growing but often overlooked concern about their environmental impact. Training extensive AI/machine learning models requires significant computational resources and generates a substantial carbon footprint. In fact, a 2019 study estimated that training a single large neural network could emit the same amount of carbon that five cars produce over their entire lifetimes [10]. This alarming reality, which illuminates the significant environmental costs that are often overshadowed by technological advancements, calls for an immediate reassessment of the sustainability of current machine learning practices - especially in light of the global urgency to combat climate change.

Quantum computing might offer a more energy-efficient way to train and deploy large language models. Preliminary research in QNLP indicates the potential ability of quantum states to capture semantic relationships between words, which could lay the foundation for more advanced natural language processing systems [6]. QLLMs will likely impact this research area, especially when simulating humanlike conversation with high accuracy.

See Machine Learning on page 3

5 MIT SIAM Student Chapter Hackathon Utilizes Openaccess Energy Data Undergraduate and graduate students recently came together at the Massachusetts Institute of Technology (MIT) to take part in the Global Energy Monitor Hackathon, which was co-hosted by the MIT SIAM Student Chapter and Earth Hacks. Bianca Champenois and Sanjana Paul describe the event, which challenged participants to tackle problems about worldwide energy data and solar resource potential.

6 Quantum Computing for Financial Mathematics Quantum computing marks the start of a new chapter for financial mathematics, which seeks to provide the most efficient tools for financial computations such as risk management, credit scor ing, encryption, and portfolio optimization. Antoine Jacquier, Oleksiy Kondratyev, Gordon Lee, and Mugad Oumgari describe several aspects of quantum computing that are especially relevant to financial mathematics problems.

7 Electrical Resistance

 and Conformal Maps Mark Levi elaborates on a previous observation about the conformal deformation of conductors. After noting that the dilation of a square that is cut from a current-conducting shee changes the distance that the current must travel by the same factor as the width, Levi draws connections between the confor mal equivalence and electrical resistance of annular regions.8 High School Mathematical Contest in Modeling Explores Dandelions and Electric Buses The Consortium for Mathematics and Its Applications (COMAP) held its annual High School Mathematical Contest in Modeling (HiMCM) in November 2023. Kathleen Kavanagh and Benjamin Galluzzo-who authored the contest's two open-ended problems on dandelion spread and the sustainability of electric buses-overview COMAP and HiMCM and encourage SIAM members to get involved.

كiaルl

ISSN 1557-9573. Copyright 2024, all rights
reserved, by the Society for Industrial and Ap reserved, by the Society 6 or ndastrias and Applied
Mathematics, SIAM, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688; (215) 382-9800; siam@
siam.org. To be published siam.org. To be published 10 times in 2024: January/ February, March, April, May, June, July/August,
September, October, November, and December, September, October, November, and December.
The material published herein is not endorsed by The material pubished herein is not endorsed by
SIAM, nor is it intended to reflect SIAM's opinion. The editors reserve the right to select and edit all material submitted for publication.

Advertisers: For display advertising rates and

 information, contact the Department of Marketing \& Communications at marketing@siam.org.One-year subscription (nonmembers): Electronic-
only subscription is free. $\$ 73.00$ subscription rate worldwide for print copies. SIAM members and subscribers should allow eight weeks for an address change to be effected. Change of address notice should include old and new addresses with zip codes.
Please request an address change only if it will last six Please request an
months or more.

An Introduction to Quantum Computing and Applied Mathematics

By David Hyde and Alex Pothen

Over the last decade, quantum computing has steadily become a global research priority. In 2018, the U.S. federal government created the $\$ 1.2$-billion National Quantum Initiative Act ${ }^{1}$ to spur quantum research and development. And in 2023, the U.S. National Institute of Standards and Technology ${ }^{2}$ identified quantum information technologies as a critical and emerging technology for prioritization ${ }^{3}$ (alongside domains like artificial intelligence and machine learning, clean energy generation, and semiconductors). The current emphasis on quantum computing (see Figure 1) has inspired multiple new funding opportunities across science, technology, engineering, and mathematics.
With this backdrop in mind, it is imporant to recognize the deep ties that exist between applied mathematics and quantum computing. The primary languages of quanum mechanics and quantum computing are optimization and theoretical and numerical linear algebra - all of which are foundational competencies of SIAM's memberhip. And given the constraints of near-term quantum computers, scientific comput-

[^0]

NISQ	Noisy intermediate-scale quantum
QAOA	Quantum Approximate Optimization Algorithm
QLLM	Quantum large language model
QML	Quantum machine learning
QNLP	Quantum natural language processing
QNN	Quantum neural network
QPU	Quantum processing unit
QSDP	Quantum semidefinite programming
QSP	Quantum signal processing
QSVT	Quantum singular value transformation
Qubit	Quantum binary digit (quantum bit)
vQE	Variational quantum eigensolver
Figure 2.	List of common quantum computing acronyms that

appear throughout the articles in this issue. The acronyms are also defined within the text itself.
the seven quantum compuing. divided surn sequent issues of SIAM News. In this first install ment, Giacomo Nannicin University of Southern California) introduces the fundamentals of quantum computing and overview several problems that may be well suited for quantum computers. Somayeh Bakhtiari Ramezani and Amin Amirlatifi (both of Mississippi State University) investigate the interplay between quantum computing and machine learning. Lin Lin (University of California, Berkeley) discusses the importance of end-to-end complexity for quantum algorithms. And lastly, Antoine Jacquier (Imperia College London), Oleksiy Kondratyev (Abu Dhabi Investment Authority) Gordon Lee (Bank of New York Mellon Corporation) and Mugad Oumgar (Lloyds Banking Group) address the connection between the quantum

> Geometric Design
> J. Peters, University of Florida, USA

> Geosciences
T. Mayo, Emo
> I. Mayay, Emory University, USA
> G. Kutyniok, Ludwig Maximilian University of Munich, Germany
> Life Sciences
R. McGee, Colle R. McGee, Colle
Linear Algebra

> Linear Algebra
M. Espanol, Arizona Mathematical Aspects of Matersiily, USA F. Otto, Max Planck Institute for Mathematics Sciences, Germany Mathes, Germany
M Wert Planet Earth R. Welter, University of Hamburg, Germany K. Oliveras, Seattle University, USA Optimization
> A. Wächter, No western University USA Orthogonal Polynomials and Special Function P. Clarkson, University of Kent, UK Uncertainty Quantification E. Spiller, Marquette University, USA

> SIAM News Staff
> J.M. Kunze, assoc editor, sorg@siam.org ...Kunze, associate editor, kunze@siam.org Printed in the USA Siall is a registered trademark synergies between these research areas and ultimately foster new collaborations. This international cohort of researchers includes academics, national laboratory scientists, and practitioners from industry. These individuals have prepared a collection of articles for SIAM News that explore particular components of the intersection between applied mathematics and quantum computing
The seven articles in this series are mportance of quantum technologies. We encourage interested readers to contact the authors and explore the references that are mentioned in these works. Finally, we look forward to sharing the next set of articles about the intersection of quantum computing and applied mathematics in the forthcoming May issue of SIAM News.

Pending funding, SIAM will hold the SIAM Quantum Intersections Convening - Integrating Mathematical Scientists Into Quantum Research in October 2024. The goal of this convening is to foster and increase the involvement and visibility of mathematicians and statisticians in quantum science research and education. Stay tuned for additional details!

David Hyde is an assistant professor of computer science at Vanderbilt University. His research interests include computational physics, cloud computing, computer graphics, and quantum computing. Alex Pothen is a professor of computer science at Purdue University. His research interests include combinatorial scientific computing, saph algorithms, and parallel computing. Pothen received SIAM's George Polya Prize in Applied Combinatorics in 2021 and is a Fellow of SIAM, the American Mathematical Society, and the Association for Computing Machinery.

Want to Place a

Professional Opportunity Ad or Announcement in SIAM News?

Please send copy for classified advertisements and announcements in SIAM News to
marketing@siam.org.
For details, visit
siam.org/sponsors-advertisers-
and-exhibitors/advertising.
Check out the SIAM Job Board at jobs.siam.org to view all recent job postings.

Ligure 1. This quantum computer at Lawrence Berkeley National
Laboratory is exploring quantum's potential to enable ground breaking computational power. Figure courtesy of the University of California, Lawrence Berkeley National Laboratory

Editorial Board

H. Kaper, Editor-in-chief, Georgetown University, USA K. Burke, University of California, Davis, USA A.S. El-Bakry, ExxonMobil Production Co., USA J.M. Hyman, Tulane University, USA L.C. McInnes, Argonne National Laboratory, US N. Nigam, Simon Fraser University, Canada
A. Pinar, Sandia National Laboratories, USA A. Pinar, Sandia National Laboratories, USA R.A. Renaut, Arizona State University, USA Representatives, SIAM Activity Groups
Algebraic Geometry
K. Kubjas, Aalto University, Finland G.G. Chen, Uartial Differential Equat Applied Mathematics Education Applied Mathematics Educatio
P. Seshaiyer, George Mason Uni Computational Science and Engineering S. Rajamanickam, Sandia National Laboratories, USA Control and Systems Theory

G. Giordano, Data Science

Discrete Mathemotic
Discrete Mathematics
P. Tetali, Carnegie Me
Dynamical Systems
K. Burke, Univens

Financial Mathematics California, Davis, USA
L. Veraart, London School of Economics, $U K$

Quantum Advantages and End-to-end Complexity

By Lin Lin

Rapid advancements in quantum computing offer unparalleled opportunities for the scientific computing community However, it is quite difficult to fully har ness the potential of quantum computers and outperform classical computers in scientific computing. It may be tempting to think that n quantum bits (qubits) can encode 2^{n} complex amplitudes-which would suggest exponential quantum speed-ups-but the reality is more subtle. Every quantum algorithm must interact with classical processing systems, which means that we need to thoughtfully consider input-output models and the specific requirements of quantum algorithms when evaluating quantum complexities. Due to the inherent constraints of quantum devices, we can only achieve significant quantum advantages for problems that have a limited amount of input and output data.
Let us divide the quantum cost into three main categories: input, output, and running costs. A quantum algorithm typically begins with a standard state such as $\left|0^{n}\right\rangle$; a unitary matrix then transforms this state to prepare the input state. The input cost is the quantum gate complexity that is required to implement this unitary matrix and the output cost pertains to the quantum measurement process - which is generally

Machine Learning

Quantum Parallelism and Optimization: A defining feature of quantum computing is its ability to perform paralle computations through superposition - an invaluable property for optimization prob lems, which are the underlying theme of machine learning algorithms. The Quantum Approximate Optimization Algorithm (QAOA) is potentially able to optimize complex functions that are classically hard to solve [4]. QAOA employs quantum parallelism to simultaneously explore multiple solutions, thus providing a much-needed alternative for the optimization of deep learning models. Another promising quantum algorithm is the variational quantum eigensolver (VQE) [7]. Many machine learning algorithms hinge on the solution of eigenvalue problems, so the VQE could significantly expedite these calculations on quantum hardware.

How Deep Learning Can
 Benefit Quantum Computing

Machine Learning for Quantum Error Correction: Quantum error correction is vital in the creation of reliable quantum computers. In classical computers, error correction is relatively straightforward; errors usually arise when binary digits (bits) flip from 0 to 1 or vice versa, and several tech niques-such as parity checks-can identify and correct them. But in quantum computing, phase errors and other quantum decoherence mechanisms may also disrupt the delicate quantum states. Although traditiona quantum error correction techniques-like surface codes and cat codes-are effective, they require extensive resources.
Machine learning methods have shown promise in error detection and correction. We can train deep neural networks to identify quantum errors by learning the intricate patterns through which these errors typically manifest. By doing so, the networks can effectively "flag" corrupted quantum states for correction - even when tradi tional error correction techniques are computationally expensive or less efficient. This approach could bring fault-tolerant quantum computers closer to reality.
Quantum System Modeling: Deep learning can also assist with the model ing and simulation of complex quantum systems. We can use quantum data to train
performed on one or more qubits at the end of the algorithm. The number of necessary repetitions to carry out the quantum algorithm determines the output cost. Finally, the running cost refers to the expense that is incurred by executing the quantum algorithm a single time (excluding the cost of preparing the input state). In order to conduct a comprehensive end-to-end analysis of quantum advantage, we must consider all three of these costs. We also have to compare the quantum algorithm's performance with that of the best available classical algorithms. A recent survey systematically investigated this end-to-end complexity for a wide range of quantum applications [5].
Shor's algorithm serves as a great example of end-to-end quantum advantage because it effectively tackles the prime factorization problem, which challenges classical computers. This algorithm excels at end-to-end complexity in multiple ways: (i) It has minimal input and output costs since it only involves integers; (ii) it maintains a running cost that is polynomial in relation to the integer's bit length; and (iii) it significantly surpasses the best classical algorithm for the task, which has a superpolynomial cost in the number of bits.
Hamiltonian simulation-which finds numerous applications in quantum physics and chemistry-is another method that could achieve a quantum advantage.

During this process, an initial state $\left|\psi_{0}\right\rangle$ evolves over time t to $\left|\psi_{t}\right\rangle=e^{-i H t}\left|\psi_{0}\right\rangle$. For a system with n qubits, the size of the Hamiltonian matrix H is 2^{n} but the amount of information in H is typically only polynomial in n. We begin with simple initial states that are prepared at a polynomial cost in n; the best algorithm for simulat ing quantum dynamics up to time t with
precision ϵ only queries the unitary encoding of H (known as a block encoding) $\mathcal{O}\left(\|H\|_{2} t+\log (1 / \epsilon)\right)$ times [7, 10]. The output emphasizes accurate approximation of observables that are associated with $\left|\psi_{t}\right\rangle$-i.e., $\left\langle\psi_{t}\right| O\left|\psi_{t}\right\rangle$-rather than reconstructions of all of the information in $\left|\psi_{t}\right\rangle$ The cost of measuring these observables

See End-to-end Complexity on page 5

Figure 1. Relationship between the quantum singular value transformation (OSVT) and the linear combination of Hamiltonian simulation (LCHS) for the simulation of $e^{-A t}$. Figur courtesy of Dong An of the Joint Center for Quantum Information and Computer Science
surrogate models that simulate the original system's behavior at a faster pace than other classical simulators; analysis of such models may lend insight into behaviors that are difficult to study directly. These surrogate models can pinpoint patterns and properties within quantum systems that otherwise may not be readily identifiable, potentially leading to advancements in molecular science, quantum chemistry, materials science, and ther related fields [3].
Quantum Algorithms: Hybrid quantumclassical algorithms that utilize both quantum computers and classical machine learning models are forging new paths for the solution of complex problems in optimiza tion, data analysis, and the like. One major machine learning application in quantum computing is the optimization of traditional quantum algorithms. For example, reinforcement learning can fine-tune a quantum circuit's parameters and yield more efficient and effective quantum computations [3].

Open Problems in the Era

 of Noisy Intermediate-scale
Quantum Computing

A key challenge that presently impacts quantum computing in general (and QML in particular) is the limitation of existing quantum hardware. Current gated quantum computers are predominantly classified as noisy intermediate-scale quantum (NISQ) devices. These devices often have a limited number of quantum bits (qubits)-ranging from tens of qubits to a few hundred-though machines with several thousand qubits are under development. Computers in this transitional period are not yet fully fault tolerant and are constrained by physical limitations like decoherence and gate errors, which affect their ability to maintain high-quality entanglement and achieve a high circuit depth. Despite these issues, NISQ devices can perform certain computational tasks more efficiently than their classical counterparts. Furthermore, the limited number of qubits and relatively large error rates complicate the mplementation of complex QNNs on these machines. Even before the issue of algorithmic design, NISQ computers must handle intrinsic imperfections - such as the aforementioned decoherence and gate errors [1].
While QML in the NISQ era faces unique challenges-especially concerning hardware limitations-it also presents exciting research opportunities for interdisciplinary collaborations between computer scientists,
applied mathematicians, and physicists. A variety of techniques are paving the way for increased QNN compatibility with NISQera devices, including variational circuits, error mitigation, and hybrid models. As these methods mature, the prospect of QML implementation in near-term quantum computing becomes even more promising.
One of the most popular approaches in this regard is the use of variational circuits: shallow quantum circuits that are adaptable to NISQ-era constraints. This tactic classically optimizes the circuit parameters, while the quantum component of the computation executes specific subroutines [7]. Error mitigation techniques, such as zero-noise extrapolation, also help to reduce the effect of noise in the system. By running the same quantum operation multiple times with varying noise levels, users can estimate and correct for the impact of errors. A third approach for NISQ-era quantum computers integrates quantum computing into classical neural networks as hybrid quantumclassical models [2]. Doing so allows the quantum portions of the model to focus on specific tasks that suit them well-such as complex optimizations-while offloading other tasks to the classical system. Finally, we note that effective methods for quantum data encoding-i.e., encoding classical data into quantum states-remain an open problem. Current approaches either suffer from inefficiencies or lack the ability to capture the richness of classical data [5].

Concluding Thoughts

As we venture deeper into the realms of AI and quantum mechanics, the convergence of these two technologies offers unparalleled potential. The synergistic relationship between quantum computing and machine learning necessitates a concrete interdisciplinary framework wherein quantum physicists, computer scientists, and applied mathematicians can work together o develop robust, scalable, and applicable quantum algorithms for machine learning.

References

[1] Arute, F., Arya, K., Babbush, R. Bacon, D., Bardin, J.C., Barends, R., Martinis, J.M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574, 505-510.
[2] Cao, Y., Romero, J., Olson, J.P. Degroote, M., Johnson, P.D., Kieferová, M., ... Aspuru-Guzik, A. (2020). Quantum
chemistry in the age of quantum computing. Chem. Rev., 119(19), 10856-10915.
[3] Carrasquilla, J. (2020). Machine learning for quantum matter. Adv. Phys. X, 5(1), 1797528.
[4] Farhi, E., Goldstone, J., \& Gutmann, S. (2014). A quantum approximate optimization algorithm. Preprint, arXiv:1411.4028.
[5] Liang, Z., Song, Z., Cheng, J., He, Z., Liu, J., Wang, H., ... Shi, Y. (2022). Hybrid gate-pulse model for variational quantum algorithms. Preprint, arXiv:2212.00661.
[6] Meichanetzidis, K., Gogioso, S., de Felice, G., Chiappori, N., Toumi, A., \& Coecke, B. (2020). Quantum natural language processing on near-term quantur computers. Preprint, arXiv:2005.04147.
[7] Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J.,

O'Brien, J.L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5, 4213.
[8] Ramezani, S.B., Sommers, A., Manchukonda, H.K., Rahimi, S., \& Amirlatifi, A. (2020). Machine learning algorithms in quantum computing: A survey. In 2020 international joint conference on neural networks (IJCNN) (pp. 1-8). Institute of Electrical and Electronics Engineers.
[9] Schuld, M., Sinayskiy, I., \& Petruccione, F. (2015). An introduction to quantum machine learning. Contemp. Phys., 56(2), 172-185.
[10] Strubell, E., Ganesh, A., \& McCallum, A. (2019). Energy and policy considerations for deep learning in NLP In Proceedings of the 57th annual meeting of the Association for Computational Linguistics (pp. 3645-3650). Florence, Italy Association for Computational Linguistics.

Somayeh Bakhtiari Ramezani holds a Ph.D. in computer science from Mississippi State University. She is a 2023 Southeastern Conference Emerging Scholar and a 2021 Computational and Data Science Fellow of the Association for Computing Machinery's Special Interest Group on High Performance Computing. Ramezani's research interests include probabilistic modeling and optimization of dynamic systems, quantum machine learning, and time series segmentation. Amin Amirlatifi is an endowed professor and an associate professor of chemical and petro leum engineering in the Swalm School of Chemical Engineering at Mississippi State University. His research interests include numerical modeling and optimization, quantum computing, and the application of artificial intelligence and machine learning in pre dictive maintenance and the energy sector.

Quantum Computers

The state of a q-qubit quantum computer is a unit vector in $\left(\mathbb{C}^{2}\right)^{\otimes q}=\mathbb{C}^{2^{q}}$. Because this vector space has 2^{q} standard basis elements, we conventionally label them as q-digit binary strings that are denoted by $|j\rangle$ for $j \in\{0,1\}^{q}$; a "ket"-i.e., a symbol included in brackets $|\cdot\rangle$-is simply a column vector. In quantum mechanics, practitioners often graphically represent a 1 -qubit state $|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle=$ $\alpha_{0}\binom{1}{0}+\alpha_{1}\binom{0}{1}, \quad \alpha_{0}, \alpha_{1} \in \mathbb{C}$ on a sphere (see Figure 1). Such a representation is only up to a global phase factor $e^{i \phi}$, but this factor is unimportant due to the laws of measurement.
The operations that evolve the state correspond to quantum circuits, which are unitary matrices $U \in \mathbb{C}^{2^{q} \times 2^{q}}$ (see Figure 2). We typically express circuits in terms of basic gates - i.e., certain 2×2 or 4×4 complex unitary matrices that constitute the "assembly language." The composition of basic gates follows the standard rules for tensor products and matrix multiplication. Consider a 2-qubit system; applying the gate U onto the first qubit and the gate V onto the second qubit, followed by the gate W onto the first qubit, is equivalent to applying the matrix $(W \otimes I)(U \otimes V)=W U \otimes V$ to the entire quantum state. A measurement of the state $|\psi\rangle=\sum_{\substack{2^{q}-1 \\ j=0}}^{\alpha_{j}}|j\rangle$ is a special, nonunitary operation whose outcome is a random variable X with sample space $\{0,1\}^{q}$ and $\operatorname{Pr}(X=j)=\left|\alpha_{j}\right|^{2}$. We only gain information about a quantum state from measurements, and the state collapses to $|j\rangle$ if we observe j as the outcome of a measurement.

A quantum algorithm contains quantum circuits and subsequent measurements. In order for a quantum algorithm to be efficient, it must use a polynomial number of resources - i.e., a polynomial number of qubits and basic quantum gates (the assembly language). Based on this explanation, several differences between classical and quantum computers are readily observable. First, describing the state of a quantum computer requires that we specify an exponential-sized complex vector (i.e., 2^{q} for a q-qubit system), whereas describing the state of a classical computer simply requires a linear-sized binary vector. But given the effect of measurements, we can only extract a linear amount of information (in terms of the number of qubits) from the exponential-sized complex vector - so from a q-qubit state, we obtain q bits of information after a measurement. Second, all operations (except measurements) that a quantum computer applies are linear and reversible; a unitary matrix U satisfies $U U^{\dagger}=U^{\dagger} U=I$, where \dagger denotes the conjugate transpose. Though these properties may seem restrictive, a universal quantum computer is Turing-complete in that it can compute any Turing-computable function while only requiring some polynomial number of additional resources.

Figure 1. In quantum computing, the Bloch sphere is a possible graphical representation of the state of a quantum bit. Figure courtesy of the author.

Practical Uses of

Quantum Computers

From a practical viewpoint, existing quantum computers are still far from faithfully reproducing the ideal model of quantum computation. Nonetheless, the research community has been persistently seeking strong use cases for quantum computers - many of which will resonate with the SIAM community. Here, we present some of the relevant problems. The following list is not exhaustive, nor can it be, as this area of research is highly active; the takeaway is that quantum computers excel at certain tasks and perform poorly at others. Because classical algorithms and quantum computers offer different tradeoffs for many interesting computational problems, researchers often study quantum approaches in search of potential advantages.
Richard Feynman originally proposed the concept of quantum computers to simulate the time evolution of a quantum mechanical system [5]. Mathematically, this idea is akin to implementing a circuit that acts as $e^{-i H t}$ on the state vector, where the matrix H and scalar t are input data. Quantum computers can solve this problem in time polynomial in the number of qubits [2], whereas no efficient classical algorithm has been discovered so far. The problem is "prototypical" for the class of problems that are efficiently solvable by a quantum computer. It finds direct applications in quantum physics and chemistry (i.e., the simulation of quantum dynamics) and is a core component of many quantum algorithms.
Quantum computers can also aptly estimate certain eigenvalues. Consider a q-qubit unitary U (recall that U is a $2^{q} \times 2^{q}$ matrix) and an eigenvector $|\psi\rangle$ of U. The phase estimation algorithm determines an ε-approximation of the eigenvalue of $|\psi\rangle$ with $\mathcal{O}(1 / \varepsilon)$ applications of U and a number of gates that is polynomial in q, whereas a classical algorithm would generally need to perform a matrix-vector operation with the (exponentially-sized) matrix U.
There are several quantum algorithms for the solution of linear systems, beginning with seminal work in 2009 [6]. Multiple possible input models are also in use; for example, the sparse oracle access model describes matrix entries via maps that indicate the position of nonzero elements and their values. However, this model is not necessarily the most efficient approach for every scenario. Let $A \in \mathbb{R}^{m \times m}, b \in \mathbb{R}^{m}$, $\varepsilon>0$, and $z=A^{-1} b$. The natural "quantum" encoding" of the solution z is the state $|\psi\rangle=\frac{1}{\|z\|} \sum_{j=0}^{m-1} z_{j}|j\rangle$. A quantum linear systems algorithm produces a state $|\phi\rangle$ so that $\||\phi\rangle-|\psi\rangle \| \leq \varepsilon$. The runtime of such an algorithm is polylogarithmic in m but depends (at least linearly) on the linear system's condition number $\kappa[9]$. The fastest known runtime for the sparse access input model is $\tilde{O}(d \kappa)$ (ignoring all polylogarithmic factors), where d is the maximum number of nonzero elements in each row of A.
The overarching purpose of these algorithms for linear systems is to implement the matrix function $f(x)=1 / x$, which implicitly computes an eigendecomposition of A and takes the reciprocal of each eigenvalue in the corresponding eigenspace. Two important factors merit consideration in this endeavor. First, we must account for the cost of the oracles that describe the entries of A and prepare a state encoding b. These oracles can be inexpensive if A and b admit efficient algorithmic descriptions, but they may take a time that is proportional to the total number of nonzero elements in less favorable scenarios - resulting in a corresponding increase in runtime. Second, the solution z cannot be read directly because it is encoded as a quantum state. If we wish to extract a classical

Figure 2. This quantum circuit implements an operation called the quantum Fourier transform. All operations correspond to unitary matrices except for the last operation on each wire, which indicates a measurement. Figure courtesy of the author.
description of the solution, we must perform a potentially expensive operation called quantum state tomography [10].
It is also possible to efficiently implement other matrix functions besides the inverse on a quantum computer. This prospect is best understood in the framework of block encodings [7]. A block encoding of a matrix A is a quantum circuit that, in some subspace, acts on the quantum state as A (possibly rescaled). While a quantum circuit is always a unitary operation, A need not be unitary or even square in this case. We can utilize a variety of tactics to implement a block encoding of some given matrix A in a data-driven way. From this block encoding, we can then implement approximations of polynomial functions of A. The construction of the Gibbs state $e^{A} / \operatorname{Tr}\left(e^{A}\right)$ for Hermitian A is a particularly notable scenario. Gibbs states are important in many branches of applied mathematics, including machine learning and optimization. In some cases, a block encoding of an $n \times n$ Gibbs state can be constructed in times as fast as $\mathcal{O}(\sqrt{n})$! The speedup is quite large compared to classical approaches, although the stated runtime is only achievable under very specific, favorable conditions.
Finally, quadratic quantum speedups via amplitude amplification yield faster algorithms for many problems [3]. One such example is unstructured search (also known as Grover's algorithm), which searches over a set with no structural property so that the only possible search approach is to examine all of the elements in the set. Another example is mean estimation, which computes the mean of a univariate or multivariate random variable [4]. These approaches are strongly related to quantum walks, which also admit quadratic speedups when compared to classical random walks [1]. The speedups rely on specific input models and may incur additional conditions, so it is important to pay attention to the details.

The aforementioned problems represent only a tiny fraction of active research areas, but hopefully this overview will generate some excitement about quantum comput ing. Quantum algorithms can be understood purely through linear algebra and often offer different tradeoffs than classical algorithms, which means that they are potentially useful under the right conditions. However, we must overcome many challenges-in subjects such as hardware design and engineering, algorithms and software, and practical considerations like numerical stability-to bring this source of potential to fruition. Classical computers will likely remain the best choice for most computational problems, but if quantum computers can accelerate even just a few key issues in practice, that alone could be worth the time and exploratory investment.

References

[1] Apers, S., Gilyén, A., \& Jeffery, S. (2019). A unified framework of quantum walk search. Preprint, arXiv:1912.04233.
[2] Berry, D.W., Childs, A.M., \& Kothari, R. (2015). Hamiltonian simulation with nearly optimal dependence on all parameters. In 2015 IEEE 56th annual symposium on foundations of computer science (pp. 792-809). Berkeley, CA: Institute of Electrical and Electronics Engineers.
[3] Brassard, G., Høyer, P., Mosca, M., \& Tapp, A. (2002). Quantum amplitude amplification and estimation. In S.J. Lomonaco, Jr. \& H.E. Brandt (Eds.), Quantum computation and information (pp. 53-74). Contemporary mathematics (Vol. 305). Providence, RI: American Mathematical Society.
[4] Cornelissen, A., Hamoudi, Y., \& Jerbi, S. (2022). Near-optimal quantum algorithms for multivariate mean estimation. In STOC 2022: Proceedings of the 54th annual ACM SIGACT symposium on theory of computing (pp. 33-43). Rome, Italy: Association for Computing Machinery
[5] Feynman, R.P. (1982). Simulating physics with computers. Int. J. Theor. Phys., 21(6/7), 467-488.
[6] Harrow, A.W., Hassidim, A., \& Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103(15), 150502.
[7] Lin, L. (2022). Lecture notes on quantum algorithms for scientific computation. Preprint, arXiv:2201.08309.
[8] Nielsen, M.A., \& Chuang, I.L. (2010). Quantum computation and quantum information (2nd ed.). Cambridge, U.K.: Cambridge University Press.
[9] Somma, R.D., \& Subaş1, Y. (2021). Complexity of quantum state verification in the quantum linear systems problem. $P R X$ Quantum, 2(1), 010315.
[10] Van Apeldoorn, J., Cornelissen, A., Gilyén, A., \& Nannicini, G. (2023). Quantum tomography using state-preparation unitaries. In Proceedings of the 2023 annual ACM-SIAM symposium on discrete algorithms (SODA) (pp. 1265-1318). Philadelphia, PA: Society for Industrial and Applied Mathematics.

Giacomo Nannicini is an associate professor in the Daniel J. Epstein Department of Industrial and Systems Engineering at the University of Southern California. His main research and teaching interest is optimization and its applications.

on social mediab
-iFIIL.

MIT SIAM Student Chapter Hackathon Utilizes Open-access Energy Data

By Bianca Champenois and Sanjana Paul

During the first weekend in February, undergraduate and graduate students from the greater Boston area came together at the Massachusetts Institute of Technology (MIT) to take part in the Global Energy Monitor (GEM) Hackathon. ${ }^{1}$ The event was co-hosted by Bianca Champenois, president of the MIT SIAM Student Chapter, ${ }^{2}$ and Sanjana Paul, executive director of Earth Hacks. ${ }^{3}$ Hackathons generally serve as programming contests during which participants work in small groups to teach each other new skills and develop interesting projects that pertain to a certain theme, all while competing against othe teams for prizes. The projects can take many forms, ranging from the creation of code repositories and website mockups to new datasets and hardware prototypes. The GEM Hackathon encouraged participants to utilize the open-access energy data in the GEM databases ${ }^{4}$ to tackle questions about worldwide energy data availability and estimate solar resource potential.
Students chose between two open-end ed challenge statements and applied their mathematics, modeling, programming,

[^1]
End-to-end Complexity

Continued from page 3

is again polynomial in n and $1 / \epsilon$. Given these parameters, classical algorithms cannot reliably and accurately compute such dynamical properties over an extended duration t at a polynomial cost in n. This shortcoming sets a strong foundation for the potential of quantum speedups during the simulation of quantum dynamics.

Does quantum computing demonstrate a clear, end-to-end advantage in other domains besides prime factorization and quantum dynamics simulation? While many applications still lack a solid foundational basis, rapid progress is certainly occurring across various areas.

Consider a seemingly simple variation of the simulation of quantum dynamics, where $i H$ is replaced with a general matrix A that acts on n qubits. Such problems appear when simulating certain open quantum systems. The goal is to simulate $\left|\psi_{t}\right\rangle=e^{-A t}\left|\psi_{0}\right\rangle$ and subsequently measure an observable $\left\langle\psi_{t}\right| O\left|\psi_{t}\right\rangle$. We can always decompose a general matrix A (through a Cartesian decomposition) as $A=L+i H$, where $L=\left(A+A^{\dagger}\right) / 2, H=\left(A-A^{\dagger}\right) /(2 i)$, and A^{\dagger} represents the Hermitian conjugate of A. Both L and H are Hermitian matrices. If L is positive semidefinite, the matrix 2-norm satisfies $\left\|e^{-A t}\right\|_{2} \leq 1$ and the norm of the final state satisfies $\|\left|\psi_{t}\right\rangle \|_{2} \leq 1$. The input can still be a simple state that is prepared at a polynomial cost in n. When $\|L\|_{2}$ is small, the dynamics only differ slightly from the Hamiltonian simulation prob lem, thus suggesting that the general task of estimating the observable $\left\langle\psi_{t}\right| O\left|\psi_{t}\right\rangle$ could be hard for classical computers. But if the norm $\|\left|\psi_{t}\right\rangle \|_{2}$ decreases rapidly with respect to t, estimating $\langle\psi| O\left|\psi_{\rangle}\right\rangle$with a multiplicative accuracy of ϵ requires an increased number of repetitions - thereby raising the output cost. To establish a quantum advantage over this non-Hermi tian simulation problem, we must find duration t that is sufficiently demanding for classical computers yet feasible fo quantum computers. The lack of current knowledge about the difficulty of practi-
mapping, visualization, and storytelling skills to develop feasible solutions. The first challenge asked attendees to design tool that would allow individuals from anywhere in the world to learn about the power plants in their vicinity, and the second challenge tasked them with analyzing and combining multiple datasets to compare the potential of solar power against existing real-world implementations. The assignments were intentionally broad so that students could use their creativity to generate new perspectives. Represented schools at he GEM Hackathon included MIT, Bentley University, Boston University, Brandeis University, Bunker Hill Community College, Northeastern University, and Simmons University. Because the backgrounds and majors of participating students varied widely, team members were able to exchange perspectives and apply a variety of skill sets in an interdisciplinary setting.
The two-day event, which took place during the Independent Activities Period at MIT, included workshops and talks to upport students' projects and experiences. To wrap up the first day of festivities, Hackathon organizers created a custom version of GeoGuessr - a popular geography game wherein players guess the locations of various Google Street View imagesthat focused on power plants around the world. During this activity, participants

5 https://www.geoguessr.com

cally relevant non-Hermitian Hamiltonians calls for further research in this area. We have discussed input cost, output cost, and the potential difficulties that classical solvers face. The remaining aspect of end-to-end analysis is the running cost - specifically, the simulation $e^{-A t}$ on a quantum computer. This task is actually quite challenging. One significant advancement in quantum algorithms from the past decade is the development of the quantum singular value transformation (QSVT) [7]. Consider the singular value decomposition of $A=U \Sigma W^{\dagger}$. Since U and W are unitary matrices, implementing a singular value transformation like $U f(\Sigma) W^{\dagger}$ mainly requires that we address the non-unitarity of $f(\Sigma)$. This notion is a key innovation in both QSVT and quantum signal processing [10]. When $A=i H$, the singular value decomposition directly relates to the eigenvalue decomposition $A=V D V^{\dagger}$ in which V is also unitary, thus allowing QSVT to perform the Hamiltonian simulation $e^{-i H t}$. But for a more general A, the eigenvalue decomposition becomes $A=V D V^{-1}$ and V is simply an invertible matrix. Because the simulation task $e^{-A t}=V e^{-D t} V^{-1}$ is intrinsically an eigenvalue decomposition problem, techniques such as QSVT are not applicable.
Given this restriction, how do we prepare the state $\left|\psi_{t}\right\rangle=e^{-A t}\left|\psi_{0}\right\rangle$ on a quantum computer? The leading approach is somewhat complex and perhaps counterintuitive. It begins by treating the problem like an ordinary differential equation (ODE): $\frac{\mathrm{d}|\psi(s)\rangle}{\mathrm{d} s}=$
$-A|\psi(s)\rangle, \psi(0)=\left|\psi_{0}\right\rangle$ on $0 \leq s \leq t$. We then discretize this ODE over time and convert it into a large linear system of equations. We solve the resulting linear system with a quantum linear system solver, such as the renowned Harrow-Hassidim-Lloyd algorithm [8] or a more recent near-optimal solver [3, 4, 9]. The ODE itself is solvable via a traditional time-marching strategy, similar to the type hat is employed in standard numerical ODE solvers. Although direct implementation leads to an excessively high output cost due to diminishing success probability, we developed a time-marching strategy that can partially mitigate this issue [6].
learned about different types of power plants and observed their physical appearances in real life. Exploring new landscapes via Google Street View also offered a fresh perspective on the size and impact of global energy projects - and gave hackers a break from project development to socialize and have some fun.
Another session familiarized students with Social Explorer: ${ }^{6}$ a tool that pro-
vides access to U.S. demographic data. Alejandro Paz, a Librarian for Energy and Environment at MIT, explained the history and mechanics of the tool and gave a demonstration. He also overviewed all of the resources and datasets that are available to students via MIT's libraries.
The GEM Hackathon was further bolstered by mentor support, including that of Ted Nace (founder and executive

See Hackathon on page 7

During the Global Energy Monitor Hackathon, which took place at the Massachusetts Institute of Technology in early February, the "Plane Watchers team presents their project about solar power. The students utilized multiple datasets to compare the potential of solar power with existing real-world implementations. Photo courtesy of Bianca Champenois.

One timely advancement was a significant simplification of the simulation of non-unitary quantum dynamics [2]. If L is positive semidefinite, then
$e^{-A t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i(k L+H) t} \mathrm{~d} k$. (1)
This formula generalizes the scalar identity $e^{-|x|}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i k x} \mathrm{~d} k$ to the matrix setting. Since the matrices H, L do not commute in general, the proof of (1) is not based on the spectral mapping theorem, which evaluates a matrix function $f(A)=V f(D) V^{-1}$ via the eigendecomposition $A=V D V^{-1}$ [2]. This identity expresses $e^{-A t}$ as a linear combination of Hamiltonian simulation (LCHS) problems of the form $e^{-i(k L+H) t}$. We can even generalize LCHS to time-dependent $A(t)$, where the time-ordered propagator $\mathcal{T}^{-\int_{0}^{T} A(s) \mathrm{d} s}$ replaces $e^{-A t}$ (see Figure 1, on page 3). The LCHS approach both streamlines the simulation process and achieves optimal query complexity with respect to the initial state preparation, which reduces the input cost. A recent study generalized the LCHS formalism to a family of identities that can express linear non-unitary evolution operators as a linear combination of unitary evolution operators [1]. This work is the first approach to solve linear differential equations with both optimal state preparation cost and near-optimal scaling in matrix queries on all parameters.
To fully harness the potential of quantum computers and achieve a quantum advantage in the coming years, we must develop innovative methods to map various problems into suitable quantum frameworks. We thus welcome both theoretical and empirical discussions of the end-to-end complexities of these solutions. Problems that already exhibit some degree of "quantumness" may have a head start, as classical hardness is easier to argue. At the same time, significant advancements might arise as we apply quantum computers to classical problems - much like the revolution in prime number factoring and cryptography due to Shor's algorithm in the 1990s.

References

[1] An, D., Childs, A.M., \& Lin, L. (2023). Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters. Preprint, arXiv:2312.03916.
[2] An, D., Liu, J.-P., \& Lin, L. (2023) Linear combination of Hamiltonian simulation for nonunitary dynamics with optimal state preparation cost. Phys. Rev. Lett., 131(15), 150603.
[3] Childs, A.M., Kothari, R., \& Somma, R.D. (2017). Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput., 46(6), 1920-1950.
[4] Costa, P.C.S., An, D., Sanders, Y.R., Su, Y., Babbush, R., \& Berry, D.W. (2022). Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3(4), 040303
[5] Dalzell, A.M., McArdle, S., Berta M., Bienias, P., Chen, C.-F., Gilyén, A.

Brandão, F.G.S.L. (2023). Quantum algorithms: A survey of applications and end-to-end complexities. Preprint, arXiv:2310.03011.
[6] Fang, D., Lin, L., \& Tong, Y. (2023). Time-marching based quantum solvers for time-dependent linear differential equations. Quantum, 7, 955.
[7] Gilyén, A., Su, Y., Low, G.H., \& Wiebe, N. (2019). Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. In STOC 2019: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing (pp. 193-204). Phoenix, AZ Association for Computing Machinery.
[8] Harrow, A.W., Hassidim, A., \& Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103(15), 150502.
[9] Lin, L., \& Tong, Y. (2020). Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems. Quantum, 4, 361 .
[10] Low, G.H., \& Chuang, I.L. (2017), Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 118(1), 010501.

Lin Lin is a professor in the Department of Mathematics at the University of California, Berkeley, and a faculty scientist in the Mathematics Group at Lawrence Berkeley National Laboratory.

Quantum Computing for Financial Mathematics

By Antoine Jacquier, Oleksiy Kondratyev, Gordon Lee, and Mugad Oumgari

The discipline of financial mathematics has experienced many periods of rapid development that are often followed by relative calm. As a synthetic discipline at the cross section of applied mathematics, financial theory, computer science, prudential regulation, and other fields, financial mathematics benefits from discoveries and breakthroughs in all of these areas. The birth of financial mathematics is often attributed to Louis Bachelier's doctoral thesis, "The Theory of Speculation," which he defended in 1900 under the supervision of Henri Poincaré. Bachelier was the first person to utilize a stochastic process (later called Brownian motion) to model financial assets. Since then, financial mathematics has felt the influence of stochastic calculus (e.g., Itô's lemma and the Girsanov theorem), control theory (e.g., the Kalman filter), and statistics (e.g., the KolmogorovSmirnov test) while also benefitting from progress in microprocessors, financial deregulation, ultrafast communication, and object-oriented programming.
Quantum computing, which promises enormous computing power at a very low cost, marks the start of a new chapter for financial mathematics. All financial problems-pricing, risk management, credit scoring, discovery of trading signals, data encryption, porffolio optimization, and so forth-are computational in nature, and financial mathematics seeks to provide the most efficient and convenient tools for these types of computations.
A computation is a function that transforms information, or the transformation of one memory state into another. In classical digital computing, the fundamental memory unit is a binary digit (bit) of information. Logic gates are functions that operate on bits of information - namely Boolean functions, which can be combined into circuits that perform additions, multiplications, and more complex operations. But is Boolean logic the sole or most general way to realize digital computation? The answer is clearly "no." Classical computing is just a special case of a more general computational framework that we now call quantum computing. A classical bit is a two-state system that can exist in one of two discrete deterministic states, traditionally denoted as 0 and 1 . All classical bits are independent, in that flipping the state of a given bit does not affect the states of other bits. To generalize these two features of classical computing, we can permit the bit to exist in a superposition of the two states and allow the states of different bits to entangle (a certain form of correlation). It is therefore clear how quantum computing got its name; superposition and entanglement are the key characteristics of quantum system states, and it is tempting to perform these computations with the controlled evolution of a quantum system, i.e., by running a quantum computer. Superposition and entanglement are also responsible for the extraordinary power of quantum computing. They allow for more general computation, a broader definition of the memory state as compared to classical digital computing, and a wider range of possible transformations of such memory states. The fundamental memory unit in quantum computing is the quantum bit (qubit). Mathematically, a qubit's state is a unit vector in the two-dimensional complex vector space. Norm-preserving unitary operators (unitary matrices) that act on
qubit states serve as quantum logic gates. Once a computation is complete and the quantum circuit (a sequence of quantum logic gates) has transformed the initial system state, we can measure the qubit states by projecting them onto the basis states (see Figure 1, on page 1). Qubits in their basis states correspond to classical bits, as all superpositions have collapsed. The remainder of the computational protocol can occur classically after the readout of the bitstring from a quantum computer.
Why have researchers not utilized this superior mode of computation until very recently? Although quantum mechanics was formulated nearly a century ago, the realization of quantum mechanical rules in the computational protocol of classical digital computers requires an enormous amount of memory. Exponential gains in computing power are offset by exponential memory requirements.
In order to efficiently perform quantum computations, we must use the ability of actual quantum mechanical systems to encode information in their states. For instance, we can describe the state of a quantum system that consists of n entangled qubits by specifying 2^{n} probability amplitudes: a massive amount of information that would be impossible to store in classical memory. Decades passed before quantum processing units (QPUs)devices that control quantum mechanical systems as they perform computationsbecame technologically feasible.
Current state-of-the-art QPUs contain several hundred qubits, and the qubit fidelity is still insufficient for fault-tolerant computation. However, the size and qubit fidelity of these systems are already sufficient enough to be useful. Two qubit types in particular stand out as the most developed and most promising: qubits made of superconducting circuits with a coherence time of $\sim 10^{3} \mu \mathrm{~s}$ [10] (see Figure 2), and qubits made of trapped ions with a coherence time of $>10^{8} \mu \mathrm{~s}$ [2] (see Figure 3). These qubit characteristics indicate that we are approaching the threshold beyond which various error correction algorithms become feasible, meaning that we may finally enter the era of fault-tolerant quantum computing.
While Google demonstrated so-called quantum supremacy on a specially designed problem in 2019, recent work has exhibited clear signs of quantum advantage: productive applications of quantum computers to real-world problems that classical computers have trouble handling. That being said, emulators play a pivotal role in the current quantum ecosystem due to the scarcity and cost of full-fledged quantum computers. These emulators simulate quantum operations on classical hardware and enable researchers and developers to design, test, and refine quantum algorithms without direct access to a quantum machine, thus propelling state-of-the-art research and bypassing current limited availability. Given their parallel processing capabilities, graphics processing units have emerged as the go-to hardware for the emulation of quantum systems. Their architecture is well suited to handle the matrix operations that are fundamental to quantum mechanics. In recent years, large technology companies have begun to create public frameworks for quantum computing. For example, IBM's Qiskit ${ }^{1}$ allows any Python user to implement and test quantum algorithms; Google Quantum AI provides the Cirq^{2} framework that lets developers create, edit, and
https://www.ibm.com/quantum/qiskit https://quantumai.google/cirq/start/intro

one-qubit gate		two-qubit gate	
Gate time:	$\sim 10^{-2} \mu \mathrm{~s}$	Gate time:	$\sim 10^{-2}-10^{-1} \mu \mathrm{~s}$
Fidelity:	99.99%	Fidelity:	99.9%

one-qubit gate		two-qubit gate	
Gate time:	$\sim 1-10 \mu \mathrm{~s}$	Gate time:	$\sim 10 \mu \mathrm{~s}$
Fidelity:	99.9999%	Fidelity:	99.9%

invoke quantum circuits on real and simulated quantum devices; the Microsoft Azure Quantum Development Kit^{3} includes the Q\# language, which developers can use to write quantum algorithms that run on classical simulators; and Xanadu's PennyLane ${ }^{4}$ is specifically designed to implement quantum machine learning (QML) tools.
Several aspects of quantum computing are especially relevant to financial mathematics problems.

Optimization

Digital quantum computing allows practitioners to solve NP-hard combinatorial optimization problems with variational methods, such as the variational quantum eigensolver and the Quantum Approximate Optimization Algorithm [3]. Both algorithms can address a wide range of finance-related optimization problems [6]. Moreover, variational algorithms are noise resistant and therefore suitable for the current generation of noisy intermediate-scale quantum computers [9]. Classically hard optimization problems naturally lend themselves to implementation on analog quantum computers that realize the principles of adiabatic quantum computing. The flagship financial use case is discrete portfolio optimization, which demonstrates the first experimental evidence of a quantum speedup [11].
https:///earn.microsoft.com/en-us/azure/ quantum/overview-what-is-qsharp-and-qdk
https://www.xanadu.ai/products/ pennylane

Quantum Machine Learning

The combination of quantum computing and artificial intelligence will likely generate some of the most exciting opportunities, including a wide range of possible applications in finance. We have already seen promising results with parameterized quantum circuits that were trained as either generative models (such as the quantum circuit Born machine [7]) or discriminative models (such as quantum neural networks). Possible use cases include market generators, data anonymizers, credit scoring, and the creation of trading signals. The quantum generative adversarial network (GAN) is another generative QML model with significant potential [1]. Much like classical GANs, quantum GANs comprise a generator and a discriminator with the ability to distinguish quantum states. Since each quantum state encodes a probability distribution, researchers can use the quantum GAN discriminator to verify whether the datasets in question came from the same probability distribution. This technique has direct applications to time series analysis, the detection of structural breaks, and alpha decay monitoring.
Partial Differential Equation Solvers
In 2009, Aram Harrow, Avinatan Hassidim, and Seth Lloyd devised a quantum algorithm that can surpass classical computation times when solving linear systems [5]. Linear systems are ubiquitous

See Financial Mathematics on page 8

Electrical Resistance and Conformal Maps

T would like to elaborate on the observation in my April 2023 article, titled "Conformal Deformation of Conductors." Imagine a current-conducting sheet: negligibly thin, homogeneous, and isotropic. Let us cut a square out of the sheet and measure the resistance, as in Figure 1. The following fact is both fundamental and almost trivial:

Squares of all sizes
have the same resistance

Indeed, dilation of the square changes the distance that the current must travel, and by the same factor as the width; these two effects cancel each other out - but only in \mathbb{R}^{2}. In \mathbb{R}^{3}, for example, dilating a cube by a factor λ divides the resistance (between the opposite faces) by λ, and in \mathbb{R} the resistance multiplies by λ

From now on, let the resistance of the square $=1$ ohm. Geometrically, resistance is a measure of elongation: a rectangle whose resistance $=1$ must then be a square (see Figure 2).

A classical theorem in complex analysis states that two annuli (see Figure 3) are conformally equivalent-i.e., they can be mapped onto one another by a conformal 1-1 map-if and only if they have
https://sinews.siam.org/Details-Page/ conformal-deformation-of-conductors

Figure 1. Resistance-i.e., the necessary voltage to push through a unit of current-is measured between opposite sides (coated with a perfect conductor)

Hackathon

Continued from pase 5
director of GEM) and Wesley Hamilton (senior software developer at PTC^{7} and former member of the University of North Carolina, Chapel Hill SIAM Student Chapter). Hamilton helped to host a Datathon4Justice ${ }^{8}$ at the University of Utah in 2021 and thus brought valuable experi ence to the MIT event. Students consulted the mentors for assistance and support throughout the course of the Hackathon.
The winning team, named the "Powe Rangers," created a website that summarizes the landscape of energy projects
https://www.ptc.com/en
https://sinews.siam.org/Details-Page/ datathons4justice-address-social-justice-issues-with-data-science

[^2]Figure 2. If $R=1$, the rectangle is a square
the same ratio of radii. A more general theorem states that two doubly connected annuli" (like those in Figure 4) are conformally equivalent if they have the same modulus: a certain number that is associated with the region. I would like to point out that that the modulus is simply the electrical resistance.
To rephrase these theorems: Two annular regions A and A^{\prime} (as in Figure 4) are conformally equivalent $\left(A \sim A^{\prime}\right)$ if and only if they have the same electrical resistance between their inner and outer boundaries:
 CURIOSITIES
$R(A)=R\left(A^{\prime}\right)$
(2)

By Mark Levi

Idea of the Proof

In order to construct a conformal map $A \leftrightarrow A^{\prime}$, let us push the current by applying voltages $V=0$ to the inner boundary and $V=1$ to the outer boundary. ${ }^{2}$ For a large integer n, consider the equipotential lines $h_{i}, i=0, \ldots n$ that are spaced by the potenial difference $1 / n$ (see Figure 5); h_{0} is the inner boundary and h_{n} is the outer boundary. Fix an arbitrary line v_{0} of steepest descent of the electrostatic potential-the line of currentand let v_{1} be the line of steepest descent that is
${ }^{2}$ By doing so, we consider the solution of the
Dirichlet problem in the annulus with prescribed bound ary values 0 and 1 .

stack of n squares), and with
chosen so that the current through the channel $v_{0} v_{1}$ is $1 / n$. Continue adding current lines v_{j}, as in Figure 5, and stop at $j=m$ when the current through the channel $v_{m} v_{0}$ becomes $<1 / n$. This last channel plays no role in the limit of $n \rightarrow \infty$.
We divided the annulus into $n \times m$ infinitesimal curvilinear rectangles $Q_{i j}$, which we enumerate by the rectangle's layer i, $1 \leq i \leq n$ and the channel $j, 1 \leq j \leq m$ (see Figure 5).
I claim that each curvilinear rectangle $Q_{i j}$ is a square in the limit of $n \rightarrow \infty$. Indeed, the resistance is

$$
R\left(Q_{i j}\right)=\frac{\text { voltage drop }}{\text { current }}=\frac{1 / n}{1 / n}=1,
$$

and a rectangle for which resistance $=1$ is a square (as indicated in Figure 2).

What is the resistance of A ? Each channel has resistance n (being a m channels in parallel,

$$
R(A)=\frac{n}{m},
$$

ignoring a small error due to the resistance of the last channel $v v_{0}$. The resistance therefore has an almost combinatorial meaning
To construct the map $A \leftrightarrow A$, we divide A^{\prime} into $n \times m^{\prime}$ squares $Q_{i j}^{\prime}$. If $R(A)=R\left(A^{\prime}\right)$, then $m=m^{\prime}$; this allows a 1-1 assignment of $Q_{i j}^{\prime}$ to $Q_{i j}$. The result is a discrete conformal map since it takes squares to squares.
in a region of interest. Their work built upon an existing codebase that was initially intended to map the locations of Chipotle restaurants in a given neighborhood, though the students added many new features that incorporated further data analysis and insights. GEM intends to stay in touch with all participants to oversee the implementation of their projects beyond the prototyping phase.
At the event's conclusion, students returned to their studies with newfound confidence in their ability to program with the Structured Query Language, employ the pandas Python library, ${ }^{9}$ utilize the Google Maps application programming interface, and perform regressions. Overall, the GEM Hackathon served as a great reminder of the importance of computation-
${ }^{9}$ https://pandas.pydata.org

Members of the "Power Rangers"-the winning team of the two-day Global Energy Monitor Hackathon, which was held at the Massachusetts Institute of Technology (MIT) in early February-gather with Hackathon organizers and participants for a group photo. The programming contest, which asked participating students to examine worldwide energy data availability and solar resource potential, was co-hosted by the MIT SIAM Student Chapter and Earth Hacks. Photo courtesy of MIT's Department of Urban Studies and Planning.

Figure 4. Two doubly connected regions are conformally equivalent precisely when they have the same resistance between their inner and outer boundaries.

Showing the Converse

$A \sim A^{\prime}$ implies $R(A)=R\left(A^{\prime}\right)$. We divide A into "squares" $Q_{i j}$ as before, with $1 \leq i \leq n$ and $1 \leq j \leq m$. The conformal equivalence induces a division of A into "squares" (by conformality) with the same $m^{\prime}=m$ (since the map is $1-1$). Therefore, $n / m=n / m^{\prime}$ and $R(A)=R\left(A^{\prime}\right)$. In short, (1) demonstrates that the resistance is a conformal invariant, as was already mentioned in my April 2023 article.

The figures in this article were provided by the author.

Mark Levi (levi@math.psu.edu) is a pro fessor of mathematics at the Pennsylvania State University

Figure 5. Subdivision of A into infinitesima squares $Q_{i j}$. Concentric "horizontal" lines h_{i} are equipotentials. Steepest descent "vertical" current lines v; are added in counterclockwise direction until the last line v_{m}. The "square" $Q_{i j}$ is bounded by h_{i-1}, h_{i} and v_{j-1}, v_{j}.

High School Mathematical Contest in Modeling Explores Dandelions and Electric Buses

By Kathleen Kavanagh and Benjamin Galluzzo

The Consortium for Mathematics and Its Applications ${ }^{1}$ (COMAP)-which has been providing educators with mathematical modeling resources for more than four decades-held its annual High School Mathematical Contest in Modeling ${ }^{2}$ (HiMCM) from November 1-14, 2023. The final judging session took place in January and acknowledged nine outstanding winning teams from around the world for their impressive solution papers. ${ }^{3}$ All current middle and high school students are eligible to register for this two-week competition, though teams where all members are 14.5 years old or younger may instead choose to partake in the Middle Mathematical Contest in Modeling (MidMCM). Participating HiMCM teams-comprised of up to four students from the same school-have a 14-day window to select and download one of two open-ended, real-world problems; collaborate and employ mathematical modeling techniques to develop a solution; and electronically submit their final papers to COMAP. MidMCM follows the same protocol but only consists of a single problem.
A total of 967 teams from 417 schools and 18 countries/regions competed in the 2023 HiMCM. SIAM members Kathleen Kavanagh and Benjamin Galluzzo (both of Clarkson University) each wrote one of the two prompts, ${ }^{4}$ which were respectively titled "Dandelions: Friend? Foe? Both? Neither?"5 and "Charging Ahead with E-buses." ${ }^{\text {" }}$
Kavanagh authored Problem A, which focused on invasive species and asked students to predict the spread of dandelions over the course of one, two, three, six, and 12 months given the initial presence of a single "puffball" next to an open field (see

[^3]Figure 1). In addition to spatial considerations, most of the teams accounted for seed release, seed travel time, germination time, and dandelion growth phases. The problem also challenged students to analyze the dandelion's potential success under different climate conditions, such as varying levels of wind, temperature, and humidity. Finally, participants created ranking systems that assigned an impact factor to an invasive species, then tested their models on dandelions and two other plants of their choice. The breadth and depth of the solution papers were outstanding; they utilized techniques that ranged from simple linear models to finite element simulations and susceptible-infectiousrecovered systems of equations.
In Problem B, Galluzzo prompted teams to address the global shift towards electric buses (e-buses) as a sustainable urban transportation solution in light of growing concerns about air pollution and climate change. The problem asked students to devise models that assessed the ecological and financial impacts of a shift to e-buses while accounting for factors like initial costs, operational expenses, and governmental incentives. After selecting a metropolitan area of their choice, teams used their models to generate a 10 -year roadmap for the hypothetical transition to a fully electric bus fleet, paying strict attention to complications like charging infrastructure and range limitations. They then crafted concise policy recommendation letters that articulated their strategies and recommendations to transportation officials, emphasizing the necessity of a holistic approach to sustainable transit.
Readers might also be familiar with COMAP's sister competitions for undergraduate students: the Mathematical Contest in Modeling (MCM) and Interdisciplinary Contest in Modeling (ICM). ${ }^{7}$ MCM/ICM take place annually in February and provide students with an opportunity to work on a team and improve their modeling, problemsolving, and writing skills. In 2024, more than 30,000 teams from across the world participated in these international contests.
SIAM members can support and promote mathematical modeling competitions in a variety of ways. COMAP's slate of compe-
https://www.comap.org/contests/mcm-icm
titions and the MathWorks Math Modeling Challenge ${ }^{8}$ (M3 Challenge)-a program of SIAM with MathWorks as its title spon-sor-are constantly seeking challenge questions for future competitions. If you have an idea for a real-world problem that is well suited for mathematical modeling and you would like to submit it for consideration, HiMCM coordinators and the M3 Challenge Problem Development Committee will work with problem authors to tailor their questions for the appropriate audience and locate any relevant data. Both organizations also routinely look for judges to review student submissions and select the winners.
Additionally, U.S. teams that score well in either HiMCM or M3 Challenge may be invited to potentially represent the U.S. in the International Mathematical Modeling Challenge ${ }^{9}\left(\mathrm{IM}^{2} \mathrm{C}\right)$: a competition that allows each participating country/region to nominate up to two representative teams that then tackle a difficult math modeling problem over five consecutive days. For more information about HiMCM and M3 Challenge, please reach out to himcm@ comap.org and m3challenge@siam.org.
$\begin{array}{ll}8 & \text { https:///m3challenge.siam.org } \\ 9 & \text { https://www.immchallenge. org }\end{array}$

M3 Challenge is an annual mathematical modeling competition for U.S. high school juniors and seniors and sixth form students in England and Wales. Participating teams of three to five students have 14 consecutive hours during Challenge Weekend to tackle a complex, real-world problem and produce a report that explains and justifies their solutions. Registration is completely free.

The 2024 M3 Challenge Final Event will take place on April 29th in New York City. The finalist teams and Technical Computing awardees-having submitted their papers in early March-will present their work to a live panel of judges and compete for more than $\$ 100,000$ in scholarship funds. Stay tuned for an article about the winning team's solution in the June issue of SIAM News!

Kathleen Kavanagh is a professor of mathematics at Clarkson University and the former Vice President for Education at SIAM. Benjamin Galluzzo is an associate professor of mathematics at Clarkson University. He is the director of the Consortium for Mathematics and Its Applications' High School Mathematical Contest in Modeling.

Figure 1. During the 2023 iteration of the High School Mathematical Contest in Modeling (HiMCM), which took place in November, one problem prompted students to predict the spread of dandelions while accounting for numerous influencing factors. Figure courtesy of HiMCM Team 13845 from BASIS International School Guangzhou.

Financial Mathematics

across applications, and many aspects of mathematical finance rely on the ability to solve these systems. The solution of partial differential equations (PDEs) is a particularly important application. In fact, a quantum algorithm for linear PDEs can efficiently price European and Asian options in the Black-Scholes framework [4].

Quantum Monte Carlo

Another quantum algorithm can accelerate Monte Carlo methods in a very general setting [8]. This algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, ultimately achieving a near-quadratic speedup over the best possible classical algorithm.

Quantum Semidefinite
 Programming

Quantum semidefinite programming (QSDP) is based on the observation that a normalized positive semidefinite matrix is naturally representable as a quantum state. On a quantum computer, operations on quantum states are sometimes computationally cheaper than classical matrix operations; this idea prompted the development
of quantum algorithms for semidefinite programming. In finance, QSDP is potentially useful for maximum risk analysis and robust portfolio construction [6].

After decades of theoretical results, quantum computing is progressively becoming a reality. While full-scale quantum computers are not yet ready to replace their classical counterparts, they are nonetheless already useful in both speeding up specific procedures in classical algorithms (bringing forth the hybrid classicalquantum era) and providing new ways of thinking about old problems (so-called quantum-inspired algorithms). Rather than succumbing to quantum skepticism, we should instead embrace quantum computing as a valuable new tool that will help us more accurately address the numerous problems in quantitative finance.

The views and opinions expressed in this article are those of the authors and do not necessarily reflect the views and policies of their respective institutions.

Acknowledgments: Antoine Jacquier is supported by Engineering and Physical Sciences Research Council grants EP/ W032643/1 and EP/T032146/1.

References

[1] Assouel, A., Jacquier, A., \& Kondratyev, A. (2022). A quantum generative adversarial network for distributions. Quantum Mach. Intell., 4, 28.
[2] Bruzewicz, C.D., Chiaverini, J., McConnell, R., \& Sage, J.M. (2019). Trappedion quantum computing: Progress and challenges. Appl. Phys. Rev., 6(2), 021314.
[3] Farhi, E., Goldstone, J., \& Gutmann, S. (2014). A quantum approximate optimization algorithm. Preprint, arXiv:1411.4028.
[4] Fontanela, F., Jacquier, A., \& Oumgari, M. (2021). A quantum algorithm for linear PDEs arising in finance. SIAM J. Financ. Math., 12(4), 98-114.
[5] Harrow, A.W., Hassidim, A., \& Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103(15), 150502.
[6] Jacquier, A., \& Kondratyev, O. (2022). Quantum machine learning and optimisation in finance: On the road to quantum advantage. Birmingham, UK: Packt Publishing.
tage. Birmingham, UK: Packt Publishing.
[7] Kondratyev, A. (2021). Nondifferentiable learning of quantum circuit Born machine with genetic algorithm. Wilmott, 2021(114), 50-61.
[8] Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. Proc. R. Soc. A, 471(2181), 20150301.
[9] Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
[10] Somoroff, A., Ficheux, Q., Mencia, R.A., Xiong, H., Kuzmin, R., \& Manucharyan, V.E. (2023). Millisecond coherence in a superconducting qubit. Phys. Rev. Lett., 130, 267001.
[11] Venturelli, D., \& Kondratyev, A. (2019). Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach. Intell., 1, 17-30.

Antoine (Jack) Jacquier is a professor of mathematics at Imperial College London. His research focuses on quantum computing as well as stochastic analysis and volatility modeling in finance. Jacquier also serves as a scientific consultant and advisor for various finance and technology companies. Oleksiy Kondratyev is the Quantitative Research and Development Lead at Abu Dhabi Investment Authority (ADIA). Prior to joining ADIA, he held quantitative research and data analytics positions at Standard Chartered, Barclays Capital, and Dresdner Bank. Kondratyev received the Risk Magazine Quant of the Year Award in 2019. Gordon Lee is head of the Markets Quants team at the Bank of New York Mellon Corporation. Mugad Oumgari is a managing director at Lloyds Banking Group. He received a postgraduate research degree in mathematics and a master's degree in economics from the London School of Economics and Political Science.

Insidesitam

Conferences, books, journals, and activities of Society for Industrial and Applied Mathematics

siaml. CONFERENCES

A Place to Network and Exchange Ideas

Upcoming Deadlines

THE FOLLOWING CONFERENCES ARE CO-LOCATED:
SIAM Conference on the
Life Sciences (LS24)
June 10-13, 2024 | Portland, Oregon, U.S.
go.siam.org/ls24 | \#SIAMLS24
ORGANIZING COMMITTEE CO-CHAIRS
Nick Cogan, Florida State University, U.S
Nessy Tania, Pfizer Worldwide Research, Development, and Medical, U.S.
SIAM Conference on
Mathematics of Planet Earth (MPE24)
June 10-12, 2024 | Portland, Oregon, U.S.
go.siam.org/mpe24 | \#SIAMMPE24
ORGANIZING COMMITTEE CO-CHAIRS
Julie Bessac, National Renewable Energy Laboratory, U.S. Lea Jenkins, Clemson University, U.S.
LS24 and MPE24 EARLY REGISTRATION RATE DEADLINE
May 13, 2024
LS24 and MPE24 HOTEL RESERVATION DEADLINE
May 13, 2024

SIAM Conference on
Nonlinear Waves and Coherent Structures (NWCS24)
June 24-27, 2024 | Baltimore, Maryland, U.S.
go.siam.org/nwcs24 | \#SIAMNWCS24

ORGANIZING COMMITTEE CO-CHAIRS

Panayotis Kevrekidis, University of Massachusetts, U.S.
Anna Vainchtein, University of Pittsburgh, U.S.
EARLY REGISTRATION RATE DEADLINE
May 28, 2024
HOTEL RESERVATION DEADLINE
May 28, 2024

SIAM Conference on

Mathematics of Data Science (MDS24)
October 21-25, 2024 | Atlanta, Georgia, U.S.
go.siam.org/mds24 | \#SIAMMDS24

ORGANIZING COMMITTEE CO-CHAIRS

Eric Chi, Rice University, U.S.
David Gleich, Purdue University, U.S.
Rachel Ward, University of Texas at Austin, U.S.

SUBMISSION AND TRAVEL AWARD DEADLINES

April 29, 2024: Contributed Poster and Minisymposium Presentation Abstracts July 22, 2024: Travel Fund Application

[^4]
Upcoming SIAM Events

SIAM International Conference on

 Data MiningApril 18-20, 2024
Houston, Texas, U.S.
Sponsored by the SIAM Activity Group on Data Science
SIAM Conference on
Applied Linear Algebra
May 13-17, 2024
Paris, France
Sponsored by the SIAM Activity Group on Linear Algebra
SIAM Conference on Mathematical Aspects of Materials Science
May 19-23, 2024
Pittsburgh, Pennsylvania, U.S. Pittsburgh, Pennsylvania, U.S.
Sponsored by the SIAM Activity Grou on Sponsored by the SIAM Activity Group on
Mathematical Aspects of Materials Science
SIAM Conference on
Imaging Science
May 28-31, 2024
Atlanta, Georgia, U.S. Sponsored by the SIAM Activity Group on Sponsored
Imaging Science
SIAM Conference on the Life Sciences June 10-13, 2024
Portland, Oregon, U.S.
Sponsored by the SIAM Activity Group on Life Sciences
SIAM Conference on Mathematics of Planet Earth
June 10-12, 2024
Portland, Oregon, U.S.
Sponsored by the SIAM Activity Group on
Mathematics of Planet Earth
SIAM Conference on Nonlinear Waves and Coherent Structures
June 24-27, 2024
Baltimore, Maryland, U.S.
Sponsored by the SIAM Activity Group on Nonlinear Waves and Coherent Structures
2024 SIAM Annual Meeting
July 8-12, 2024
Online Component July 18-20, 2024 Spokane, Washington, U.S.
SIAM Conference on Applied
Mathematics Education
July 8-9, 2024
Spokane, Washington, U.S. Sponsored by the SIAM Activity Group on Applied Mathematics Education
SIAM Conference on
Discrete Mathematics
July 8-11, 2024
Spokane, Washington, U.S. Sponsored by the SIAM Activity Group on Discrete Mathematics
ICERM-SIAM Workshop on
Empowering a Diverse Computational Mathematics Research Community
July 22-August 2, 2024
Providence, Rhode Island, U.S.
SIAM Conference on Mathematics of Data Science
October 21-25, 2024
Atlanta, Georgia, U.S.
Sponsored by the SIAM Activity Group on Data Science
ACM-SIAM Symposium on Discrete Algorithms
January 12-15, 2025
New Orleans, Louisiana, U.S. Sponsored by the SIAM Activity Group on Discrete Mathematics and the ACM Special Interest Group on Algorithms and Computation Theory

Siaml. MEMBERSHIP

Earning a degree this year? Take advantage of SIAM's early career membership

siam.org/membership/join-siam/individual-members\#EarlyCareer

To ease the transition from a student membership to a full regular membership, SIAM offers early career membership at 50% of the regular membership price for the first three years after receiving a final degree ($\$ 92$ in 2024), then 25% off for the fourth and fifth years ($\$ 138$ in 2024) instead of $\$ 184$. If you'll be graduating this year and not continuing as a student next year, you can remain a part of the SIAM community for just 25 cents a day!

Renewing from student to early career member

If you are already a SIAM student member in 2024, contact SIAM customer service at membership@siam.org to confirm your renewal as an early career member next year.

Develop your career

SIAM has many resources for finding jobs and developing your career, including professional ads in SIAM News, various activity group email lists with job announcements, and the SIAM job board.

SIAM membership opens the door to networking opportunities as you make the transition from completing your education to building a career. With its wealth of resources, SIAM will support your professional journey.

Plus, you can make a difference to your profession by getting involved in the association that serves you by participating in activity groups, presenting your research at SIAM conferences, and volunteering to serve on SIAM committees.

Keep up to date on what's happening in the field

As a member, you will receive SIAM Review, a quarterly publication providing an overview of the entire field of applied mathematics (in print as well as in electronic format); SIAM News, the news journal of the applied mathematics community; and Unwrapped, SIAM's monthly member e-newsletter.

Discounts

Don't forget that you'll receive generous discounts on SIAM conference registrations, books, and journals. In fact, there is a specially reduced conference fee for the SIAM Annual Meeting available only to SIAM early career members. Plus, as a SIAM member, you can subscribe to any of the SIAM journals, the profession's most respected peer-reviewed scholarly publications, at a discounted price.

Additional benefits

Early career members have access to all the same benefits as regular members. If you were a SIAM student member, you may not have been eligible to receive the following benefits. However, as an early career member, these additional benefits will become available to you:
receive SIAM Review in print and electronic format vote, hold office, and serve on SIAM committees nominate two students for free membership nominate eligible colleagues for the SIAM Fellows program and begin to accumulate the years of membership that will qualify you to be nominated as a SIAM Fellow
Join SIAM today as an early career member at
join a SIAM Activity Group (SIAG)
Join SIAM today as an early carrer member at siam.org/membership/ join-siam/individual-members\#EarlyCareer.

Nominations Are Open for 2025 SIAM CSE Prizes

Nomination Deadline: July 31, 2024

All prizes listed below will be awarded at the 2025 SIAM Conference on Computational Science \& Engineering (CSE25) in Fort Worth, Texas, U.S. This will be the first time that the Ivo \& Renata Babuška Prize will be awarded.

2025 SIAM Major Awards

- Ivo \& Renata Babuška Prize - Awarded to an individual or group of individuals for their contributions to a single high-quality piece or body of work that targets any aspect of modeling and numerical solution of a specific engineering or scientific application, including mathematical modeling, numerical analysis, algorithms, and validation.
- James H. Wilkinson Prize in Numerical Analysis and Scientific Computing - Awarded to one individual for research in, or other contributions to, numerical analysis and scientific computing during the six years preceding the award year.
SIAM/ACM Prize in Computational Science and Engineering Awarded to an individual or group of individuals in recognition of outstanding contributions to the development and use of mathematical and computational tools and methods for the solution of science and engineering problems.

2025 SIAM Activity Group Prizes

SIAM Activity Group on Computational Science \& Engineering Best Paper Prize - Awarded to the author(s) of the most outstanding paper on the development and use of mathematical and computational tools and methods for solving problems that may arise in broad areas of science, engineering, technology, and society.

- SIAM Activity Group on Computational Science \& Engineering Early Career Prize - Awarded to one individual in their early career for outstanding research contributions in the field of computational science and engineering.
For more information, including eligibility requirements, please visit: go.siam.org/prizes-nominate.

Nominate two students for free SIAM membership in 2024!

SIAM members (excluding student members) can nominate up to two students per year for free membership. Go to my.siam. org/forms/nominate.htm to make your nominations.

Great sources of information provided by SIAM: SIAM News Online (sinews.siam.org) - SIAM's online communication channels are consolidated under the SIAM News website.
Social Media - follow us on Twitter (@SIAMConnect), like us on Facebook (facebook.com/SIAMConnect), and catch up on video content on our YouTube Channel (@SIAMConnects). Featured Lectures \& Videos (siam.org/featured-lecturesvideos) - digital archives of some of the exciting research presented at SIAM conferences.

- siam.
 Fellow

See the newly selected 2024 Class of SIAM Fellows at siam.org/Prizes-Recognition/Fellows-Program.

Recently Published

A First Course in Options Pricing Theory

 Simone CalogeroOptions pricing theory utilizes a wide range of advanced mathematical concepts, making it appealing to mathematicians, and it is regularly applied at financial institutions, making it indispensable to practitioners. The emergence of artificial intelligence in the financial industry has led to further interest in mathematical finance. This book presents a self-contained introduction to options pricing theory and includes a complete discussion of the required concepts in finance and probability theory.
2023 / xii +286 pages / Softcover / 978-1-61197-763-9 / List \$79.00 / SIAM Member \$55.30 / OT192

Mathematical Theory of Finite Elements

 Leszek F. DemkowiczThis book discusses the foundations of the mathematical theory of finite element methods. The focus is on two subjects: the concept of discrete stability, and the theory of conforming elements forming the exact sequence. Both coercive and noncoercive problems are discussed. Following the historical path of development, the author covers the Ritz and Galerkin methods to Mikhlin's theory, followed by the Lax-Milgram theorem and Cea's lemma to the Babuska theorem and Brezzi's theory. He finishes with an introduction to the discontinuous Petrov-Galerkin (DPG) method with optimal test functions. The book also includes a unique exposition of the concept of discrete stability and the means to guarantee it as well as a coherent presentation of finite elements forming the exact grad-curl-div sequence.
2024 / xx + xxx pages / Softcover / 978-1-61197-772-1 / List \$79.00 / SIAM Member \$55.30 / CS28

Dynamics and Bifurcation in Networks

 Theory and Applications of Coupled Differential Equations
Martin Golubitsky and Ian Stewart

In recent years there has been an explosion of interest in network-based modeling in many branches of science. This book attempts a synthesis of some of the common features of many such models, providing a general framework analogous to the modern theory of nonlinear dynamical systems. How networks lead to behavior not typical in a general dynamical system and how the architecture of the network influences this behavior are the book's main themes. It is the first book to describe the formalism for network dynamics developed over the past 20 years. The authors introduce a definition of a network and the associated class of "admissible" ordinary differential equations, in terms of a directed graph whose nodes represent component dynamical systems and whose arrows represent couplings between these systems; develop connections between network architecture and the typical dynamics and bifurcations of these equations; and discuss applications of this formalism to various areas of science. 2023 / xxx + 834 pages / Hardcover / 978-1-61197-732-5 / List \$129.00 / SIAM Member \$90.30 / OT185

Network Information Systems

A Dynamical Systems Approach
Wassim M. Haddad, Qing Hui, and Junsoo Lee
This text presents a unique treatment of network control systems. Drawing from fundamental principles of dynamical systems theory and dynamical thermodynamics, the authors develop a continuous-time, discrete-time, and hybrid dynamical system and control framework for linear and nonlinear large-scale network systems. The proposed framework extends the concepts of energy, entropy, and temperature to undirected and directed information networks. Continuous-time, discrete-time, and hybrid thermodynamic principles are used to design distributed control protocol algorithms for static and dynamic networked systems in the face of system uncertainty, exogenous disturbances, imperfect system network communication, and time delays.
2023 / xiv + 622 pages / Hardcover / 978-1-61197-753-0 / List \$114.00 / SIAM Member \$79.00 / OT191

New

Machine Learning for Asset Management and Pricing

 Henry Schellhorn and Tianmin Kong This textbook covers the latest advances in machine-learning methods for asset management and asset pricing. Recent research in deep learning applied to finance shows that some of the techniques used by asset managers (usually kept confidential) result in better investments than the more standard techniques. Cutting-edge material is integrated with mainstream finance theory and statistical methods to provide a coherent narrative. Coverage includes an original machine learning method for strategic asset allocation; the no-arbitrage theory applied to a wide portfolio of assets as well as other asset management methods; and neural networks and other advanced techniques.
2024 / xxiv + 264 / Softcover / 978-1-61197-789-9 List \$74.00 / SIAM Member \$51.80 / OT195

A Ramble through Probability How I Learned to Stop Worrying and Love Measure Theory
Samopriya Basu, Troy Butler, Don Estep, and Nishant Panda
Measure theory and measure-theoretic probability are fascinating subjects. Proofs describing profound ways to reason lead to results that are frequently startling, beautiful,
 and useful. Measure theory and probability also play roles in the development of pure and applied mathematics, statistics, engineering, physics, and finance. This book traces an eclectic path through the fundamentals of the topic to make the material accessible to a broad range of students. It brings together the key elements and applications in a unified presentation aimed at developing intuition; contains an extensive collection of examples that illustrate, explain, and apply the theories; and is supplemented with videos containing commentary and explanations of select proofs on an ancillary website.
2024 / xvi + 603 pages / Softcover / 978-1-61197-781-3 List \$94.00 / SIAM Member \$64.80 / CS29

SiamL.|JOURNALS

Where You Go to Know and Be Known

Recently Posted Articles

MULTISCALE MODELING \& SIMULATION: A SIAM Interdisciplinary Journal
Upscaling an Extended Heterogeneous Stefan Problem from the Pore-Scale to the Darcy Scale in Permafrost
Malgorzata Peszynska, Naren Vohra, and Lisa Bigler Fano Resonances in All-Dielectric Electromagnetic Metasurfaces
Habib Ammari, Bowen Li, Hongjie Li, and Jun Zou
Dynamical Properties of Coarse-Grained Linear SDEs Thomas Hudson and Xingjie Helen Li

SIAM Journal on

APPLIED ALGEBRA and GEOMETRY

Coupled Cluster Theory: Toward an Algebraic Geometry Formulation
Fabian M. Faulstich and Mathias Oster
Phylogenomic Models from Tree Symmetries
Elizabeth S. Allman, Colby Long, and John A. Rhodes

SIAM Journal on

APPLIED DYNAMICAL SYSTEMS

Guarantees for Spontaneous Synchronization on Random Geometric Graphs
Pedro Abdalla, Afonso S. Bandeira,
and Clara Invernizzi
Dynamics of Controllable Matter-Wave Solitons and Soliton Molecules for a Rabi-Coupled GrossPitaevskii Equation with Temporally and Spatially Modulated Coefficients
Haotian Wang, Hujiang Yang, Xiankui Meng, Ye Tian, and Wenjun Liu
Wave-Pinned Patterns for Cell Polarity-
A Catastrophe Theory Explanation
Fahad AI Saadi, Alan Champneys, and Mike R. Jeffrey

SIAM Journal on

APPLIED MATHEMATICS

Coarsening of Thin Films with Weak Condensation Hangjie Ji and Thomas P. Witelski
Computation of Riesz a-Capacity C_{a} of General Sets in \mathbb{R}^{d} Using Stable Random Walks
John P. Nolan, Debra J. Audus, and Jack F. Douglas Spatiotemporal Patterns in a Lengyel-Epstein Model Near a Turing-Hopf Singular Point Shuangrui Zhao, Pei Yu, and Hongbin Wang

SIAM Journal on COMPUTING

Four-Coloring P_{6}-Free Graphs. II. Finding an Excellent Precoloring
Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong
Four-Coloring P_{6}-Free Graphs. I. Extending an Excellent Precoloring
Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong On Matrix Multiplication and Polynomial Identity
Testing
Robert Andrews

SIAM Journal on

CONTROL and OPTIMIZATION

Stability Analysis for Nonlinear Neutral Stochastic Functional Differential Equations
Huabin Chen and Chenggui Yuan Viscosity Solutions for McKean-VIasov Control on a Torus
H. Mete Soner and Qinxin Yan

On Global Approximate Controllability of a Quantum Particle in a Box by Moving Walls
Aitor Balmaseda, Davide Lonigro,
and Juan Manuel Pérez-Pardo

SIAM Journal on

DISCRETE MATHEMATICS

On the Concentration of the Maximum Degree in the Duplication-Divergence Models
Alan M. Frieze, Krzysztof Turowski,
and Wojciech Szpankowski
Treewidth, Circle Graphs, and Circular Drawings Robert Hickingbotham, Freddie Illingworth, Bojan Mohar, and David R. Wood On q-Counting of Noncrossing Chains and Parking Functions
Yen-Jen Cheng, Sen-Peng Eu, Tung-Shan Fu, and Jyun-Cheng Yao

SIAM Journal on

FINANCIAL MATHEMATICS

Short Communication: Optimal Insurance to Maximize Exponential Utility When Premium Is Computed by a Convex Functional
Jingyi Cao, Dongchen Li, Virginia R. Young, and Bin Zou

SIAM Journal on IMAGING SCIENCES

Numerical Implementation of Generalized V-Line Transforms on 2D Vector Fields and Their Inversions Gaik Ambartsoumian, Mohammad J. Latifi Jebelli, and Rohit K. Mishra
A Deep Learning Framework for Diffeomorphic Mapping Problems via Quasi-conformal Geometry Applied to Imaging
Qiguang Chen, Zhiwen Li, and Lok Ming Lui Fractional Fourier Transforms Meet Riesz Potentials and Image Processing
Zunwei Fu, Yan Lin, Dachun Yang, and Shuhui Yang

SIAM Journal on

MATHEMATICAL ANALYSIS

The Scattering Resonances for Schrödinger-Type Operators with Unbounded Potentials Peijun Li, Xiaohua Yao, and Yue Zhao
A Degenerate Cross-Diffusion System as the Inviscid Limit of a Nonlocal Tissue Growth Model
Noemi David, Tomasz Dębiec, Mainak Mandal, and Markus Schmidtchen
Inverse Resonance Problems for Energy-Dependent Potentials on the Half-Line
Evgeny Korotyaev, Andrea Mantile, and Dmitrii Mokeev

SIAM Journal on

MATHEMATICS of DATA SCIENCE

Applications of No-Collision Transportation Maps in Manifold Learning
Elisa Negrini and Levon Nurbekyan
Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
Michał Dereziński and Elizaveta Rebrova
On Design of Polyhedral Estimates in Linear Inverse Problems
Anatoli Juditsky and Arkadi Nemirovski

SIAM Journal on

MATRIX ANALYSIS and APPLICATIONS
Adaptive Rational Krylov Methods for Exponential Runge-Kutta Integrators
Kai Bergermann and Martin Stoll
nITGCR: A Class of Nonlinear Acceleration Procedures Based on Conjugate Residuals
Huan He, Ziyuan Tang, Shifan Zhao, Yousef Saad, and Yuanzhe Xi
Randomized Joint Diagonalization of Symmetric Matrices
Haoze He and Daniel Kressner

SIAM Journal on

 NUMERICAL ANALYSISRobust DPG Test Spaces and Fortin OperatorsThe H^{1} and H (div) Cases
Thomas Führer and Norbert Heuer
On the Convergence of Continuous and Discrete Unbalanced Optimal Transport Models for 1-Wasserstein Distance
Zhe Xiong, Lei Li, Ya-Nan Zhu, and Xiaoqun Zhang On the Convergence of Sobolev Gradient Flow for the Gross-Pitaevskii Eigenvalue Problem Ziang Chen, Jianfeng Lu, Yulong Lu, and Xiangxiong Zhang

SIAM Journal on OPTIMIZATION

A Chain Rule for Strict Twice Epi-differentiability and Its Applications
Nguyen T. V. Hang and M. Ebrahim Sarabi Continuous Selections of Solutions to Parametric Variational Inequalities
Shaoning Han and Jong-Shi Pang
Approximating Higher-Order Derivative Tensors Using Secant Updates
Karl Welzel and Raphael A. Hauser

SIAM Journal on

SCIENTIFIC COMPUTING

Asymptotic Dispersion Correction in General Finite Difference Schemes for Helmholtz Problems Pierre-Henri Cocquet and Martin J. Gander
A New ParaDiag Time-Parallel Time Integration Method
Martin J. Gander and Davide Palitta
A Recursively Recurrent Neural Network (R2N2) Architecture for Learning Iterative Algorithms Danimir T. Doncevic, Alexander Mitsos, Yue Guo, Qianxiao Li, Felix Dietrich, Manuel Dahmen, and loannis G. Kevrekidis

SIAM/ASA Journal on

UNCERTAINTY QUANTIFICATION

Adaptive Importance Sampling Based on Fault Tree Analysis for Piecewise Deterministic Markov Process
Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, and Josselin Garnier
Multifidelity Bayesian Experimental Design to Quantify Rare-Event Statistics
Xianliang Gong and Yulin Pan
Projective Integral Updates for High-Dimensional Variational Inference
Jed A. Duersch

SIAM REVIEW

Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations
Gabriel R. Barrenechea, Volker John, and Petr Knobloch

THEORY OF PROBABILITY AND ITS

APPLICATIONS

Weakly Supercritical Branching Process in a Random Environment Dying at a Distant Moment V. I. Afanasyev

On Symmetrized Chi-Square Tests in Autoregression with Outliers in Data M. V. Boldin

Laplace Expansion for Bartlett-Nanda-Pillai Test
Statistic and Its Error Bound
H. Wakaki and V. V. Ulyanov

[^0]: https://www.quantum.gov
 https://www.nist.gov
 https://www.nist.gov/news-events/news/ 023/09/nist-seeks-input-implementation

[^1]: https://gem-hackathon.devpost.con https://web.mit.edu/siam/www https://earthhacks.io
 https://globalenergymonitor.org

[^2]: $R=$ length/width

[^3]: htps:///www.comap.org
 https://www.comap.org https://ww.comap.org/contests/himcmmidmcm
 https://www.contest.comap.org/high school/contests/himcm/2023results.html
 https://www.contest.comap.org/high school/contests/himcm/2023problems.html
 https://www.contest.comap.org/high
 ol/contests/himcm/2023 Problems/2023 school/contests/himcm/2023_Problems/2023_ HiMCM_Problem_A.pdf
 https://www.contest.comap.org/high school/contests/himcm/2023_Problems/2023_ HiMCM_Problem_B.pdf

[^4]: Information is current as of March 20, 2024. Visit siam.org/conferences for the most up-to-date information.

