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See Machine Learning on page 3

Special Issue on 
Quantum Computing

This special issue highlights research that connects applied math-
ematics and computational science with quantum computing, and 

overviews timely developments and trends in the field.

On page 2, David Hyde and Alex Pothen introduce Part I of the SIAM News Special 
Issue on Quantum Computing by surveying the many exciting concepts and tech-
nical developments that appear throughout the issue.

In an article on page 6, Antoine Jacquier, Oleksiy Kondratyev, Gordon Lee, and 
Mugad Oumgari explore quantum computing’s potential impacts on the discipline 
of financial mathematics and delve into the details of computation — including the 
construction of quantum circuits (see Figure 1).

Figure 1. Parameterized quantum circuit with six quantum bits. Figure courtesy of 
Antoine Jacquier, Oleksiy Kondratyev, Gordon Lee, and Mugad Oumgari.

What Can Quantum 
Computers Do for     
Applied Mathematicians?
By Giacomo Nannicini

As applied mathematicians, we are 
familiar with the standard model of 

computation that is embodied by Turing 
machines. The Church-Turing thesis pos-
tulates that any physically realizable com-
putation can be performed by a Turing 
machine, while the extended version sug-
gests that any such computation can be 
performed efficiently by a probabilistic 
Turing machine. Although the original 
Church-Turing thesis is widely accepted, 
quantum computers challenge the veracity 
of the extended version; these computers 
represent a reasonable, physically realiz-
able model of computation, but we do not 
yet know whether a probabilistic Turing 
machine can efficiently simulate them. The 
general belief is that it cannot, but as with 
many other fundamental questions in com-
putational complexity theory, this belief 
may very well be disproven.

Computational Model
On the surface, quantum comput-

ers are programmed much like classical 
(i.e., non-quantum) machines; they have a 
state that evolves through the application 
of operations, and they ultimately output 
some information based on the final state. 
However, the state, operation, and output 
components behave differently from their 
classical counterparts. Here, we concisely 
describe these components; more details are 
available in the literature [8].

Let Ä denote the tensor product, which 
is the same as the Kronecker product in 
this context:
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The basic unit of information for a quan-
tum computer is the quantum bit (qubit). 

Bridging the Worlds of Quantum         
Computing and Machine Learning
By Somayeh Bakhtiari Ramezani 
and Amin Amirlatifi

The emergence of machine learning—
particularly deep learning—in nearly 

every scientific and industrial sector has 
ushered in the era of artificial intelligence 
(AI). On a parallel trajectory, quantum com-
puting was once considered largely theoreti-
cal but has now become a reality. The fusion 
of these two powerful disciplines has created 
an unprecedented avenue for innovation, 
ultimately giving rise to quantum machine 
learning (QML). This novel concept prom-
ises to revolutionize computational science, 
data analytics, and predictive modeling in a 
wide variety of areas, from optimization to 
pattern recognition (see Figure 1).

Quantum computing offers the neces-
sary computational horsepower to speed 
up complex machine learning algorithms, 
and machine learning provides a toolkit for 
the optimization of quantum circuits or the 

decoding of quantum states. Here, we pos-
tulate as to how QML—especially quantum 
deep learning and quantum large language 
models (QLLMs)—can redefine the future 
of machine learning.

How Quantum Computing      
Can Benefit Deep Learning

Quantum Speedup in Learning Algo-
rithms: Quantum computing can have an 
immediate and substantial impact on algo-
rithmic speedup, which is particularly rele-
vant for machine learning and deep learning 
applications. A number of QML algorithms 
are modeled after Grover’s algorithm, which 
offers quadratic and exponential speedup in 
unstructured search problems; support vec-
tor machines and several clustering methods 
exemplify this improvement [8]. Grover-
like speedup could potentially reduce the 
training time for large neural networks.

Quantum Neural Networks (QNNs): 
Traditional neural networks face computa-

tional limitations, especially as they grow 
in size and complexity. In contrast, QNNs 
leverage quantum advantages—such as 
superposition and entanglement—to carry 
out computations more efficiently [9]. 
Hybrid quantum-classical networks have 
shown promising results in proficiently 
tackling machine learning tasks despite the 
initial limitations of QNNs.

Quantum Natural Language Processing 
(QNLP): Deep learning and large language 
models like GPT-4 are becoming integral 
parts of our world, with applications that 
range from natural language processing to 
decision-making algorithms. While these 
models are undeniably transforming various 
fields, there is a growing but often over-
looked concern about their environmen-
tal impact. Training extensive AI/machine 
learning models requires significant com-
putational resources and generates a sub-
stantial carbon footprint. In fact, a 2019 
study estimated that training a single large 
neural network could emit the same amount 
of carbon that five cars produce over their 
entire lifetimes [10]. This alarming reality, 
which illuminates the significant environ-
mental costs that are often overshadowed 
by technological advancements, calls for 
an immediate reassessment of the sustain-
ability of current machine learning practices 
— especially in light of the global urgency 
to combat climate change.

Quantum computing might offer a 
more energy-efficient way to train and 
deploy large language models. Preliminary 
research in QNLP indicates the potential 
ability of quantum states to capture seman-
tic relationships between words, which 
could lay the foundation for more advanced 
natural language processing systems [6]. 
QLLMs will likely impact this research 
area, especially when simulating human-
like conversation with high accuracy.

See Quantum Computers on page 4

Figure 1. The mutual benefits of quantum computing (in green) and machine learning (in 
blue) have resulted in a new concept called quantum machine learning, which will influence 
the future directions of fields like computational science, data analytics, and predictive mod-
eling. Figure courtesy of the authors.
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5 	 MIT SIAM Student Chapter 
Hackathon Utilizes Open-
access Energy Data

	 Undergraduate and graduate 
students recently came together 
at the Massachusetts Institute 
of Technology (MIT) to take 
part in the Global Energy 
Monitor Hackathon, which was 
co-hosted by the MIT SIAM 
Student Chapter and Earth 
Hacks. Bianca Champenois 
and Sanjana Paul describe the 
event, which challenged par-
ticipants to tackle problems 
about worldwide energy data 
and solar resource potential.

6 	 Quantum Computing for 
Financial Mathematics

	 Quantum computing marks the 
start of a new chapter for finan-
cial mathematics, which seeks to 
provide the most efficient tools 
for financial computations such 
as risk management, credit scor-
ing, encryption, and portfolio 
optimization. Antoine Jacquier, 
Oleksiy Kondratyev, Gordon 
Lee, and Mugad Oumgari 
describe several aspects of 
quantum computing that are 
especially relevant to finan-
cial mathematics problems.

7 	 Electrical Resistance     
and Conformal Maps

	 Mark Levi elaborates on a 
previous observation about the 
conformal deformation of con-
ductors. After noting that the 
dilation of a square that is cut 
from a current-conducting sheet 
changes the distance that the 
current must travel by the same 
factor as the width, Levi draws 
connections between the confor-
mal equivalence and electrical 
resistance of annular regions.

8 	 High School Mathematical 
Contest in Modeling 
Explores Dandelions     
and Electric Buses

	 The Consortium for Mathematics 
and Its Applications (COMAP) 
held its annual High School 
Mathematical Contest in 
Modeling (HiMCM) in 
November 2023. Kathleen 
Kavanagh and Benjamin 
Galluzzo—who authored the 
contest’s two open-ended prob-
lems on dandelion spread and 
the sustainability of electric 
buses—overview COMAP and 
HiMCM and encourage SIAM 
members to get involved.
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An Introduction to Quantum               
Computing and Applied Mathematics
By David Hyde and Alex Pothen

Over the last decade, quantum com-
puting has steadily become a global 

research priority. In 2018, the U.S. fed-
eral government created the $1.2-billion 
National Quantum Initiative Act1 to spur 
quantum research and development. And 
in 2023, the U.S. National Institute of 
Standards and Technology2 identified quan-
tum information technologies as a critical 
and emerging technology for prioritization3 
(alongside domains like artificial intelli-
gence and machine learning, clean energy 
generation, and semiconductors). The cur-
rent emphasis on quantum computing (see 
Figure 1) has inspired multiple new funding 
opportunities across science, technology, 
engineering, and mathematics.

With this backdrop in mind, it is impor-
tant to recognize the deep ties that exist 
between applied mathematics and quantum 
computing. The primary languages of quan-
tum mechanics and quantum computing are 
optimization and theoretical and numerical 
linear algebra — all of which are founda-
tional competencies of SIAM’s member-
ship. And given the constraints of near-term 
quantum computers, scientific comput-

1  https://www.quantum.gov
2  https://www.nist.gov
3  https://www.nist.gov/news-events/news/

2023/09/nist-seeks-input-implementation-
national-standards-strategy-critical-and

ing topics like domain 
decomposition have 
significant relevance 
in the quantum realm. 
In the other direction, 
quantum computing 
also has the potential to 
meaningfully impact the 
work of the SIAM com-
munity, with prospec-
tive applications from 
portfolio optimization 
in financial mathemat-
ics to the prediction of 
chemical phenomena 
via variational quantum 
eigensolvers.

In light of such 
exciting possibilities, 
we assembled a panel 
of experts in quantum 
computing and applied 
and industrial math-
ematics to illuminate the 
synergies between these research areas and 
ultimately foster new collaborations. This 
international cohort of researchers includes 
academics, national laboratory scientists, 
and practitioners from industry. These indi-
viduals have prepared a collection of articles 
for SIAM News that explore particular com-
ponents of the intersection between applied 
mathematics and quantum computing.

The seven articles in this series are 
divided across two sub-
sequent issues of SIAM 
News. In this first install-
ment, Giacomo Nannicini 
(University of Southern 
California) introduces the 
fundamentals of quantum 
computing and overviews 
several problems that may 
be well suited for quan-
tum computers. Somayeh 
Bakhtiari Ramezani and 
Amin Amirlatifi (both 
of Mississippi State 
University) investigate 
the interplay between 
quantum computing and 
machine learning. Lin Lin 
(University of California, 
Berkeley) discusses the 
importance of end-to-end 
complexity for quantum 
algorithms. And lastly, 
Antoine Jacquier (Imperial 
College London), Oleksiy 
Kondratyev (Abu Dhabi 
Investment Authority), 
Gordon Lee (Bank of New 
York Mellon Corporation), 
and Mugad Oumgari 
(Lloyds Banking Group) 
address the connections 
between the quantum 

Figure 1. This quantum computer at Lawrence Berkeley National 
Laboratory is exploring quantum’s potential to enable ground-
breaking computational power. Figure courtesy of the University 
of California, Lawrence Berkeley National Laboratory.

world and financial mathematics. See Figure 
2 for a list of common acronyms that appear 
throughout the four articles in this issue.

We hope that these bite-sized surveys 
provide an accessible starting point for 
SIAM members to pursue new ideas and 
collaborations in the realm of quantum 
computing, especially as numerous fund-
ing agencies continue to emphasize the 
importance of quantum technologies. We 
encourage interested readers to contact the 
authors and explore the references that are 
mentioned in these works. Finally, we look 
forward to sharing the next set of articles 
about the intersection of quantum comput-
ing and applied mathematics in the forth-
coming May issue of SIAM News.

Pending funding, SIAM will hold the 
SIAM Quantum Intersections Convening 
– Integrating Mathematical Scientists Into 
Quantum Research in October 2024. The 
goal of this convening is to foster and 
increase the involvement and visibility of 
mathematicians and statisticians in quan-
tum science research and education. Stay 
tuned for additional details!

David Hyde is an assistant professor of 
computer science at Vanderbilt University. 
His research interests include computa-
tional physics, cloud computing, computer 
graphics, and quantum computing. Alex 
Pothen is a professor of computer science 
at Purdue University. His research interests 
include combinatorial scientific computing, 
graph algorithms, and parallel comput-
ing. Pothen received SIAM’s George Pólya 
Prize in Applied Combinatorics in 2021 
and is a Fellow of SIAM, the American 
Mathematical Society, and the Association 
for Computing Machinery.

Figure 2. List of common quantum computing acronyms that 
appear throughout the articles in this issue. The acronyms are also 
defined within the text itself.
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Machine Learning
Continued from page 1

Quantum Parallelism and Optimi-
zation: A defining feature of quantum 
computing is its ability to perform parallel 
computations through superposition — an 
invaluable property for optimization prob-
lems, which are the underlying theme of 
machine learning algorithms. The Quantum 
Approximate Optimization Algorithm 
(QAOA) is potentially able to optimize 
complex functions that are classically hard 
to solve [4]. QAOA employs quantum par-
allelism to simultaneously explore multiple 
solutions, thus providing a much-needed 
alternative for the optimization of deep 
learning models. Another promising quan-
tum algorithm is the variational quantum 
eigensolver (VQE) [7]. Many machine 
learning algorithms hinge on the solution 
of eigenvalue problems, so the VQE could 
significantly expedite these calculations on 
quantum hardware.

How Deep Learning Can     
Benefit Quantum Computing

Machine Learning for Quantum Error 
Correction: Quantum error correction is 
vital in the creation of reliable quantum 
computers. In classical computers, error cor-
rection is relatively straightforward; errors 
usually arise when binary digits (bits) flip 
from 0 to 1 or vice versa, and several tech-
niques—such as parity checks—can identify 
and correct them. But in quantum comput-
ing, phase errors and other quantum deco-
herence mechanisms may also disrupt the 
delicate quantum states. Although traditional 
quantum error correction techniques—like 
surface codes and cat codes—are effective, 
they require extensive resources.

Machine learning methods have shown 
promise in error detection and correction. 
We can train deep neural networks to iden-
tify quantum errors by learning the intricate 
patterns through which these errors typi-
cally manifest. By doing so, the networks 
can effectively “flag” corrupted quantum 
states for correction — even when tradi-
tional error correction techniques are com-
putationally expensive or less efficient. This 
approach could bring fault-tolerant quantum 
computers closer to reality.

Quantum System Modeling: Deep 
learning can also assist with the model-
ing and simulation of complex quantum 
systems. We can use quantum data to train 

surrogate models that simulate the original 
system’s behavior at a faster pace than other 
classical simulators; analysis of such mod-
els may lend insight into behaviors that are 
difficult to study directly. These surrogate 
models can pinpoint patterns and properties 
within quantum systems that otherwise may 
not be readily identifiable, potentially lead-
ing to advancements in molecular science, 
quantum chemistry, materials science, and 
other related fields [3].

Quantum Algorithms: Hybrid quantum-
classical algorithms that utilize both quan-
tum computers and classical machine learn-
ing models are forging new paths for the 
solution of complex problems in optimiza-
tion, data analysis, and the like. One major 
machine learning application in quantum 
computing is the optimization of traditional 
quantum algorithms. For example, rein-
forcement learning can fine-tune a quantum 
circuit’s parameters and yield more efficient 
and effective quantum computations [3].

Open Problems in the Era         
of Noisy Intermediate-scale 
Quantum Computing

A key challenge that presently impacts 
quantum computing in general (and QML in 
particular) is the limitation of existing quan-
tum hardware. Current gated quantum com-
puters are predominantly classified as noisy 
intermediate-scale quantum (NISQ) devices. 
These devices often have a limited number of 
quantum bits (qubits)—ranging from tens of 
qubits to a few hundred—though machines 
with several thousand qubits are under 
development. Computers in this transitional 
period are not yet fully fault tolerant and 
are constrained by physical limitations like 
decoherence and gate errors, which affect 
their ability to maintain high-quality entan-
glement and achieve a high circuit depth. 
Despite these issues, NISQ devices can 
perform certain computational tasks more 
efficiently than their classical counterparts. 
Furthermore, the limited number of qubits 
and relatively large error rates complicate the 
implementation of complex QNNs on these 
machines. Even before the issue of algorith-
mic design, NISQ computers must handle 
intrinsic imperfections — such as the afore-
mentioned decoherence and gate errors [1].

While QML in the NISQ era faces unique 
challenges—especially concerning hard-
ware limitations—it also presents exciting 
research opportunities for interdisciplinary 
collaborations between computer scientists, 

applied mathematicians, and physicists. A 
variety of techniques are paving the way for 
increased QNN compatibility with NISQ-
era devices, including variational circuits, 
error mitigation, and hybrid models. As 
these methods mature, the prospect of QML 
implementation in near-term quantum com-
puting becomes even more promising.

One of the most popular approaches in 
this regard is the use of variational circuits: 
shallow quantum circuits that are adaptable 
to NISQ-era constraints. This tactic classi-
cally optimizes the circuit parameters, while 
the quantum component of the computation 
executes specific subroutines [7]. Error 
mitigation techniques, such as zero-noise 
extrapolation, also help to reduce the effect 
of noise in the system. By running the 
same quantum operation multiple times 
with varying noise levels, users can estimate 
and correct for the impact of errors. A third 
approach for NISQ-era quantum computers 
integrates quantum computing into clas-
sical neural networks as hybrid quantum-
classical models [2]. Doing so allows the 
quantum portions of the model to focus on 
specific tasks that suit them well—such as 
complex optimizations—while offloading 
other tasks to the classical system. Finally, 
we note that effective methods for quantum 
data encoding—i.e., encoding classical data 
into quantum states—remain an open prob-
lem. Current approaches either suffer from 
inefficiencies or lack the ability to capture 
the richness of classical data [5].

Concluding Thoughts
As we venture deeper into the realms 

of AI and quantum mechanics, the con-
vergence of these two technologies offers 
unparalleled potential. The synergistic rela-
tionship between quantum computing and 
machine learning necessitates a concrete 
interdisciplinary framework wherein quan-
tum physicists, computer scientists, and 
applied mathematicians can work together 
to develop robust, scalable, and applicable 
quantum algorithms for machine learning.

References
[1] Arute, F., Arya, K., Babbush, R., 

Bacon, D., Bardin, J.C., Barends, R., … 
Martinis, J.M. (2019). Quantum supremacy 
using a programmable superconducting pro-
cessor. Nature, 574, 505-510.

[2] Cao, Y., Romero, J., Olson, J.P., 
Degroote, M., Johnson, P.D., Kieferová, 
M., … Aspuru-Guzik, A. (2020). Quantum 

chemistry in the age of quantum computing. 
Chem. Rev., 119(19), 10856-10915.

[3] Carrasquilla, J. (2020). Machine 
learning for quantum matter. Adv. Phys. X, 
5(1), 1797528.

[4] Farhi, E., Goldstone, J., & Gutmann, 
S. (2014). A quantum approximate optimiza-
tion algorithm. Preprint, arXiv:1411.4028.

[5] Liang, Z., Song, Z., Cheng, J., He, Z., 
Liu, J., Wang, H., … Shi, Y. (2022). Hybrid 
gate-pulse model for variational quantum 
algorithms. Preprint, arXiv:2212.00661.

[6] Meichanetzidis, K., Gogioso, S., de 
Felice, G., Chiappori, N., Toumi, A., & 
Coecke, B. (2020). Quantum natural lan-
guage processing on near-term quantum 
computers. Preprint, arXiv:2005.04147.

[7] Peruzzo, A., McClean, J., Shadbolt, 
P., Yung, M.-H., Zhou, X.-Q., Love, P.J., 
… O’Brien, J.L. (2014). A variational 
eigenvalue solver on a photonic quantum 
processor. Nat. Commun., 5, 4213.

[8] Ramezani, S.B., Sommers, A., 
Manchukonda, H.K., Rahimi, S., & 
Amirlatifi, A. (2020). Machine learning 
algorithms in quantum computing: A survey. 
In 2020 international joint conference on 
neural networks (IJCNN) (pp. 1-8). Institute 
of Electrical and Electronics Engineers.

[9] Schuld, M., Sinayskiy, I., & 
Petruccione, F. (2015). An introduction to 
quantum machine learning. Contemp. Phys., 
56(2), 172-185.

[10] Strubell, E., Ganesh, A., & 
McCallum, A. (2019). Energy and policy 
considerations for deep learning in NLP. 
In Proceedings of the 57th annual meet-
ing of the Association for Computational 
Linguistics (pp. 3645-3650). Florence, Italy: 
Association for Computational Linguistics.

Somayeh Bakhtiari Ramezani holds a 
Ph.D. in computer science from Mississippi 
State University. She is a 2023 Southeastern 
Conference Emerging Scholar and a 2021 
Computational and Data Science Fellow of 
the Association for Computing Machinery’s 
Special Interest Group on High Performance 
Computing. Ramezani’s research interests 
include probabilistic modeling and optimiza-
tion of dynamic systems, quantum machine 
learning, and time series segmentation. Amin 
Amirlatifi is an endowed professor and an 
associate professor of chemical and petro-
leum engineering in the Swalm School of 
Chemical Engineering at Mississippi State 
University. His research interests include 
numerical modeling and optimization, quan-
tum computing, and the application of artifi-
cial intelligence and machine learning in pre-
dictive maintenance and the energy sector.

Quantum Advantages and End-to-end Complexity
By Lin Lin

Rapid advancements in quantum com-
puting offer unparalleled opportunities 

for the scientific computing community. 
However, it is quite difficult to fully har-
ness the potential of quantum comput-
ers and outperform classical computers in 
scientific computing. It may be tempting 
to think that n  quantum bits (qubits) can 
encode 2n  complex amplitudes—which 
would suggest exponential quantum speed-
ups—but the reality is more subtle. Every 
quantum algorithm must interact with clas-
sical processing systems, which means that 
we need to thoughtfully consider input-out-
put models and the specific requirements 
of quantum algorithms when evaluating 
quantum complexities. Due to the inherent 
constraints of quantum devices, we can 
only achieve significant quantum advantag-
es for problems that have a limited amount 
of input and output data.

Let us divide the quantum cost into 
three main categories: input, output, and 
running costs. A quantum algorithm typi-
cally begins with a standard state such as 
| ;0n ñ  a unitary matrix then transforms this 
state to prepare the input state. The input 
cost is the quantum gate complexity that is 
required to implement this unitary matrix, 
and the output cost pertains to the quantum 
measurement process — which is generally 

performed on one or more qubits at the end 
of the algorithm. The number of necessary 
repetitions to carry out the quantum algo-
rithm determines the output cost. Finally, 
the running cost refers to the expense that 
is incurred by executing the quantum algo-
rithm a single time (excluding the cost of 
preparing the input state). In order to con-
duct a comprehensive end-to-end analysis 
of quantum advantage, we must consider all 
three of these costs. We also have to com-
pare the quantum algorithm’s performance 
with that of the best available classical 
algorithms. A recent survey systematically 
investigated this end-to-end complexity for 
a wide range of quantum applications [5].

Shor’s algorithm serves as a great 
example of end-to-end quantum advantage 
because it effectively tackles the prime 
factorization problem, which challenges 
classical computers. This algorithm excels 
at end-to-end complexity in multiple ways: 
(i) It has minimal input and output costs 
since it only involves integers; (ii) it main-
tains a running cost that is polynomial in 
relation to the integer’s bit length; and (iii) 
it significantly surpasses the best classical 
algorithm for the task, which has a super-
polynomial cost in the number of bits.

Hamiltonian simulation—which finds 
numerous applications in quantum phys-
ics and chemistry—is another method 
that could achieve a quantum advantage. 

During this process, an initial state |y
0
ñ 

evolves over time t  to | | .y y
t
e iHt〉= 〉−

0  
For a system with n  qubits, the size of the 
Hamiltonian matrix H  is 2n  but the amount 
of information in H  is typically only poly-
nomial in n. We begin with simple initial 
states that are prepared at a polynomial 
cost in n; the best algorithm for simulat-
ing quantum dynamics up to time t  with 

precision  only queries the unitary encod-
ing of H  (known as a block encoding) 

 times [7, 10]. The 
output emphasizes accurate approximations 
of observables that are associated with 
|y

t
ñ—i.e., 〈 〉y y

t t
O| | —rather than recon-

structions of all of the information in | .y
t
ñ  

The cost of measuring these observables 

Figure 1. Relationship between the quantum singular value transformation (QSVT) and 
the linear combination of Hamiltonian simulation (LCHS) for the simulation of e At- .  Figure 
courtesy of Dong An of the Joint Center for Quantum Information and Computer Science.

See End-to-end Complexity on page 5
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The state of a q-qubit quantum computer 
is a unit vector in ( ) . 

2 2⊗ =q q
 Because 

this vector space has 2q  standard basis 
elements, we conventionally label them 
as q-digit binary strings that are denoted 
by |jñ for j qÎ{ , } ;0 1  a “ket”—i.e., a sym-
bol included in brackets |⋅〉—is simply 
a column vector. In quantum mechan-
ics, practitioners often graphically repre-
sent a 1-qubit state | | |ψ α α〉= 〉+ 〉=

0 1
0 1

a a
0 1

1

0

0

1












+












,  a a

0 1
, Î  on a sphere 

(see Figure 1). Such a representation is 
only up to a global phase factor eif, but 
this factor is unimportant due to the laws 
of measurement.

The operations that evolve the state cor-
respond to quantum circuits, which are 
unitary matrices U

q q

∈ ×


2 2  (see Figure 2). 
We typically express circuits in terms of 
basic gates — i.e., certain 2 2´  or 4 4´  
complex unitary matrices that constitute the 
“assembly language.” The composition of 
basic gates follows the standard rules for 
tensor products and matrix multiplication. 
Consider a 2-qubit system; applying the gate 
U  onto the first qubit and the gate V  onto 
the second qubit, followed by the gate W  
onto the first qubit, is equivalent to applying 
the matrix ( )( )W I U V WU V⊗ ⊗ = ⊗  to 
the entire quantum state. A measurement of 
the state | |ψ α〉= 〉=

−Σ
j j

q

j
0

2 1  is a special, non-
unitary operation whose outcome is a ran-
dom variable X  with sample space { , }0 1 q  
and Pr( ) | | .X j

j
= = a 2  We only gain infor-

mation about a quantum state from measure-
ments, and the state collapses to |j ñ if we 
observe j  as the outcome of a measurement.

A quantum algorithm contains quantum 
circuits and subsequent measurements. In 
order for a quantum algorithm to be effi-
cient, it must use a polynomial number 
of resources — i.e., a polynomial number 
of qubits and basic quantum gates (the 
assembly language). Based on this expla-
nation, several differences between clas-
sical and quantum computers are readily 
observable. First, describing the state of a 
quantum computer requires that we specify 
an exponential-sized complex vector (i.e., 
2q  for a q-qubit system), whereas describ-
ing the state of a classical computer simply 
requires a linear-sized binary vector. But 
given the effect of measurements, we can 
only extract a linear amount of information 
(in terms of the number of qubits) from the 
exponential-sized complex vector — so 
from a q-qubit state, we obtain q  bits of 
information after a measurement. Second, 
all operations (except measurements) that 
a quantum computer applies are linear and 
reversible; a unitary matrix U  satisfies 
UU U U I† † ,= =  where † denotes the con-
jugate transpose. Though these properties 
may seem restrictive, a universal quantum 
computer is Turing-complete in that it can 
compute any Turing-computable function 
while only requiring some polynomial num-
ber of additional resources.

Practical Uses of           
Quantum Computers

From a practical viewpoint, existing 
quantum computers are still far from faith-
fully reproducing the ideal model of quan-
tum computation. Nonetheless, the research 
community has been persistently seeking 
strong use cases for quantum computers 
— many of which will resonate with the 
SIAM community. Here, we present some 
of the relevant problems. The following list 
is not exhaustive, nor can it be, as this area 
of research is highly active; the takeaway 
is that quantum computers excel at certain 
tasks and perform poorly at others. Because 
classical algorithms and quantum comput-
ers offer different tradeoffs for many inter-
esting computational problems, researchers 
often study quantum approaches in search 
of potential advantages.

Richard Feynman originally proposed the 
concept of quantum computers to simulate 
the time evolution of a quantum mechanical 
system [5]. Mathematically, this idea is akin 
to implementing a circuit that acts as e iHt-  
on the state vector, where the matrix H  and 
scalar t  are input data. Quantum computers 
can solve this problem in time polynomial 
in the number of qubits [2], whereas no effi-
cient classical algorithm has been discov-
ered so far. The problem is “prototypical” 
for the class of problems that are efficiently 
solvable by a quantum computer. It finds 
direct applications in quantum physics and 
chemistry (i.e., the simulation of quantum 
dynamics) and is a core component of many 
quantum algorithms.

Quantum computers can also aptly 
estimate certain eigenvalues. Consider a 
q-qubit unitary U  (recall that U  is a 2 2q q´  
matrix) and an eigenvector |yñ of U . The 
phase estimation algorithm determines an 
e-approximation of the eigenvalue of |yñ 
with ( / )1 e  applications of U  and a num-
ber of gates that is polynomial in q, whereas 
a classical algorithm would generally need 
to perform a matrix-vector operation with 
the (exponentially-sized) matrix U .

There are several quantum algorithms for 
the solution of linear systems, beginning 
with seminal work in 2009 [6]. Multiple 
possible input models are also in use; for 
example, the sparse oracle access model 
describes matrix entries via maps that indi-
cate the position of nonzero elements and 
their values. However, this model is not 
necessarily the most efficient approach for 
every scenario. Let A m m∈ ×

 , b mÎ ,
e>0, and z A b= −1 . The natural “quantum 
encoding” of the solution z  is the state 

 A quantum linear sys-

tems algorithm produces a state |fñ so 
that  The runtime of such 
an algorithm is polylogarithmic in m but 
depends (at least linearly) on the linear sys-
tem’s condition number k [9]. The fastest 
known runtime for the sparse access input 
model is O d( )k  (ignoring all polylogarith-
mic factors), where d  is the maximum num-
ber of nonzero elements in each row of A.

The overarching purpose of these algo-
rithms for linear systems is to 
implement the matrix function 
f x x( ) / ,=1  which implicitly 
computes an eigendecomposi-
tion of A and takes the recip-
rocal of each eigenvalue in the 
corresponding eigenspace. Two 
important factors merit consider-
ation in this endeavor. First, we 
must account for the cost of the 
oracles that describe the entries 
of A and prepare a state encod-
ing b. These oracles can be inex-
pensive if A and b admit effi-
cient algorithmic descriptions, 
but they may take a time that is 
proportional to the total num-
ber of nonzero elements in less 
favorable scenarios — resulting 
in a corresponding increase in 
runtime. Second, the solution z  
cannot be read directly because 
it is encoded as a quantum state. 
If we wish to extract a classical 

description of the solution, we must perform 
a potentially expensive operation called 
quantum state tomography [10].

It is also possible to efficiently imple-
ment other matrix functions besides the 
inverse on a quantum computer. This pros-
pect is best understood in the framework of 
block encodings [7]. A block encoding of a 
matrix A is a quantum circuit that, in some 
subspace, acts on the quantum state as A 
(possibly rescaled). While a quantum circuit 
is always a unitary operation, A need not be 
unitary or even square in this case. We can 
utilize a variety of tactics to implement a 
block encoding of some given matrix A in 
a data-driven way. From this block encod-
ing, we can then implement approxima-
tions of polynomial functions of A.  The 
construction of the Gibbs state e eA A/ ( )Tr  
for Hermitian A is a particularly notable 
scenario. Gibbs states are important in many 
branches of applied mathematics, includ-
ing machine learning and optimization. In 
some cases, a block encoding of an n n´  
Gibbs state can be constructed in times as 
fast as  The speedup is quite large 
compared to classical approaches, although 
the stated runtime is only achievable under 
very specific, favorable conditions.

Finally, quadratic quantum speedups 
via amplitude amplification yield faster 
algorithms for many problems [3]. One 
such example is unstructured search (also 
known as Grover’s algorithm), which 
searches over a set with no structural 
property so that the only possible search 
approach is to examine all of the elements 
in the set. Another example is mean esti-
mation, which computes the mean of a 
univariate or multivariate random variable 
[4]. These approaches are strongly related 
to quantum walks, which also admit qua-
dratic speedups when compared to classi-
cal random walks [1]. The speedups rely 
on specific input models and may incur 
additional conditions, so it is important to 
pay attention to the details.

The aforementioned problems represent 
only a tiny fraction of active research areas, 
but hopefully this overview will generate 
some excitement about quantum comput-
ing. Quantum algorithms can be under-
stood purely through linear algebra and 
often offer different tradeoffs than classi-
cal algorithms, which means that they are 
potentially useful under the right condi-
tions. However, we must overcome many 
challenges—in subjects such as hardware 
design and engineering, algorithms and 
software, and practical considerations like 
numerical stability—to bring this source of 
potential to fruition. Classical computers 
will likely remain the best choice for most 
computational problems, but if quantum 
computers can accelerate even just a few 
key issues in practice, that alone could be 
worth the time and exploratory investment.
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Figure 1. In quantum computing, the Bloch sphere is a 
possible graphical representation of the state of a quantum 
bit. Figure courtesy of the author.

Figure 2. This quantum circuit implements an operation called the quantum Fourier transform. 
All operations correspond to unitary matrices except for the last operation on each wire, which 
indicates a measurement. Figure courtesy of the author.
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is again polynomial in n  and 1/ .  Given 
these parameters, classical algorithms can-
not reliably and accurately compute such 
dynamical properties over an extended 
duration t  at a polynomial cost in n. This 
shortcoming sets a strong foundation for 
the potential of quantum speedups during 
the simulation of quantum dynamics.

Does quantum computing demonstrate 
a clear, end-to-end advantage in other 
domains besides prime factorization and 
quantum dynamics simulation? While 
many applications still lack a solid foun-
dational basis, rapid progress is certainly 
occurring across various areas.

Consider a seemingly simple variation of 
the simulation of quantum dynamics, where 
iH  is replaced with a general matrix A  that 
acts on n  qubits. Such problems appear 
when simulating certain open quantum sys-
tems. The goal is to simulate | |y y

t
Ate〉= 〉−

0
 

and subsequently measure an observable 
〈 〉y y
t t
O| | . We can always decompose 

a general matrix A (through a Cartesian 
decomposition) as A L iH= + , where 
L A A= +( )/ ,† 2  H A A i= −( )/( ),† 2  and 
A† represents the Hermitian conjugate of 
A. Both L and H  are Hermitian matrices. 
If L is positive semidefinite, the matrix 
2-norm satisfies  and the norm 
of the final state satisfies  The 
input can still be a simple state that is pre-
pared at a polynomial cost in n. When  
is small, the dynamics only differ slightly 
from the Hamiltonian simulation prob-
lem, thus suggesting that the general task 
of estimating the observable 〈 〉y y

t t
O| |  

could be hard for classical computers. But 
if the norm  decreases rapidly with 
respect to t, estimating 〈 〉y y

t t
O| |  with a 

multiplicative accuracy of  requires an 
increased number of repetitions — thereby 
raising the output cost. To establish a 
quantum advantage over this non-Hermi-
tian simulation problem, we must find a 
duration t  that is sufficiently demanding 
for classical computers yet feasible for 
quantum computers. The lack of current 
knowledge about the difficulty of practi-

cally relevant non-Hermitian Hamiltonians 
calls for further research in this area.

We have discussed input cost, output 
cost, and the potential difficulties that clas-
sical solvers face. The remaining aspect 
of end-to-end analysis is the running cost 
— specifically, the simulation e At-  on a 
quantum computer. This task is actually 
quite challenging. One significant advance-
ment in quantum algorithms from the past 
decade is the development of the quantum 
singular value transformation (QSVT) [7]. 
Consider the singular value decomposi-
tion of A U W= Σ †. Since U  and W  are 
unitary matrices, implementing a singular 
value transformation like Uf W( ) †S  mainly 
requires that we address the non-unitarity 
of f ( ).S  This notion is a key innovation 
in both QSVT and quantum signal process-
ing [10]. When A iH= , the singular value 
decomposition directly relates to the eigen-
value decomposition A VDV= † in which 
V  is also unitary, thus allowing QSVT to 
perform the Hamiltonian simulation e iHt- . 
But for a more general A, the eigenvalue 
decomposition becomes A VDV= −1 and V  
is simply an invertible matrix. Because the 
simulation task e Ve VAt Dt− − −= 1 is intrinsi-
cally an eigenvalue decomposition problem, 
techniques such as QSVT are not applicable.

Given this restriction, how do we pre-
pare the state | |y y

t
e At〉= 〉−

0  on a quan-
tum computer? The leading approach is 
somewhat complex and perhaps counter-
intuitive. It begins by treating the prob-
lem like an ordinary differential equation 

(ODE): 
d

d

| ( )
| ( ) ,

y
y

s

s
A s

〉
=− 〉  y y( ) |0

0
= 〉 

on 0£ £s t. We then discretize this ODE 
over time and convert it into a large lin-
ear system of equations. We solve the 
resulting linear system with a quantum 
linear system solver, such as the renowned 
Harrow-Hassidim-Lloyd algorithm [8] or a 
more recent near-optimal solver [3, 4, 9]. 
The ODE itself is solvable via a traditional 
time-marching strategy, similar to the type 
that is employed in standard numerical 
ODE solvers. Although direct implementa-
tion leads to an excessively high output cost 
due to diminishing success probability, we 
developed a time-marching strategy that can 
partially mitigate this issue [6].

One timely advancement was a signifi-
cant simplification of the simulation of 
non-unitary quantum dynamics [2]. If L is 
positive semidefinite, then

(1)
    
e

k
e kAt i kL H t− − +=

+∫
1

1 2p( )
.( )



d

This formula generalizes the scalar iden-

tity e
k
e kx ikx− −=

+∫| |

( )

1

1 2p

d  to the 

matrix setting. Since the matrices H L,  
do not commute in general, the proof of 
(1) is not based on the spectral mapping 
theorem, which evaluates a matrix func-
tion f A Vf DV( ) ( )= −1 via the eigende-
composition A VDV= −1 [2]. This identity 
expresses e At-  as a linear combination of 
Hamiltonian simulation (LCHS) problems 
of the form e i kL H t− +( ) . We can even gener-
alize LCHS to time-dependent A t( ), where 

the time-ordered propagator e
A s s
t

−∫0 ( )d
 

replaces e At-  (see Figure 1, on page 3). 
The LCHS approach both streamlines the 
simulation process and achieves optimal 
query complexity with respect to the initial 
state preparation, which reduces the input 
cost. A recent study generalized the LCHS 
formalism to a family of identities that 
can express linear non-unitary evolution 
operators as a linear combination of unitary 
evolution operators [1]. This work is the 
first approach to solve linear differential 
equations with both optimal state prepara-
tion cost and near-optimal scaling in matrix 
queries on all parameters.

To fully harness the potential of quantum 
computers and achieve a quantum advan-
tage in the coming years, we must develop 
innovative methods to map various prob-
lems into suitable quantum frameworks. We 
thus welcome both theoretical and empirical 
discussions of the end-to-end complexities 
of these solutions. Problems that already 
exhibit some degree of “quantumness” may 
have a head start, as classical hardness 
is easier to argue. At the same time, sig-
nificant advancements might arise as we 
apply quantum computers to classical prob-
lems — much like the revolution in prime 
number factoring and cryptography due to 
Shor’s algorithm in the 1990s.
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MIT SIAM Student Chapter Hackathon   
Utilizes Open-access Energy Data
By Bianca Champenois              
and Sanjana Paul

During the first weekend in February, 
undergraduate and graduate students 

from the greater Boston area came together 
at the Massachusetts Institute of Technology 
(MIT) to take part in the Global Energy 
Monitor (GEM) Hackathon.1 The event was 
co-hosted by Bianca Champenois, presi-
dent of the MIT SIAM Student Chapter,2 
and Sanjana Paul, executive director of 
Earth Hacks.3 Hackathons generally serve 
as programming contests during which par-
ticipants work in small groups to teach 
each other new skills and develop inter-
esting projects that pertain to a certain 
theme, all while competing against other 
teams for prizes. The projects can take 
many forms, ranging from the creation of 
code repositories and website mockups to 
new datasets and hardware prototypes. The 
GEM Hackathon encouraged participants to 
utilize the open-access energy data in the 
GEM databases4 to tackle questions about 
worldwide energy data availability and esti-
mate solar resource potential. 

Students chose between two open-end-
ed challenge statements and applied their 
mathematics, modeling, programming, 

1  https://gem-hackathon.devpost.com
2  https://web.mit.edu/siam/www
3  https://earthhacks.io
4  https://globalenergymonitor.org

mapping, visualization, and storytelling 
skills to develop feasible solutions. The 
first challenge asked attendees to design 
a tool that would allow individuals from 
anywhere in the world to learn about the 
power plants in their vicinity, and the sec-
ond challenge tasked them with analyzing 
and combining multiple datasets to compare 
the potential of solar power against existing 
real-world implementations. The assign-
ments were intentionally broad so that stu-
dents could use their creativity to generate 
new perspectives. Represented schools at 
the GEM Hackathon included MIT, Bentley 
University, Boston University, Brandeis 
University, Bunker Hill Community 
College, Northeastern University, and 
Simmons University. Because the back-
grounds and majors of participating students 
varied widely, team members were able to 
exchange perspectives and apply a variety 
of skill sets in an interdisciplinary setting.

The two-day event, which took place 
during the Independent Activities Period 
at MIT, included workshops and talks to 
support students’ projects and experiences. 
To wrap up the first day of festivities, 
Hackathon organizers created a custom ver-
sion of GeoGuessr5—a popular geography 
game wherein players guess the locations 
of various Google Street View images—
that focused on power plants around the 
world. During this activity, participants 

5  https://www.geoguessr.com

learned about different types of power 
plants and observed their physical appear-
ances in real life. Exploring new landscapes 
via Google Street View also offered a fresh 
perspective on the size and impact of global 
energy projects — and gave hackers a 
break from project development to social-
ize and have some fun.

Another session familiarized students 
with Social Explorer:6 a tool that pro-

6  https://www.socialexplorer.com

vides access to U.S. demographic data. 
Alejandro Paz, a Librarian for Energy and 
Environment at MIT, explained the history 
and mechanics of the tool and gave a dem-
onstration. He also overviewed all of the 
resources and datasets that are available to 
students via MIT’s libraries.

The GEM Hackathon was further 
bolstered by mentor support, including 
that of Ted Nace (founder and executive 

During the Global Energy Monitor Hackathon, which took place at the Massachusetts Institute 
of Technology in early February, the “Plane Watchers” team presents their project about solar 
power. The students utilized multiple datasets to compare the potential of solar power with 
existing real-world implementations. Photo courtesy of Bianca Champenois.

See Hackathon on page 7
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Quantum Computing for Financial Mathematics
By Antoine Jacquier, Oleksiy 
Kondratyev, Gordon Lee,            
and Mugad Oumgari

The discipline of financial mathematics 
has experienced many periods of rapid 

development that are often followed by 
relative calm. As a synthetic discipline at 
the cross section of applied mathematics, 
financial theory, computer science, pruden-
tial regulation, and other fields, financial 
mathematics benefits from discoveries and 
breakthroughs in all of these areas. The 
birth of financial mathematics is often 
attributed to Louis Bachelier’s doctoral 
thesis, “The Theory of Speculation,” which 
he defended in 1900 under the supervision 
of Henri Poincaré. Bachelier was the first 
person to utilize a stochastic process (later 
called Brownian motion) to model financial 
assets. Since then, financial mathematics 
has felt the influence of stochastic calcu-
lus (e.g., Itô’s lemma and the Girsanov 
theorem), control theory (e.g., the Kalman 
filter), and statistics (e.g., the Kolmogorov-
Smirnov test) while also benefitting from 
progress in microprocessors, financial 
deregulation, ultrafast communication, and 
object-oriented programming.

Quantum computing, which promises 
enormous computing power at a very low 
cost, marks the start of a new chapter 
for financial mathematics. All financial 
problems—pricing, risk management, credit 
scoring, discovery of trading signals, data 
encryption, portfolio optimization, and so 
forth—are computational in nature, and 
financial mathematics seeks to provide the 
most efficient and convenient tools for these 
types of computations.

A computation is a function that trans-
forms information, or the transformation of 
one memory state into another. In classical 
digital computing, the fundamental memory 
unit is a binary digit (bit) of information. 
Logic gates are functions that operate on 
bits of information — namely Boolean func-
tions, which can be combined into circuits 
that perform additions, multiplications, and 
more complex operations. But is Boolean 
logic the sole or most general way to realize 
digital computation? The answer is clearly 
“no.” Classical computing is just a special 
case of a more general computational frame-
work that we now call quantum computing. 
A classical bit is a two-state system that can 
exist in one of two discrete deterministic 
states, traditionally denoted as 0 and 1. All 
classical bits are independent, in that flip-
ping the state of a given bit does not affect 
the states of other bits. To generalize these 
two features of classical computing, we can 
permit the bit to exist in a superposition of 
the two states and allow the states of differ-
ent bits to entangle (a certain form of cor-
relation). It is therefore clear how quantum 
computing got its name; superposition and 
entanglement are the key characteristics 
of quantum system states, and it is tempt-
ing to perform these computations with 
the controlled evolution of a quantum sys-
tem, i.e., by running a quantum computer.

Superposition and entanglement are also 
responsible for the extraordinary power of 
quantum computing. They allow for more 
general computation, a broader definition 
of the memory state as compared to classi-
cal digital computing, and a wider range of 
possible transformations of such memory 
states. The fundamental memory unit in 
quantum computing is the quantum bit 
(qubit). Mathematically, a qubit’s state is 
a unit vector in the two-dimensional com-
plex vector space. Norm-preserving unitary 
operators (unitary matrices) that act on 

qubit states serve as quantum logic gates. 
Once a computation is complete and the 
quantum circuit (a sequence of quantum 
logic gates) has transformed the initial sys-
tem state, we can measure the qubit states 
by projecting them onto the basis states (see 
Figure 1, on page 1). Qubits in their basis 
states correspond to classical bits, as all 
superpositions have collapsed. The remain-
der of the computational protocol can occur 
classically after the readout of the bitstring 
from a quantum computer.

Why have researchers not utilized this 
superior mode of computation until very 
recently? Although quantum mechanics 
was formulated nearly a century ago, the 
realization of quantum mechanical rules 
in the computational protocol of classical 
digital computers requires an enormous 
amount of memory. Exponential gains in 
computing power are offset by exponential 
memory requirements.

In order to efficiently perform quan-
tum computations, we must use the abil-
ity of actual quantum mechanical sys-
tems to encode information in their states. 
For instance, we can describe the state 
of a quantum system that consists of n 
entangled qubits by specifying 2n  prob-
ability amplitudes: a massive amount of 
information that would be impossible to 
store in classical memory. Decades passed 
before quantum processing units (QPUs)—
devices that control quantum mechanical 
systems as they perform computations—
became technologically feasible.

Current state-of-the-art QPUs contain 
several hundred qubits, and the qubit fidel-
ity is still insufficient for fault-tolerant 
computation. However, the size and qubit 
fidelity of these systems are already suf-
ficient enough to be useful. Two qubit types 
in particular stand out as the most devel-
oped and most promising: qubits made of 
superconducting circuits with a coherence 
time of  [10] (see Figure 2), and 
qubits made of trapped ions with a coher-
ence time of  [2] (see Figure 3). 
These qubit characteristics indicate that we 
are approaching the threshold beyond which 
various error correction algorithms become 
feasible, meaning that we may finally enter 
the era of fault-tolerant quantum computing.

While Google demonstrated so-called 
quantum supremacy on a specially designed 
problem in 2019, recent work has exhib-
ited clear signs of quantum advantage: 
productive applications of quantum com-
puters to real-world problems that classi-
cal computers have trouble handling. That 
being said, emulators play a pivotal role 
in the current quantum ecosystem due to 
the scarcity and cost of full-fledged quan-
tum computers. These emulators simulate 
quantum operations on classical hardware 
and enable researchers and developers to 
design, test, and refine quantum algorithms 
without direct access to a quantum machine, 
thus propelling state-of-the-art research 
and bypassing current limited availability. 
Given their parallel processing capabilities, 
graphics processing units have emerged 
as the go-to hardware for the emulation of 
quantum systems. Their architecture is well 
suited to handle the matrix operations that 
are fundamental to quantum mechanics. In 
recent years, large technology companies 
have begun to create public frameworks for 
quantum computing. For example, IBM’s 
Qiskit1 allows any Python user to imple-
ment and test quantum algorithms; Google 
Quantum AI provides the Cirq2 frame-
work that lets developers create, edit, and 

1  https://www.ibm.com/quantum/qiskit
2  https://quantumai.google/cirq/start/intro

invoke quantum circuits on real and simu-
lated quantum devices; the Microsoft Azure 
Quantum Development Kit3 includes the 
Q# language, which developers can use to 
write quantum algorithms that run on classi-
cal simulators; and Xanadu’s PennyLane4 
is specifically designed to implement quan-
tum machine learning (QML) tools.

Several aspects of quantum computing 
are especially relevant to financial math-
ematics problems.

Optimization
Digital quantum computing allows prac-

titioners to solve NP-hard combinatorial 
optimization problems with variational 
methods, such as the variational quantum 
eigensolver and the Quantum Approximate 
Optimization Algorithm [3]. Both algorithms 
can address a wide range of finance-relat-
ed optimization problems [6]. Moreover, 
variational algorithms are noise resistant 
and therefore suitable for the current gen-
eration of noisy intermediate-scale quantum 
computers [9]. Classically hard optimiza-
tion problems naturally lend themselves to 
implementation on analog quantum com-
puters that realize the principles of adiabatic 
quantum computing. The flagship financial 
use case is discrete portfolio optimization, 
which demonstrates the first experimen-
tal evidence of a quantum speedup [11].

3  https://learn.microsoft.com/en-us/azure/
quantum/overview-what-is-qsharp-and-qdk

4  ht tps: / /www.xanadu.ai /products /
pennylane

Quantum Machine Learning
The combination of quantum comput-

ing and artificial intelligence will likely 
generate some of the most exciting oppor-
tunities, including a wide range of possible 
applications in finance. We have already 
seen promising results with parameterized 
quantum circuits that were trained as either 
generative models (such as the quantum 
circuit Born machine [7]) or discrimina-
tive models (such as quantum neural net-
works). Possible use cases include market 
generators, data anonymizers, credit scor-
ing, and the creation of trading signals. The 
quantum generative adversarial network 
(GAN) is another generative QML model 
with significant potential [1]. Much like 
classical GANs, quantum GANs comprise 
a generator and a discriminator with the 
ability to distinguish quantum states. Since 
each quantum state encodes a probability 
distribution, researchers can use the quan-
tum GAN discriminator to verify whether 
the datasets in question came from the 
same probability distribution. This tech-
nique has direct applications to time series 
analysis, the detection of structural breaks, 
and alpha decay monitoring.

Partial Differential Equation Solvers
In 2009, Aram Harrow, Avinatan 

Hassidim, and Seth Lloyd devised a quan-
tum algorithm that can surpass classical 
computation times when solving linear sys-
tems [5]. Linear systems are ubiquitous 

Figure 2. Coherence time and fidelity of superconducting circuits.

Figure 3. Coherence time and fidelity of trapped ion circuits.

See Financial Mathematics on page 8
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Electrical Resistance and Conformal Maps

director of GEM) and Wesley Hamilton 
(senior software developer at PTC7 and 
former member of the University of North 
Carolina, Chapel Hill SIAM Student 
Chapter). Hamilton helped to host a 
Datathon4Justice8 at the University of Utah 
in 2021 and thus brought valuable experi-
ence to the MIT event. Students consulted 
the mentors for assistance and support 
throughout the course of the Hackathon.

The winning team, named the “Power 
Rangers,” created a website that sum-
marizes the landscape of energy projects 

7  https://www.ptc.com/en
8  https://sinews.siam.org/Details-Page/

datathons4justice-address-social-justice-issues-
with-data-science

in a region of interest. Their work built 
upon an existing codebase that was ini-
tially intended to map the locations of 
Chipotle restaurants in a given neighbor-
hood, though the students added many 
new features that incorporated further data 
analysis and insights. GEM intends to stay 
in touch with all participants to oversee the 
implementation of their projects beyond 
the prototyping phase.

At the event’s conclusion, students 
returned to their studies with newfound 
confidence in their ability to program with 
the Structured Query Language, employ 
the pandas Python library,9 utilize the 
Google Maps application programming 
interface, and perform regressions. Overall, 
the GEM Hackathon served as a great 
reminder of the importance of computation-

9  https://pandas.pydata.org

Members of the “Power Rangers”—the winning team of the two-day Global Energy Monitor 
Hackathon, which was held at the Massachusetts Institute of Technology (MIT) in early 
February—gather with Hackathon organizers and participants for a group photo. The program-
ming contest, which asked participating students to examine worldwide energy data availabil-
ity and solar resource potential, was co-hosted by the MIT SIAM Student Chapter and Earth 
Hacks. Photo courtesy of MIT’s Department of Urban Studies and Planning.

al mathematics and data science in climate 
and environmental-based projects.

Bianca Champenois is a Ph.D. candi-
date in the joint mechanical engineering 
and computational science/engineering 
program at the Massachusetts Institute of 
Technology (MIT). Her research involves 
data-driven fluid mechanics for ocean and 
atmospheric modeling. Champenois is also 
president of the MIT SIAM Student Chapter. 

Hackathon
Continued from page 5

Sanjana Paul is the co-founder and execu-
tive director of Earth Hacks: an environ-
mental hackathon organization. She is cur-
rently a graduate student in environmental 
policy and planning at MIT. Paul holds 
bachelor’s degrees in electrical engineering 
and physics and has worked on projects that 
range from atmospheric science software 
engineering to building decarbonization 
policies at the municipal level.

Hearing directly from working professionals about research, career opportu-
nities, and general professional development can help students gain a better 

understanding of the workforce. SIAM facilitates such interactions through its 
Visiting Lecturer Program (VLP), which provides the SIAM community with 
a roster of experienced applied mathematicians and computational scientists 
in academia, industry, and government. Mathematical sciences students and 
faculty—including SIAM student chapters—can invite VLP speakers to their 
institutions to present about topics that are of interest to developing professional 
mathematicians. Talks can be given in person or virtually.

The SIAM Education Committee1 sponsors the VLP and recognizes the need 
for all members of our increasingly technological society to familiarize them-
selves with the achievements and potential of mathematics and computational 
science. We are grateful to the accomplished individuals who have graciously 
volunteered to serve as visiting lecturers. 

Points to consider in advance when deciding to host a visiting lecturer include 
the choice of dates, speakers, topics, and any additional or related activities (such 
as follow-up discussions). Organizers can reach out directly to speakers and 
must address these points when communicating with them. Read more about the 
program and view the current list of participants online.2

1  https://www.siam.org/about-siam/committees/education-committee
2  https://www.siam.org/students-education/programs-initiatives/siam-visiting-
lecturer-program

Take Advantage of 
SIAM’s Visiting Lecturer Program

I would like to elaborate on the observa-
tion in my April 2023 article, titled 

“Conformal Deformation of Conductors.”1 
Imagine a current-conducting sheet: negli-
gibly thin, homogeneous, and isotropic. Let 
us cut a square out of the sheet and measure 
the resistance, as in Figure 1. The following 
fact is both fundamental and almost trivial:

 
 
 				     (1)
   

Squares of all sizes

have the same resistance.

Indeed, dilation of the square changes 
the distance that the current must travel, 
and by the same factor as the width; these 
two effects cancel each other out — but 
only in 2. In 3, for example, dilating 
a cube by a factor l divides the resistance 
(between the opposite faces) by l, and in  
the resistance multiplies by l.

From now on, let the resistance of the 
square =1 ohm. Geometrically, resistance 
is a measure of elongation: a rectangle 
whose resistance =1 must then be a square 
(see Figure 2).

A classical theorem in complex analysis 
states that two annuli (see Figure 3) are 
conformally equivalent—i.e., they can be 
mapped onto one another by a confor-
mal 1 1-  map—if and only if they have 

1  https://sinews.siam.org/Details-Page/
conformal-deformation-of-conductors

chosen so that the current through the chan-
nel v v0 1 is 1/ .n  Continue adding current 
lines vj , as in Figure 5, and stop at j m=  
when the current through the channel v vm 0 
becomes <1/ .n  This last channel plays no 
role in the limit of n→∞.

We divided the annulus into n m´  infini-
tesimal curvilinear rectangles Qij , which 
we enumerate by the rectangle’s layer i, 
1£ £i n and the channel j, 1£ £j m 
(see Figure 5).

I claim that each curvilinear rectangle Qij 
is a square in the limit of n→∞. Indeed, 
the resistance is

RQ
n
nij( )

/
/

,= = =
voltage drop

current
1
1

1

and a rectangle for which resistance =1 is a 
square (as indicated in Figure 2).

What is the resistance of A? Each chan-
nel has resistance n (being a 
stack of n squares), and with 
m  channels in parallel,

        
R A

n
m

( ) ,=

ignoring a small error due to 
the resistance of the last channel v vm 0

. The 
resistance therefore has an almost combi-
natorial meaning.

To construct the map A A↔ ′, we 
divide A¢ into  squares Qij

¢ . If 
R A R A( ) ( ),= ′  then  this allows 
a 1 1-  assignment of Qij

¢  to Qij . The result 
is a discrete conformal map since it takes 
squares to squares.

Showing the Converse 
A A ¢  implies R A R A( ) ( ).= ′  We 

divide A into “squares” Qij  as before, with 
1£ £i n  and 1£ £j m. The conformal 
equivalence induces a division of A¢ into 
“squares” (by conformality) with the same 

 (since the map is 1 1- ). Therefore, 
 and R A R A( ) ( ).= ′  In short, 

(1) demonstrates that the resistance is a con-
formal invariant, as was already mentioned 
in my April 2023 article.

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

the same ratio of radii. A more general 
theorem states that two doubly connected 
“annuli” (like those in Figure 4) are con-
formally equivalent if they have the same 
modulus: a certain number that is associ-
ated with the region. I would like to point 
out that that the modulus is simply the 
electrical resistance.

To rephrase these theorems: Two annular 
regions A and A¢ (as in Figure 4) are con-
formally equivalent ( )A A ¢  if and only if 
they have the same electrical 
resistance between their inner 
and outer boundaries:		
		              		
          R A R A( ) ( ).= ′         (2)

Idea of the Proof
In order to construct a conformal map 

A A↔ ′, let us push the current by applying 
voltages V = 0 to the inner boundary and 
V =1 to the outer boundary.2 For a large 
integer n, consider the equipotential lines 
hi, i n= …0,  that are spaced by the poten-
tial difference 1/n  (see Figure 5); h0 is the 
inner boundary and hn is the outer bound-
ary. Fix an arbitrary line v0 of steepest 
descent of the electrostatic potential—the 
line of current—
and let v1 be the 
line of steepest 
descent that is 

2  By doing 
so, we consider 
the solution of the 
Dirichlet problem 
in the annulus with 
prescribed bound-
ary values 0 and 1.

Figure 1. Resistance—i.e., the necessary 
voltage to push through a unit of current—is 
measured between opposite sides (coated 
with a perfect conductor).

Figure 2. If R=1, the rectangle is a square.

Figure 3. Two annuli are conformally equivalent if and only if their radii 
have the same ratios.

Figure 4. Two doubly connected regions are 
conformally equivalent precisely when they 
have the same resistance between their 
inner and outer boundaries.

Figure 5. Subdivision of A into infinitesimal 
squares Qij . Concentric “horizontal” lines 
hi are equipotentials. Steepest descent 
“vertical” current lines vj  are added in a 
counterclockwise direction until the last 
line vm . The “square” Qij is bounded by 
h hi i-1,  and v vj j-1, .

MATHEMATICAL 
CURIOSITIES
By Mark Levi
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across applications, and many aspects of 
mathematical finance rely on the ability to 
solve these systems. The solution of partial 
differential equations (PDEs) is a particular-
ly important application. In fact, a quantum 
algorithm for linear PDEs can efficiently 
price European and Asian options in the 
Black-Scholes framework [4].

Quantum Monte Carlo
Another quantum algorithm can acceler-

ate Monte Carlo methods in a very gen-
eral setting [8]. This algorithm estimates 
the expected output value of an arbitrary 
randomized or quantum subroutine with 
bounded variance, ultimately achieving a 
near-quadratic speedup over the best pos-
sible classical algorithm.

Quantum Semidefinite 
Programming

Quantum semidefinite programming 
(QSDP) is based on the observation that a 
normalized positive semidefinite matrix is 
naturally representable as a quantum state. 
On a quantum computer, operations on 
quantum states are sometimes computation-
ally cheaper than classical matrix opera-
tions; this idea prompted the development 

of quantum algorithms for semidefinite 
programming. In finance, QSDP is poten-
tially useful for maximum risk analysis and 
robust portfolio construction [6].

§
After decades of theoretical results, 

quantum computing is progressively 
becoming a reality. While full-scale quan-
tum computers are not yet ready to replace 
their classical counterparts, they are none-
theless already useful in both speeding 
up specific procedures in classical algo-
rithms (bringing forth the hybrid classical-
quantum era) and providing new ways of 
thinking about old problems (so-called 
quantum-inspired algorithms). Rather than 
succumbing to quantum skepticism, we 
should instead embrace quantum comput-
ing as a valuable new tool that will help 
us more accurately address the numerous 
problems in quantitative finance.

The views and opinions expressed in this 
article are those of the authors and do not 
necessarily reflect the views and policies of 
their respective institutions.

Acknowledgments: Antoine Jacquier 
is supported by Engineering and Physical 
Sciences Research Council grants EP/
W032643/1 and EP/T032146/1.

References
[1] Assouel, A., Jacquier, A., & 

Kondratyev, A. (2022). A quantum genera-
tive adversarial network for distributions. 
Quantum Mach. Intell., 4, 28.

[2] Bruzewicz, C.D., Chiaverini, J., 
McConnell, R., & Sage, J.M. (2019). Trapped-
ion quantum computing: Progress and chal-
lenges. Appl. Phys. Rev., 6(2), 021314.

[3] Farhi, E., Goldstone, J., & Gutmann, 
S. (2014). A quantum approximate optimiza-
tion algorithm. Preprint, arXiv:1411.4028.

[4] Fontanela, F., Jacquier, A., & 
Oumgari, M. (2021). A quantum algorithm 
for linear PDEs arising in finance. SIAM J. 
Financ. Math., 12(4), 98-114.

[5] Harrow, A.W., Hassidim, A., & 
Lloyd, S. (2009). Quantum algorithm for 
linear systems of equations. Phys. Rev. 
Lett., 103(15), 150502.

[6] Jacquier, A., & Kondratyev, O. (2022). 
Quantum machine learning and optimisation 
in finance: On the road to quantum advan-
tage. Birmingham, UK: Packt Publishing.

[7] Kondratyev, A. (2021). Non-
differentiable learning of quantum circuit 
Born machine with genetic algorithm. 
Wilmott, 2021(114), 50-61.

[8] Montanaro, A. (2015). Quantum 
speedup of Monte Carlo methods. Proc. R. 
Soc. A, 471(2181), 20150301.

[9] Preskill, J. (2018). Quantum com-
puting in the NISQ era and beyond. 
Quantum, 2, 79.

[10] Somoroff, A., Ficheux, Q., 
Mencia, R.A., Xiong, H., Kuzmin, R., & 
Manucharyan, V.E. (2023). Millisecond 
coherence in a superconducting qubit. Phys. 
Rev. Lett., 130, 267001.

[11] Venturelli, D., & Kondratyev, 
A. (2019). Reverse quantum annealing 
approach to portfolio optimization prob-
lems. Quantum Mach. Intell., 1, 17-30.

Antoine (Jack) Jacquier is a professor of 
mathematics at Imperial College London. 
His research focuses on quantum com-
puting as well as stochastic analysis and 
volatility modeling in finance. Jacquier 
also serves as a scientific consultant and 
advisor for various finance and technol-
ogy companies. Oleksiy Kondratyev is the 
Quantitative Research and Development 
Lead at Abu Dhabi Investment Authority 
(ADIA). Prior to joining ADIA, he held 
quantitative research and data analytics 
positions at Standard Chartered, Barclays 
Capital, and Dresdner Bank. Kondratyev 
received the Risk Magazine Quant of the 
Year Award in 2019. Gordon Lee is head 
of the Markets Quants team at the Bank 
of New York Mellon Corporation. Mugad 
Oumgari is a managing director at Lloyds 
Banking Group. He received a postgraduate 
research degree in mathematics and a mas-
ter’s degree in economics from the London 
School of Economics and Political Science.

Financial Mathematics
Continued from page 6

By Kathleen Kavanagh               
and Benjamin Galluzzo

The Consortium for Mathematics and 
Its Applications1 (COMAP)—which 

has been providing educators with math-
ematical modeling resources for more 
than four decades—held its annual High 
School Mathematical Contest in Modeling2 
(HiMCM) from November 1-14, 2023. The 
final judging session took place in January 
and acknowledged nine outstanding win-
ning teams from around the world for their 
impressive solution papers.3 All current 
middle and high school students are eligible 
to register for this two-week competition, 
though teams where all members are 14.5 
years old or younger may instead choose to 
partake in the Middle Mathematical Contest 
in Modeling (MidMCM). Participating 
HiMCM teams—comprised of up to four 
students from the same school—have a 
14-day window to select and download one 
of two open-ended, real-world problems; 
collaborate and employ mathematical mod-
eling techniques to develop a solution; and 
electronically submit their final papers to 
COMAP. MidMCM follows the same pro-
tocol but only consists of a single problem.

A total of 967 teams from 417 schools 
and 18 countries/regions competed in the 
2023 HiMCM. SIAM members Kathleen 
Kavanagh and Benjamin Galluzzo (both of 
Clarkson University) each wrote one of the 
two prompts,4 which were respectively titled 
“Dandelions: Friend? Foe? Both? Neither?”5 
and “Charging Ahead with E-buses.”6

Kavanagh authored Problem A, which 
focused on invasive species and asked 
students to predict the spread of dandelions 
over the course of one, two, three, six, and 
12 months given the initial presence of a 
single “puffball” next to an open field (see 

1  https://www.comap.org
2  https://www.comap.org/contests/himcm-

midmcm
3  https://www.contest.comap.org/high 

school/contests/himcm/2023results.html
4  https://www.contest.comap.org/high 

school/contests/himcm/2023problems.html
5  https://www.contest.comap.org/high 

school/contests/himcm/2023_Problems/2023_
HiMCM_Problem_A.pdf

6  https://www.contest.comap.org/high 
school/contests/himcm/2023_Problems/2023_
HiMCM_Problem_B.pdf

titions and the MathWorks Math Modeling 
Challenge8 (M3 Challenge)—a program of 
SIAM with MathWorks as its title spon-
sor—are constantly seeking challenge ques-
tions for future competitions. If you have an 
idea for a real-world problem that is well 
suited for mathematical modeling and you 
would like to submit it for consideration, 
HiMCM coordinators and the M3 Challenge 
Problem Development Committee will work 
with problem authors to tailor their ques-
tions for the appropriate audience and locate 
any relevant data. Both organizations also 
routinely look for judges to review student 
submissions and select the winners.

Additionally, U.S. teams that score well 
in either HiMCM or M3 Challenge may be 
invited to potentially represent the U.S. in 
the International Mathematical Modeling 
Challenge9 (IM2C): a competition that 
allows each participating country/region 
to nominate up to two representative teams 
that then tackle a difficult math modeling 
problem over five consecutive days. For 
more information about HiMCM and M3 
Challenge, please reach out to himcm@
comap.org and m3challenge@siam.org.

8  https://m3challenge.siam.org
9  https://www.immchallenge.org

M3 Challenge is an annual mathematical 
modeling competition for U.S. high school 
juniors and seniors and sixth form students 
in England and Wales. Participating teams 
of three to five students have 14 consecutive 
hours during Challenge Weekend to tackle 
a complex, real-world problem and produce 
a report that explains and justifies their 
solutions. Registration is completely free.

The 2024 M3 Challenge Final Event 
will take place on April 29th in New York 
City. The finalist teams and Technical 
Computing awardees—having submitted 
their papers in early March—will pres-
ent their work to a live panel of judges 
and compete for more than $100,000 in 
scholarship funds. Stay tuned for an article 
about the winning team’s solution in the 
June issue of SIAM News!

Kathleen Kavanagh is a professor of 
mathematics at Clarkson University and 
the former Vice President for Education 
at SIAM. Benjamin Galluzzo is an associ-
ate professor of mathematics at Clarkson 
University. He is the director of the 
Consortium for Mathematics and Its 
Applications’ High School Mathematical 
Contest in Modeling.

Figure 1). In addition to spatial consider-
ations, most of the teams accounted for 
seed release, seed travel time, germina-
tion time, and dandelion growth phases. 
The problem also challenged students to 
analyze the dandelion’s potential success 
under different climate conditions, such 
as varying levels of wind, temperature, 
and humidity. Finally, participants created 
ranking systems that assigned an impact 
factor to an invasive species, then tested 
their models on dandelions and two other 
plants of their choice. The breadth and 
depth of the solution papers were outstand-
ing; they utilized techniques that ranged 
from simple linear models to finite element 
simulations and susceptible-infectious-
recovered systems of equations.

In Problem B, Galluzzo prompted teams 
to address the global shift towards elec-
tric buses (e-buses) as a sustainable urban 
transportation solution in light of growing 
concerns about air pollution and climate 
change. The problem asked students to 
devise models that assessed the ecological 
and financial impacts of a shift to e-buses 
while accounting for factors like initial 
costs, operational expenses, and govern-
mental incentives. After selecting a met-
ropolitan area of their choice, teams used 
their models to generate a 10-year roadmap 
for the hypothetical transition to a fully 
electric bus fleet, paying strict attention to 
complications like charging infrastructure 
and range limitations. They then crafted 
concise policy recommendation letters that 
articulated their strategies and recommen-
dations to transportation officials, empha-
sizing the necessity of a holistic approach 
to sustainable transit.

Readers might also be familiar with 
COMAP’s sister competitions for under-
graduate students: the Mathematical Contest 
in Modeling (MCM) and Interdisciplinary 
Contest in Modeling (ICM).7 MCM/ICM 
take place annually in February and provide 
students with an opportunity to work on a 
team and improve their modeling, problem-
solving, and writing skills. In 2024, more 
than 30,000 teams from across the world 
participated in these international contests.

SIAM members can support and promote 
mathematical modeling competitions in a 
variety of ways. COMAP’s slate of compe-

7  https://www.comap.org/contests/mcm-icm

High School Mathematical Contest in Modeling 
Explores Dandelions and Electric Buses

Figure 1. During the 2023 iteration of the High School Mathematical Contest in Modeling 
(HiMCM), which took place in November, one problem prompted students to predict the 
spread of dandelions while accounting for numerous influencing factors. Figure courtesy of 
HiMCM Team 13845 from BASIS International School Guangzhou.



April 2024

SIAM
Conferences, books, journals, and activities of Society for Industrial and Applied Mathematics

InsideSIAM
A Place to Network and Exchange Ideas

conferencesconferences

FOR MORE INFORMATION ON SIAM CONFERENCES: siam.org/conferences

Upcoming Deadlines
THE FOLLOWING CONFERENCES ARE CO-LOCATED: 

SIAM Conference on the 
Life Sciences (LS24)
June 10–13, 2024 | Portland, Oregon, U.S. 
go.siam.org/ls24 | #SIAMLS24  
ORGANIZING COMMITTEE CO-CHAIRS 
Nick Cogan, Florida State University, U.S. 
Nessy Tania, Pfizer Worldwide Research, Development, and Medical, U.S.

SIAM Conference on 
Mathematics of Planet Earth (MPE24)
June 10–12, 2024 | Portland, Oregon, U.S. 
go.siam.org/mpe24 | #SIAMMPE24  
ORGANIZING COMMITTEE CO-CHAIRS 
Julie Bessac, National Renewable Energy Laboratory, U.S. 
Lea Jenkins, Clemson University, U.S.
LS24 and MPE24 EARLY REGISTRATION RATE DEADLINE 
May 13, 2024 
LS24 and MPE24 HOTEL RESERVATION DEADLINE  
May 13, 2024

SIAM Conference on
Nonlinear Waves and Coherent Structures (NWCS24)
June 24–27, 2024 | Baltimore, Maryland, U.S. 
go.siam.org/nwcs24 | #SIAMNWCS24  
ORGANIZING COMMITTEE CO-CHAIRS 
Panayotis Kevrekidis, University of Massachusetts, U.S. 
Anna Vainchtein, University of Pittsburgh, U.S.
EARLY REGISTRATION RATE DEADLINE 
May 28, 2024 
HOTEL RESERVATION DEADLINE 
May 28, 2024

SIAM Conference on
Mathematics of Data Science (MDS24)
October 21–25, 2024 | Atlanta, Georgia, U.S. 
go.siam.org/mds24 | #SIAMMDS24  
ORGANIZING COMMITTEE CO-CHAIRS 
Eric Chi, Rice University, U.S. 
David Gleich, Purdue University, U.S. 
Rachel Ward, University of Texas at Austin, U.S.
SUBMISSION AND TRAVEL AWARD DEADLINES  
April 29, 2024: Contributed Poster and Minisymposium Presentation Abstracts 
July 22, 2024: Travel Fund Application

Information is current as of March 20, 2024. Visit siam.org/conferences for the most up-to-date information.

Upcoming SIAM Events  
SIAM International Conference on 
Data Mining 
April 18–20, 2024 
Houston, Texas, U.S. 
Sponsored by the SIAM Activity Group on  
Data Science

SIAM Conference on  
Applied Linear Algebra 
May 13–17, 2024 
Paris, France 
Sponsored by the SIAM Activity Group on  
Linear Algebra

SIAM Conference on Mathematical 
Aspects of Materials Science 
May 19–23, 2024 
Pittsburgh, Pennsylvania, U.S. 
Sponsored by the SIAM Activity Group on  
Mathematical Aspects of Materials Science

SIAM Conference on  
Imaging Science 
May 28–31, 2024 
Atlanta, Georgia, U.S. 
Sponsored by the SIAM Activity Group on  
Imaging Science

SIAM Conference on the Life Sciences 
June 10–13, 2024 
Portland, Oregon, U.S. 
Sponsored by the SIAM Activity Group on Life 
Sciences

SIAM Conference on Mathematics of 
Planet Earth 
June 10–12, 2024 
Portland, Oregon, U.S. 
Sponsored by the SIAM Activity Group on 
Mathematics of Planet Earth

SIAM Conference on Nonlinear Waves 
and Coherent Structures 
June 24–27, 2024 
Baltimore, Maryland, U.S. 
Sponsored by the SIAM Activity Group on 
Nonlinear Waves and Coherent Structures 

2024 SIAM Annual Meeting 
July 8–12, 2024 
Online Component July 18–20, 2024 
Spokane, Washington, U.S.
SIAM Conference on Applied 
Mathematics Education 
July 8–9, 2024 
Spokane, Washington, U.S.  
Sponsored by the SIAM Activity Group on  
Applied Mathematics Education

SIAM Conference on  
Discrete Mathematics 
July 8–11, 2024 
Spokane, Washington, U.S. 
Sponsored by the SIAM Activity Group on  
Discrete Mathematics

ICERM-SIAM Workshop on 
Empowering a Diverse Computational 
Mathematics Research Community 
July 22–August 2, 2024 
Providence, Rhode Island, U.S.
SIAM Conference on Mathematics of 
Data Science 
October 21–25, 2024 
Atlanta, Georgia, U.S. 
Sponsored by the SIAM Activity Group on Data 
Science

ACM-SIAM Symposium on Discrete 
Algorithms 
January 12–15, 2025 
New Orleans, Louisiana, U.S. 
Sponsored by the SIAM Activity Group on 
Discrete Mathematics and the ACM Special 
Interest Group on Algorithms and Computation 
Theory

NOMINATE A COLLEAGUE 
for prizes being awarded at the 2025 SIAM 

Conference on Computational Science & Engineering. 

Submit your nominations at siam.org/deadline-calendar
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siam.org/membership/join-siam/individual-members#EarlyCareer

To ease the transition from a student membership to a full regular 
membership, SIAM offers early career membership at 50% of the regular 
membership price for the first three years after receiving a final degree 
($92 in 2024), then 25% off for the fourth and fifth years ($138 in 2024) 
instead of $184. If you’ll be graduating this year and not continuing as a 
student next year, you can remain a part of the SIAM community for just 
25 cents a day! 

Renewing from student to early career member 
If you are already a SIAM student member in 2024, contact SIAM 
customer service at membership@siam.org to confirm your renewal as an 
early career member next year.

Develop your career 
SIAM has many resources for finding jobs and developing your career, 
including professional ads in SIAM News, various activity group email lists 
with job announcements, and the SIAM job board. 

SIAM membership 
opens the door 
to networking 
opportunities as you 
make the transition 
from completing your 
education to building 
a career. With its 
wealth of resources, 
SIAM will support your 
professional journey. 
Plus, you can make a difference to your profession by getting involved 
in the association that serves you by participating in activity groups, 
presenting your research at SIAM conferences, and volunteering to serve 
on SIAM committees. 

Keep up to date on what’s happening in the field 
As a member, you will receive SIAM Review, a quarterly publication 
providing an overview of the entire field of applied mathematics (in 
print as well as in electronic format); SIAM News, the news journal of 
the applied mathematics community; and Unwrapped, SIAM’s monthly 
member e-newsletter. 

Discounts 
Don’t forget that you’ll receive generous discounts on SIAM conference 
registrations, books, and journals. In fact, there is a specially reduced 
conference fee for the SIAM Annual Meeting available only to SIAM early 
career members. Plus, as a SIAM member, you can subscribe to any 
of the SIAM journals, the profession’s most respected peer-reviewed 
scholarly publications, at a discounted price. 

Additional benefits 
Early career members have access to all the same benefits as regular 
members. If you were a SIAM student member, you may not have been 
eligible to receive the following benefits. However, as an early career 
member, these additional benefits will become available to you:

•	 receive SIAM Review in print and electronic format
•	 vote, hold office, and serve on SIAM committees
•	 nominate two students for free membership
•	 nominate eligible colleagues for the SIAM Fellows program and 

begin to accumulate the years of membership that will qualify 
you to be nominated as a SIAM Fellow

•	 Join SIAM today as an early career member at 

•	 join a SIAM Activity Group (SIAG)

Join SIAM today as an early carrer member at siam.org/membership/
join-siam/individual-members#EarlyCareer.

See the newly selected 2024 Class of SIAM Fellows at  
siam.org/Prizes-Recognition/Fellows-Program.

Nominate two students for free SIAM 
membership in 2024! 
SIAM members (excluding student members) can nominate up 
to two students per year for free membership. Go to my.siam.
org/forms/nominate.htm to make your nominations.

Earning a degree this 
year? Take advantage 
of SIAM’s early career 
membership

Great sources of information provided by SIAM:
SIAM News Online (sinews.siam.org) — SIAM’s online 
communication channels are consolidated under the SIAM 
News website.
Social Media — follow us on Twitter (@SIAMConnect), like us 
on Facebook (facebook.com/SIAMConnect), and catch up on 
video content on our YouTube Channel (@SIAMConnects).
Featured Lectures & Videos (siam.org/featured-lectures-
videos) — digital archives of some of the exciting research 
presented at SIAM conferences. 

Nominations Are Open 
for 2025 SIAM CSE Prizes
Nomination Deadline: July 31, 2024
All prizes listed below will be awarded at the 2025 SIAM 
Conference on Computational Science & Engineering (CSE25) 
in Fort Worth, Texas, U.S. This will be the first time that the Ivo & 
Renata Babuška Prize will be awarded. 

2025 SIAM Major Awards
•	 Ivo & Renata Babuška Prize – Awarded to an individual or 

group of individuals for their contributions to a single high-quality 
piece or body of work that targets any aspect of modeling 
and numerical solution of a specific engineering or scientific 
application, including mathematical modeling, numerical analysis, 
algorithms, and validation. 

•	 James H. Wilkinson Prize in Numerical Analysis and Scientific 
Computing – Awarded to one individual for research in, or other 
contributions to, numerical analysis and scientific computing 
during the six years preceding the award year. 

•	 SIAM/ACM Prize in Computational Science and Engineering – 
Awarded to an individual or group of individuals in recognition 
of outstanding contributions to the development and use of 
mathematical and computational tools and methods for the 
solution of science and engineering problems.

2025 SIAM Activity Group Prizes
•	 SIAM Activity Group on Computational Science & Engineering 

Best Paper Prize - Awarded to the author(s) of the most 
outstanding paper on the development and use of mathematical 
and computational tools and methods for solving problems that 
may arise in broad areas of science, engineering, technology, 
and society.

•	 SIAM Activity Group on Computational Science & Engineering 
Early Career Prize - Awarded to one individual in their early 
career for outstanding research contributions in the field of 
computational science and engineering.

For more information, including eligibility requirements, please visit: 
go.siam.org/prizes-nominate.
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A First Course in Options Pricing Theory 
Simone Calogero 
Options pricing theory utilizes a wide range of advanced mathematical 
concepts, making it appealing to mathematicians, and it is regularly applied at 
financial institutions, making it indispensable to practitioners. The emergence 
of artificial intelligence in the financial industry has led to further interest in 
mathematical finance. This book presents a self-contained introduction to 
options pricing theory and includes a complete discussion of the required 
concepts in finance and probability theory.

2023 / xii + 286  pages / Softcover / 978-1-61197-763-9 / List $79.00 / SIAM Member $55.30 / OT192

Mathematical Theory of Finite Elements 
Leszek F. Demkowicz
This book discusses the foundations of the mathematical theory of finite 
element methods. The focus is on two subjects: the concept of discrete 
stability, and the theory of conforming elements forming the exact sequence. 
Both coercive and noncoercive problems are discussed. Following the historical 
path of development, the author covers the Ritz and Galerkin methods to 
Mikhlin’s theory, followed by the Lax–Milgram theorem and Cea’s lemma to the 
Babuska theorem and Brezzi’s theory. He finishes with an introduction to the 

discontinuous Petrov–Galerkin (DPG) method with optimal test functions. The book also includes 
a unique exposition of the concept of discrete stability and the means to guarantee it as well as a 
coherent presentation of finite elements forming the exact grad-curl-div sequence.
2024 / xx + xxx pages / Softcover / 978-1-61197-772-1 / List $79.00 / SIAM Member $55.30 / CS28 

Dynamics and Bifurcation in Networks 
Theory and Applications of Coupled Differential Equations 
Martin Golubitsky and Ian Stewart
In recent years there has been an explosion of interest in network-based 
modeling in many branches of science. This book attempts a synthesis of 
some of the common features of many such models, providing a general 
framework analogous to the modern theory of nonlinear dynamical systems. 
How networks lead to behavior not typical in a general dynamical system and 
how the architecture of the network influences this behavior are the book’s 

main themes. It is the first book to describe the formalism for network dynamics developed over 
the past 20 years. The authors introduce a definition of a network and the associated class of 
“admissible” ordinary differential equations, in terms of a directed graph whose nodes represent 
component dynamical systems and whose arrows represent couplings between these systems; 
develop connections between network architecture and the typical dynamics and bifurcations of 
these equations; and discuss applications of this formalism to various areas of science. 
2023 / xxx + 834 pages / Hardcover / 978-1-61197-732-5 / List $129.00 / SIAM Member $90.30 / OT185 

Network Information Systems 
A Dynamical Systems Approach
Wassim M. Haddad, Qing Hui, and Junsoo Lee
This text presents a unique treatment of network control systems. Drawing 
from fundamental principles of dynamical systems theory and dynamical 
thermodynamics, the authors develop a continuous-time, discrete-time, and 
hybrid dynamical system and control framework for linear and nonlinear 
large-scale network systems. The proposed framework extends the concepts 
of energy, entropy, and temperature to undirected and directed information 

networks. Continuous-time, discrete-time, and hybrid thermodynamic principles are used to 
design distributed control protocol algorithms for static and dynamic networked systems in the 
face of system uncertainty, exogenous disturbances, imperfect system network communication, 
and time delays.
2023 / xiv + 622 pages / Hardcover / 978-1-61197-753-0 / List $114.00 / SIAM Member $79.00 / OT191

To order, visit the SIAM bookstore: bookstore.siam.org 
Or call toll-free in U.S. and Canada: 800-447-SIAM / worldwide: +1-215-382-9800

Do you live outside North or South America?
Order from Eurospan eurospanbookstore.com/siam for speedier service and free shipping.  

Eurospan honors the SIAM member discount. Contact customer service (service@siam.org) for the code to use when ordering.

Recently Published New
Machine Learning for Asset 
Management and Pricing 
Henry Schellhorn  
and Tianmin Kong
This textbook covers 
the latest advances 
in machine-learning 
methods for asset 
management and 
asset pricing. Recent 
research in deep 
learning applied to finance shows that 
some of the techniques used by asset 
managers (usually kept confidential) 
result in better investments than the more 
standard techniques. Cutting-edge material 
is integrated with mainstream finance 
theory and statistical methods to provide 
a coherent narrative. Coverage includes 
an original machine learning method for 
strategic asset allocation; the no-arbitrage 
theory applied to a wide portfolio of 
assets as well as other asset management 
methods;  and neural networks and other 
advanced techniques.
2024 / xxiv + 264 / Softcover / 978-1-61197-789-9 
List $74.00 / SIAM Member $51.80 / OT195

A Ramble through Probability 
How I Learned to Stop Worrying 
and Love Measure Theory
Samopriya Basu, Troy Butler,  
Don Estep, and Nishant Panda 
Measure theory and 
measure-theoretic 
probability are 
fascinating subjects. 
Proofs describing 
profound ways to 
reason lead to results 
that are frequently 
startling, beautiful, 
and useful. Measure theory and probability 
also play roles in the development of 
pure and applied mathematics, statistics, 
engineering, physics, and finance. This 
book traces an eclectic path through 
the fundamentals of the topic to make 
the material accessible to a broad range 
of students. It brings together the key 
elements and applications in a unified 
presentation aimed at developing 
intuition; contains an extensive collection 
of examples that illustrate, explain, and 
apply the theories; and is supplemented 
with videos containing commentary 
and explanations of select proofs on an 
ancillary website.
2024 / xvi + 603 pages / Softcover / 978-1-61197-781-3 
List $94.00 / SIAM Member $64.80 / CS29
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Recently Posted Articles
SIAM Journal on  
DISCRETE MATHEMATICS
On the Concentration of the Maximum Degree  
in the Duplication-Divergence Models
Alan M. Frieze, Krzysztof Turowski,  
and Wojciech Szpankowski
Treewidth, Circle Graphs, and Circular Drawings
Robert Hickingbotham, Freddie Illingworth,  
Bojan Mohar, and David R. Wood
On q-Counting of Noncrossing Chains and Parking 
Functions
Yen-Jen Cheng, Sen-Peng Eu, Tung-Shan Fu,  
and Jyun-Cheng Yao        

SIAM Journal on  
FINANCIAL MATHEMATICS
Short Communication: Optimal Insurance to Maximize 
Exponential Utility When Premium Is Computed by a 
Convex Functional
Jingyi Cao, Dongchen Li, Virginia R. Young, and Bin Zou              

SIAM Journal on IMAGING SCIENCES
Numerical Implementation of Generalized V-Line 
Transforms on 2D Vector Fields and Their Inversions
Gaik Ambartsoumian, Mohammad J. Latifi Jebelli, and 
Rohit K. Mishra
A Deep Learning Framework for Diffeomorphic 
Mapping Problems via Quasi-conformal Geometry 
Applied to Imaging
Qiguang Chen, Zhiwen Li, and Lok Ming Lui
Fractional Fourier Transforms Meet Riesz Potentials 
and Image Processing
Zunwei Fu, Yan Lin, Dachun Yang, and Shuhui Yang      

SIAM Journal on  
MATHEMATICAL ANALYSIS
The Scattering Resonances for Schrödinger-Type 
Operators with Unbounded Potentials
Peijun Li, Xiaohua Yao, and Yue Zhao
A Degenerate Cross-Diffusion System as the Inviscid 
Limit of a Nonlocal Tissue Growth Model
Noemi David, Tomasz Dębiec, Mainak Mandal,  
and Markus Schmidtchen
Inverse Resonance Problems for Energy-Dependent 
Potentials on the Half-Line
Evgeny Korotyaev, Andrea Mantile, and Dmitrii Mokeev     

SIAM Journal on  
MATHEMATICS of DATA SCIENCE 
Applications of No-Collision Transportation Maps  
in Manifold Learning
Elisa Negrini and Levon Nurbekyan
Sharp Analysis of Sketch-and-Project Methods 
via a Connection to Randomized Singular Value 
Decomposition
Michał Dereziński and Elizaveta Rebrova
On Design of Polyhedral Estimates in Linear Inverse 
Problems
Anatoli Juditsky and Arkadi Nemirovski       

SIAM Journal on  
MATRIX ANALYSIS and APPLICATIONS 
Adaptive Rational Krylov Methods for Exponential 
Runge–Kutta Integrators
Kai Bergermann and Martin Stoll
nlTGCR: A Class of Nonlinear Acceleration Procedures 
Based on Conjugate Residuals
Huan He, Ziyuan Tang, Shifan Zhao, Yousef Saad,  
and Yuanzhe Xi
Randomized Joint Diagonalization of Symmetric 
Matrices
Haoze He and Daniel Kressner     

MULTISCALE MODELING & SIMULATION:  
A SIAM Interdisciplinary Journal
Upscaling an Extended Heterogeneous Stefan 
Problem from the Pore-Scale to the Darcy Scale  
in Permafrost
Malgorzata Peszynska, Naren Vohra, and Lisa Bigler
Fano Resonances in All-Dielectric Electromagnetic 
Metasurfaces
Habib Ammari, Bowen Li, Hongjie Li, and Jun Zou
Dynamical Properties of Coarse-Grained Linear SDEs
Thomas Hudson and Xingjie Helen Li  

SIAM Journal on  
APPLIED ALGEBRA and GEOMETRY 
Coupled Cluster Theory: Toward an Algebraic 
Geometry Formulation
Fabian M. Faulstich and Mathias Oster
Phylogenomic Models from Tree Symmetries
Elizabeth S. Allman, Colby Long, and John A. Rhodes 

SIAM Journal on  
APPLIED DYNAMICAL SYSTEMS
Guarantees for Spontaneous Synchronization  
on Random Geometric Graphs
Pedro Abdalla, Afonso S. Bandeira,  
and Clara Invernizzi
Dynamics of Controllable Matter-Wave Solitons 
and Soliton Molecules for a Rabi-Coupled Gross–
Pitaevskii Equation with Temporally and Spatially 
Modulated Coefficients
Haotian Wang, Hujiang Yang, Xiankui Meng, Ye Tian, 
and Wenjun Liu 
Wave-Pinned Patterns for Cell Polarity— 
A Catastrophe Theory Explanation
Fahad Al Saadi, Alan Champneys, and Mike R. Jeffrey 

SIAM Journal on  
APPLIED MATHEMATICS
Coarsening of Thin Films with Weak Condensation
Hangjie Ji and Thomas P. Witelski 
Computation of Riesz α-Capacity Cα of General 
Sets in d Using Stable Random Walks
John P. Nolan, Debra J. Audus, and Jack F. Douglas
Spatiotemporal Patterns in a Lengyel–Epstein Model 
Near a Turing–Hopf Singular Point
Shuangrui Zhao, Pei Yu, and Hongbin Wang       

SIAM Journal on COMPUTING 
Four-Coloring P6-Free Graphs. II. Finding an 
Excellent Precoloring
Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong
Four-Coloring P6-Free Graphs. I. Extending an 
Excellent Precoloring
Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong
On Matrix Multiplication and Polynomial Identity 
Testing
Robert Andrews 

SIAM Journal on  
CONTROL and OPTIMIZATION
Stability Analysis for Nonlinear Neutral Stochastic 
Functional Differential Equations
Huabin Chen and Chenggui Yuan
Viscosity Solutions for McKean–Vlasov Control  
on a Torus
H. Mete Soner and Qinxin Yan
On Global Approximate Controllability of a Quantum 
Particle in a Box by Moving Walls
Aitor Balmaseda, Davide Lonigro,  
and Juan Manuel Pérez-Pardo   

SIAM Journal on  
NUMERICAL ANALYSIS
Robust DPG Test Spaces and Fortin Operators—
The H1 and H(div) Cases
Thomas Führer and Norbert Heuer
On the Convergence of Continuous and Discrete 
Unbalanced Optimal Transport Models for 
1-Wasserstein Distance
Zhe Xiong, Lei Li, Ya-Nan Zhu, and Xiaoqun Zhang
On the Convergence of Sobolev Gradient Flow  
for the Gross–Pitaevskii Eigenvalue Problem
Ziang Chen, Jianfeng Lu, Yulong Lu,  
and Xiangxiong Zhang        

SIAM Journal on OPTIMIZATION
A Chain Rule for Strict Twice Epi-differentiability 
and Its Applications
Nguyen T. V. Hang and M. Ebrahim Sarabi
Continuous Selections of Solutions to Parametric 
Variational Inequalities
Shaoning Han and Jong-Shi Pang
Approximating Higher-Order Derivative Tensors 
Using Secant Updates
Karl Welzel and Raphael A. Hauser   

SIAM Journal on  
SCIENTIFIC COMPUTING
Asymptotic Dispersion Correction in General Finite 
Difference Schemes for Helmholtz Problems
Pierre-Henri Cocquet and Martin J. Gander
A New ParaDiag Time-Parallel Time Integration 
Method
Martin J. Gander and Davide Palitta
A Recursively Recurrent Neural Network (R2N2) 
Architecture for Learning Iterative Algorithms
Danimir T. Doncevic, Alexander Mitsos, Yue Guo, 
Qianxiao Li, Felix Dietrich, Manuel Dahmen,  
and Ioannis G. Kevrekidis   

SIAM/ASA Journal on  
UNCERTAINTY QUANTIFICATION
Adaptive Importance Sampling Based on Fault 
Tree Analysis for Piecewise Deterministic Markov 
Process
Guillaume Chennetier, Hassane Chraibi,  
Anne Dutfoy, and Josselin Garnier
Multifidelity Bayesian Experimental Design to 
Quantify Rare-Event Statistics
Xianliang Gong and Yulin Pan
Projective Integral Updates for High-Dimensional 
Variational Inference
Jed A. Duersch

SIAM REVIEW
Finite Element Methods Respecting the Discrete 
Maximum Principle for Convection-Diffusion 
Equations
Gabriel R. Barrenechea, Volker John,  
and Petr Knobloch

THEORY OF PROBABILITY AND ITS 
APPLICATIONS
Weakly Supercritical Branching Process in a 
Random Environment Dying at a Distant Moment
V. I. Afanasyev
On Symmetrized Chi-Square Tests in 
Autoregression with Outliers in Data
M. V. Boldin
Laplace Expansion for Bartlett–Nanda–Pillai Test 
Statistic and Its Error Bound
H. Wakaki and V. V. Ulyanov


