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Abstract. Consider a “forest” of infinitely thin trees arranged on the lattice Z× Z. If you are standing at the5

origin, (0, 0), not all trees are visible despite the fact that they are infinitely thin. In particular,6

of the trees all lying on a line through (0, 0), only one such point is visible. In this article we7

conclusively classify all closest occurring invisible rectangular n×m blocks of points for 1 ≤ n,m ≤ 4.8

This (partially) resolves a question posed by Goins-Harris-Kubik-Mbirika. Furthermore, we compile9

statistics for all occurring arrangements up to size 4×4 and discuss interesting patterns that appear10

in that data.11

1. Introduction. For infinitely thin trees located on integer lattice points of a coordinate12

grid, with trees labeled by their lattice coordinates, (x, y), the trees visible from the origin13

are exactly the coordinates with gcd(x, y) = 1 (Theorem 2.1). The main focus in this area of14

research is determining the density and patterns which occur in the invisible trees. As this15

problem is entirely symmetric we will only consider what happens in the first quadrant.16

This problem was first addressed in the 19th century by a number of people with Cesàro17

credited as the first to pose this version of the problem in 1881 [2]. In particular, Cesàro18

proved that any given point (x, y) has probability approaching 1
ζ(2) = 6

π2 ≈ 0.608 of being19

visible, where ζ(s) is the Riemann zeta function. In 1971, Herzog and Stewart characterized20

patterns of visible and invisible points, which remains the main motivation for current work in21

this area [5]. In 1976, Apostol [1, Theorem 5.29, p. 119] showed that there can be arbitrarily22

large square arrays of invisible points. In 1990, Schumer [7] used the Chinese Remainder23

Theorem to find 3 × 3 blocks of invisible points (quite far from the origin) and questioned24

whether utilizing similar methods would be possible for 4 × 4 blocks due to the complexity25

of his calculations. Goodrich-Mbirika-Nielsen [4] took up the challenge using similar methods26

to find a 4× 4 and even a 5× 5 invisible block, albeit both quite far from the origin. Goins-27

Harris-Kubik-Mbirika [3] pose the question of finding the nearest invisible forest of dimension28

n×m; this last question is resolved in this article for 1 ≤ m,n ≤ 4.29

A quick computer search can find the closest occurrence of all n ×m invisible blocks for30

1 ≤ n,m ≤ 3 since we need only search up to the first 3 × 3 invisible block occurring at31

(x, y) = (1274, 1308). This search is sufficient as all smaller invisible blocks will occur before32

or within a 3 × 3 invisible block. However, finding the nearest invisible blocks of large size33

becomes computationally interesting. Our goal is to conclusively classify all closest occurring34

invisible rectangular blocks of points for 1 ≤ n,m ≤ 4.35

The paper is organized as follows. In Section 2, the fundamental mathematical results as36
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well as the computational framework is described. This section includes the data table on37

the closest (radial) occurrence of n ×m invisible rectangles. In Section 3, the mathematical38

explanations for why certain patterns do not occur are examined. In Section 4, the difference39

between closest invisible forests measured radially versus measured lexicographically is ad-40

dressed. This section also includes the table containing all the lexicographically closest n×m41

invisible rectangular blocks for 1 ≤ n,m ≤ 4. Finally in Section 5, the frequency of occurrence42

of all the possible invisible patterns up to size 4× 4 is examined empirically. The full data for43

all 4× 4 invisible patterns is available as an auxilary csv file.44

Note that all decimal values are rounded to 6 significant figures.45

2. Computing/Data Gathering. This section describes the computational method used46

to examine all occurring invisible patterns up to size 4 × 4 for 0 ≤ x, y ≤ 24, 000, 000. The47

main program, available upon request, was written in C and run on the Saint Louis University48

High Performance Computing Cluster. The program recorded the first occurrence of each of49

the possible 4× 4 patterns, of which there are 216 = 65536, both according to radial distance50

from (0, 0) and lexicographically. Additionally, the frequency of each pattern in the domain51

was also recorded. The statistics of the data is discussed in Section 5. Note that any size52

pattern is referenced by the coordinates of its lower left hand corner.53

The two main obstacles to overcome are the number of computations to perform and54

the memory problem due to the amount of data being produced. Heavy use is made of the55

symmetry of this problem. As Theorem 2.1 proves, whether any given (x, y) is invisible is56

a greatest common divisor computation. Thus, determining the 4 × 4 pattern at any given57

(x, y) requires 16 gcd calculations. Determining the 4 × 4 pattern of a point within that58

square should make use of the calculations already performed. However, storing the result of59

the gcd calculation of every single point in the search space is not feasible. Our solution to60

this memory issue is described in Section 2.2. The number of computations is dominated by61

calculating the gcd of each pair (x, y). We used a basic Euclidean Algorithm method whose62

number of operations grows logarithmically with max(x, y) and did not make an attempt to63

analyze or optimize these calculations.64

It should be noted that having the data for 4×4 patterns is sufficient to have the data for65

all m× n patterns for 1 ≤ m,n ≤ 4. Statistics for smaller squares are included in Section 5.66

2.1. Determining if a point is invisible. The following theorem is well known in this area67

and is included for completeness.68

Theorem 2.1 ([3, Proposition 3]). A point in the lattice is visible if and only if the greatest69

common divisor (gcd) of its x and y coordinates is 1.70

Corollary 2.2. The only invisible rectangles with (x, y) on the diagonal are size 1× 1.71

Proof. If x = y, then gcd(x, y + 1) = gcd(x+ 1, y) = 1.72

2.2. Working with patterns/mask values. The general principle for keeping track of73

invisible patterns is to assign a 16-bit integer to each lower left hand (x, y) coordinate. Each74

bit represents whether one of the 16 points in the square is invisible or visible. The bit values75

are assigned as follows:76
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(2.1)

8 4 2 1

128 64 32 16

2048 1024 512 256

32768 16384 8192 4096

We call the 16-bit integer the mask value associated to the pattern. A corresponding mask77

value and pattern is given in the following example.78

Example 2.3. The pattern79

(2.2)

• •
• •
• •

• •

is given by the mask value80

1 + 8 + 32 + 64 + 512 + 1024 + 4096 + 32768 = 38505.

In designing a program to solve this problem, the first challenge is tracking the location of81

each point in a 4×4 array. Using for loops for both the x and y axes means each new position82

necessitates knowing values for all surrounding relevant points to keep accurate counts. This83

requires unreasonably large amounts of memory and high computer performance specifications84

to calculate and store all of the values for every 4× 4 array at once.85

For example, storing 1 ‘bit’ value for each point in a 1 million by 1 million lattice requires86

250 GB of memory, and storing each value as an int uses 8 TB. By storing the value as bits,87

one gcd calculation can contribute to 16 different lower left hand corners without additional88

calculation.89

Additionally, we introduce a wrapping system which only keeps the values of 4 columns at90

a time. That is, after the completion of the column for loop, the data for column 5 writes to91

the memory that contains column 1. This ensures the values do not override their neighbors92

until the full 4 × 4 array has been calculated and recorded accordingly and keeping total93

memory requirements reasonable.94

The entire program only saves the first location (both radial distance and lexicographic95

order) and count of each 4×4 pattern, in order to efficiently utilize storage space. Furthermore,96

we utilize the symmetry of the problem (gcd(x, y) = gcd(y, x)) and only work with the (x, y)97

points on or above the diagonal y = x.98

The final statistics expand this data under symmetry to the whole first quadrant. To99

avoid extensive live runtime of our program, we split the search space into separate blocks to100

run concurrently on the Saint Louis University High Performance Cluster, and compile the101

separate runs into one overall data file.102

Our data encompasses an integer lattice of 24 million by 24 million. The computation of103

our results took 491 days of CPU time on SLUs High Performance Cluster utilizing 112 cores104
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(further specs on the compute nodes is unavailable). The table below lists the location of the105

first occurrence of each m× n forest, as well as its total number of occurrences in our search106

space. Notice as the size of the forest increases, the occurrence total decreases significantly.107

Our research also confirms the work of Eric Weisstein in the “Visible Point” entry of the108

MathWorld website, who posited the first location (with 0 < x < y) of a 4 × 4 forest to be109

at (7247643, 10199370). We found the first five occurrences by distance from (0, 0) of 4 × 4110

invisible forests (and the first 10 after diagonal symmetry is considered):111

(7247643, 10199370), (6349914, 13125369), (13449225, 13458288),112

(3268473, 21374352), (16799913, 22339875).113

Table 2.1
Invisible Rectangles

Invisible Rectangle Pattern (x,y) of Closest Total Count Prop of Total
(Width × Height) Value Occurrence Rectangles

1×1 32768 (2, 2) 225833983043489 0.392073

1×2 34816 (2, 6) 61505212491040 0.106780

1×3 34944 (2, 6) 31371300360510 0.0544641

1×4 34952 (2, 30) 7157758947052 0.0124267

2×1 49152 (6, 2) 61505212491040 0.106780

2×2 52224 (14, 20) 1237398519088 0.00214826

2×3 52416 (54, 230) 42011981298 7.29375 · 10−5

2×4 52428 (174, 825) 873069048 1.51574 · 10−6

3×1 57344 (6, 2) 31371300360510 0.0544641

3×2 60928 (230, 54) 42011981298 7.29375 · 10−5

3×3 61152 (1274, 1308) 989290450 1.71752 · 10−6

3×4 61166 (47859, 12824) 394255 6.84470 · 10−10

4×1 61440 (30, 2) 7157758947052 0.0124267

4×2 65280 (825, 174) 873069048 1.51574 · 10−6

4×3 65520 (47859, 12824) 394255 6.84470 · 10−10

4×4 65535 (7247643, 10199370) 10 1.73611 · 10−14

As the data for the 1×1 invisible rectangles in Table 2.1 indicates, the proportion of total114

invisible points is 0.392073; thus approximately 40 percent of the points in the lattice are115

invisible. Conversely, the proportion of total visible points is 0.607927; thus approximately 60116

percent of the points in the lattice are visible.117

Sequences for the radial minimal x and y coordinates for 2× 2, 3× 3, and 4× 4 invisible118

forests were added to the On-line Encyclopedia of Integer Sequences as sequences A325602,119

A325603, A325604, A325605, A325606, and A325607.120

3. Non-Occurring Patterns. It is known that any given n × m invisible rectangle oc-121

curs through a simple application of the Chinese Remainder Theorem (see, for example, [6,122

Theorem 2.4]): choose which distinct primes divide which pairs of coordinates and solve the123

congruence equations for x and y. In this section we look at the possible patterns that do not124

arise in our data and prove that they do not ever occur. The following table summarizes the125

proportion of patterns that did not occur.126

All of these non-occurring patterns can be explained by examining the possible patterns127

modulo 2. In particular, the one not occurring 2×2 pattern is the pattern with all four points128
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Table 3.1
Non-Occurring Patterns

Size Total Number Number of Patterns Proportion of Total
of Patterns That Do Not Occur

2 × 2 24 = 16 1 0.0625

3 × 3 29 = 512 135 0.263672

4 × 4 216 = 65536 50626 0.772491

visible. If this 2× 2 pattern is contained within any larger pattern, then it cannot occur.129

Lemma 3.1. No patterns with 2× 2 square(s) of visible points occur.130

Proof. Let (x, y) be a point in the first quadrant with x, y ∈ Z. If the greatest common131

divisor of at least 1 pair of coordinates in the 2× 2 square132

(3.1)
(x, y + 1) (x+ 1, y + 1)

(x, y) (x+ 1, y)

is greater than 1, then the 2× 2 square is not visible.133

There are 4 possible cases:134

• Case 1: x is even and y is even. Therefore, gcd(x, y) ≥ 2.135

• Case 2: x is even and y is odd. Therefore, y + 1 is even and gcd(x, y + 1) ≥ 2.136

• Case 3: x is odd and y is even. Therefore, x+ 1 is even and gcd(x+ 1, y) ≥ 2.137

• Case 4: x is odd and y is odd. Therefore, x + 1 and y + 1 are even so that gcd(x +138

1, y + 1) ≥ 2.139

In all possible cases, at least 1 pair of coordinates has a greatest common divisor of at140

least 2. Therefore, you cannot get a 2× 2 square of visible points.141

However, this is not the entire story. For example, any 4 × 4 pattern containing the142

following 4 visible points also cannot occur143

(3.2)

• •

• •

This is because these four locations are the same as a 2× 2 visible rectangle when taking144

modulo 2 and, as in the proof of the lemma, at least 1 of these 4 must have a gcd of at least145

2 and so must be invisible. We formalize this notion with the following notation. Given a146

2× 2 block such that x, y ∈ Z, x and y can be even or odd and form an ordered pair in 1 of 4147

combinations:148

(even, even), (even, odd), (odd, even), (odd, odd)
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Let the four types be called A, B, C, and D which can be assigned arbitrarily. Then a149

4×4 pattern contains the following types of coordinate pairs (after the possible re-assignment150

of type names).151

(3.3)

C D C D

A B A B

C D C D

A B A B

Corollary 3.2. Any pattern that contains at least one visible point of every type A, B, C,152

and D cannot occur.153

There are 44 = 256 possible ways to choose one coordinate pair of each type and these154

possibilities cannot all exist. Checking all possible patterns that do not occur in our data,155

every such pattern is explained in this way. This is a special case of the more general theorem156

that says the only non-occurring patterns are those which form complete residue classes of157

pairs modulo some prime [5, Theorem 1].158

Corollary 3.3. Any occurring n×m rectangle must have at least
⌊
n
2

⌋
·
⌊
m
2

⌋
invisible points.159

Proof. This is a pigeonhole principle argument. An occurring pattern cannot have every160

type A,B,C,D occur. We must have all invisible x coordinates as even or odd and all invisible161

y coordinates as even or odd. Even and odd are the two categories which integer values are162

sorted into. Given three or more integers, i.e., one more than the number of categories present,163

there must exist at least two even integers or at least two odd integers by the pigeonhole164

principle.165

All (even, even) points are invisible. The fewest possible invisible points then occur when166

the fewest (even, even) points are present within the chosen rectangle, assuming a worst case167

where no other pair types are invisible. For consecutive points, the fewest occurrences of even168

integers in either direction is one half the dimension, rounded down for odd dimensions. Thus,169

there are
⌊
n
2

⌋
and

⌊
m
2

⌋
minimum possible occurrences, respectively.170

Proposition 3.4. Every possible occurring pattern occurs within radial distance171


25.24 2× 2

6688.16 3× 3

12512213.14 4× 4

from the origin (0, 0).172

Proof. Since the data includes the occurrence of all patterns that possibly occur, we take173

the maximum of the minimal distance of each occurring pattern in our data.174

Theorem 3.5. In a 4× 4 square, patterns with less than 4 invisible points cannot exist.175

Proof. In a 4 × 4 square, each of A, B, C, and D occur exactly 4 times. For any set of176

invisible points of cardinality less than 4, there remain at least 1 visible point of each type A,177
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B, C, and D, which is impossible. Therefore, in a 4 × 4 square there must exist at least 4178

invisible points.179

4. Radial Distance versus Lexicographic Distance. So far we have discussed finding the180

first occurring pattern as measured by minimal distance to (0, 0). We could also consider181

“minimal” under the lexicographic ordering. In other words, for a given (occurring) pattern,182

what is the smallest possible x value for which the pattern occurs? This problem is less183

amenable to computation as there is no simple way to enumerate all points up to some184

distance under the lexicographic ordering since there are infinitely many coordinates (x, y)185

for any fixed x value. However, for invisible rectangles, it is possible to prove the smallest186

occurring pattern location by examining prime divisibility properties. The following theorem187

summarizes the results.188

Theorem 4.1. The following table provides the first occurrence of each m × n rectangle189

under lexicographic ordering x > y.190

Table 4.1
First Occurrences of Invisible Rectangles

Invisible Rectangle (x,y) of Closest Invisible Rectangle (x,y) of Closest

1×1 (2, 2) 3x1 (6, 2)

1×2 (2, 6) 3x2 (104, 740)

1×3 (2, 6) 3x3 (104, 6200)

1×4 (2, 30) 3x4 (662, 128930788)

2×1 (6, 2) 4x1 (30, 2)

2×2 (14, 20) 4x2 (230, 7104)

2×3 (20, 384) 4x3 (644, 22984014)

2×4 (33, 15554) 4x4 (8853, 5583967323)

Proof. For each m×n rectangle we perform the following steps to find the first occurrence.191

1. Determine conditions on the number of distinct prime divisors of x, x+ 1, . . . , x+ n.192

2. Find the smallest x satisfying those minimal conditions using Sage.193

3. Find the smallest y that realizes an m× n invisible rectangle using Sage.194

As the second and third steps are searches, it is only the first step that requires proof. Recall195

that a point is invisible if and only if gcd(x, y) 6= 1. In particular x needs at least one prime196

divisor. For 1 ≤ n ≤ 4, x = 2 satisfies the necessary condition.197

For 2 × n rectangles, x, x + 1, . . . , x + n must share a common divisor with y and y + 1.198

Since gcd(y, y+ 1) = 1, each of x, x+ 1, . . . , x+n has at least two prime divisors. This results199

in the smallest x values200

(n, x) = (1, 6), (2, 14), (3, 20), (4, 33).

For 3× n rectangles, x, x+ 1, . . . , x+ n must share a common divisor with y, y + 1, and201

y+ 2. So either x, x+ 1, . . . , x+ n have at least three distinct prime divisors, or the values of202

x, x+ 1, . . . , x+ n which are even have at least two prime divisors, one of which is 2, and the203

values x, x+ 1, . . . , x+ n which are odd have at least three distinct odd prime divisors. This204

results is the smallest x values205
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(n, x) = (1, 6), (2, 104), (3, 104), (4, 662).

For 4×n rectangles, x, x+ 1, . . . , x+n must share a common divisor with y, y+ 1, y+ 2,
and y + 3. So either x, x + 1, . . . , x + n have at least four distinct prime divisors, or less
when one of those divisors is 2 or 3. There are six possible residue classes modulo 2 and 3
for x which give conditions on the number of prime divisors. However, the least number of
prime divisors needed for each x, x + 1, . . . , x + n is three, and when n = 4, at least one of
x, x + 1, . . . , x + n must have four distinct prime divisors larger than 3. This results in the
smallest x values

(n, x) = (1, 30), (2, 230), (3, 644), (4, 8853).

Proposition 4.2. For any given x coordinate which satisfies the necessary prime divisor206

conditions for which an m × n rectangle may appear, there are infinitely many y coordinates207

for which (x, y) is the lower left hand corner of an m× n invisible rectangle.208

Proof. Given the factorizations of x, x+ 1, x+ 2, x+ 3, we may set-up a system of linear209

congruences to solve for y. This system may be solved via the Chinese Remainder Theorem,210

which provides an infinite set of solutions.211

Example 4.3. Consider x = 20 for a 2× 3 rectangle. Then we have 20 = 22 · 5, 21 = 3 · 7,212

and 22 = 2 · 11, so we have the system of congruences213

y = 0 (mod 2 · 3)

y = −1 (mod 5 · 7 · 11).

This results in the solution214

y ≡ 384 (mod 2310).

Notice that we could also have had the system215

y = 0 (mod 2 · 7)

y = −1 (mod 3 · 5 · 11).

This results in the solution216

y ≡ 1484 (mod 2310).

Another interesting question is, for the coordinates of an m× n invisible rectangle, what217

is the smallest number of prime divisors that are possible? As a simple upper bound, if218
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every integer x, x + 1, . . . , x + n has at least m prime divisors, then using the the Chinese219

Remainder Theorem, a system of congruences can be constructed and solved (for y) to find220

an explicit invisible rectangle. However, this is clearly not optimal as Example 4.3 shows221

and for the simple reason that every second number is divisible by 2, so not every coordi-222

nate needs m prime divisors. An alternate formulation of this problem is to ask, what is223

the fewest number of primes needed to divide every term in a sequence of consecutive inte-224

gers? This problem has received some study under the form of the question: what is the225

longest sequence of consecutive integers divisible by the first k primes (OEIS A058989)? The226

first answers are ({2}, 1), ({2, 3}, 3), ({2, 3, 5}, 5), ({2, 3, 5, 7}, 9), ({2, 3, 5, 7, 11}, 13). This does227

not quite resolve our problem since the primes that divide our consecutive integers do not228

need to be from among the first k primes. There is an interesting discussion of this more229

general problem in Quanta Magazine (https://www.quantamagazine.org/solution-the-prime-230

rib-problem-20170908/). For example the 13 numbers 24, . . . , 36 are all divisible by the primes231

{2, 3, 5, 29, 31}. We can prove that this is optimal. We can arrange 2, 3, 5 to divide 11 of 13232

consecutive integers starting at x by setting it up as233

x ≡ 0 (mod 2),

x ≡ 0 (mod 3),

x+ 1 ≡ 0 (mod 5).

Since there are only two numbers left x+ 5, x+ 7, they are odd and must have distinct prime234

divisors, so we need at least five primes. By working through the possible combinatorics,235

it can be determined that this arrangement results in the fewest possible number of primes.236

Note that the five primes {2, 3, 5, 7, 11} can also solve this problem starting at x = 114, but237

this does not give the smallest solution. When the number of primes becomes seven, not238

only does the first occurrence differ for smallest primes versus arbitrary primes, but so does239

the maximal number of consecutive integers divisible by the set. So the problems are truly240

different. This appears to a rich area of research and warrants study in a future project.241

5. Frequency of Pattern Occurrence. In this section we make some empirical observa-242

tions about the frequency with which invisible patterns occur. An interesting open problem243

would be to prove these observations conclusively.244

5.1. 2×2 patterns. There are 16 possible 2×2 patterns and all occur except the pattern245

with no invisible points. In particular, 93.75% of patterns occur. Interestingly, as seen in246

Table 5.1, the frequency with which a pattern occurs appears to depend only on the number247

of invisible points.248
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Table 5.1
2x2 Patterns

Number of Points Pattern Frequency

1 1024 0.125487

1 16384 0.125487

1 2048 0.125487

1 32768 0.125487

2 34816 0.0716601

2 49152 0.0716601

2 17408 0.0716601

2 3072 0.0716601

2 18432 0.0716601

2 33792 0.0716601

3 19456 0.0164857

3 35840 0.0164857

3 50176 0.0164857

3 51200 0.01648575

4 52224 0.00214826

5.2. 3 × 3 patterns. As seen in Table 5.2, the behavior of 3 × 3 patterns appears to be249

more complicated. There are 512 possible 3× 3 patters and 73.63% of them occur. For 3× 3250

patterns with six or more points, all possible patterns occur. The non-occurring patterns are251

completely explained in Corollary 3.2.252

In the 3 × 3 case, there was an overall pattern that the number of points determined253

the frequency with which a pattern occurred, but only up to a point. In other words, the254

frequency of pattern occurrence had a larger variation between number of points in the pattern255

compared to the variation in frequency within patterns with a fixed number of points. In the256

following table we compile the frequency of occurrence of patterns groups by type of pattern.257

The pattern type will be determined by the letters A, B, C, D representing (x, y) coordinates258

arranged in the following way:259

(5.1)

A B A

C D C

A B A

The following findings use the operations “+” and “or” in addition to the letters A, B,260

C, D. “+” separates two necessary conditions while “or” separates two or more possible261

conditions (one of which must be chosen). A single letter indicates that one point of that type262

must be selected while a letter with a coefficient in front of it indicates that two, three, or263

four points of that type must be selected.264
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Table 5.2
3x3 Patterns

Number of Number of Pattern Types Proportion
Points Patterns

1 1 D 0.01230689

2 8 D + (A or B or C) 0.0152519

2 2 2B or 2C 0.0275588

3 26 D + (2A or (A+B) or (A+C) or (B+C)) 0.00329798

3 12 (2B + (A or C)) or (2C + (A or B)) 0.0185499

3 2 D + (2B or 2C) 0.0218479

4 44 A + B + C + D 0.000379761

4 28 (2A + (2B or 2C)) or 0.00367773
(A + ((2B + C) or (B + 2C)))

4 12 ((2B + D) + (A or C)) or 0.00405751
((2C + D) + (A or B))

4 1 2B + 2C 0.00735549

4 1 4A 0.0683364

5 40 (2A + B + C + D) or 2.82946 · 10−5

(3A + (B or C) + D)

5 32 (2A + B + C) or (3A + (2B or 2C)) 0.000408056

5 28 (2B + D + (2A or (A + C)) or 0.000436352
(2C + D + (2A or (A + B)))

5 4 A + 2B + 2C 0.000816114

5 1 2B + 2C + D 0.000844407

5 5 4A + (B or C or D) 0.0263134

6 16 3A + (B or C) + D 1.519132 · 10−6

6 16 3A + (2B + C) or (B + 2C)) 2.98136 · 10−5

6 32 (2A + ((2B + C) or (B + 2C) + D) or 3.13332 · 10−5

(3A + (2B or 2C) + D)

6 6 2A + 2B + 2C 5.96282 · 10−5

6 4 A + 2B + 2C + D 6.11476 · 10−5

6 10 4A + (2B or 2C or (B + C) 0.00452367
or (B + D) or (C + D))

7 16 3A + ((2B + C) or (B + 2C)) + D 1.64427 · 10−6

7 4 3A + 2B + 2C 3.16359 · 10−6

7 6 2A + 2B + 2C + D 3.22603 · 10−6

7 10 4A + ((B + C + D) or 0.000469330
(2B + (C or D)) or (2C + (B or D))

8 4 3A + 2B + 2C + D 1.31291 · 10−7

8 5 4A + ((2B + C + D) or 3.31089 · 10−5

(B + 2C + D) or (2B + 2C))

9 1 4A + 2B + 2C + D 1.71752 · 10−6

We were unable to find any clear patterns in the 3 × 3 data, so we did not expand these265

computations to categorize all of the 4 × 4 visible patterns. Computing these in a similar266

fashion as the 3 × 3 patterns would be time-consuming to perform by hand because the267

number of different proportions for 4 × 4 visible patterns with 9 to 14 points becomes large268

(see the data tables below).269

The following tables provide information on invisible 2 × 2, 3 × 3, and 4 × 4 patterns.270

They indicate that the number of points in a pattern relate to the proportion at which this271
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pattern occurs. For a proportion (proportion1) to be deemed “the same” as another proportion272

(proportion2), the absolute value of the difference between proportion1 and proportion2 needs273

to be less than 1 percent of proportion1.274

Table 5.3
2x2 Invisible Patterns

Number of Number of Number of Total Proportion of Number of
Points in Patterns that Patterns that Number of Total Patterns Different
Pattern Do Occur Do Not Occur Patterns that Do Occur Proportions

0 0 1 1 0 0

1 4 0 4 0.266667 1

2 6 0 6 0.4 1

3 4 0 4 0.266667 1

4 1 0 1 0.0666667 1

Total 15 1 16 1 4

Table 5.4
3x3 Invisibe Patterns

Number of Number of Number of Total Proportion of Number of
Points in Patterns that Patterns that Number of Total Patterns Different
Pattern Do Occur Do Not Occur Patterns that Do Occur Proportions

0 0 1 1 0 0

1 1 8 9 0.00265252 1

2 10 26 36 0.0265252 2

3 40 44 84 0.106101 3

4 86 40 126 0.228117 5

5 110 16 126 0.291777 6

6 84 0 84 0.222812 6

7 36 0 36 0.0954907 4

8 9 0 9 0.0238727 2

9 1 0 1 0.00265252 1

Total 377 135 512 1 30

285



Table 5.5
4x4 Invisible Patterns

Number of Number of Number of Total Proportion of Number of
Points in Patterns that Patterns that Number of Total Patterns Different
Pattern Do Occur Do Not Occur Patterns that Do Occur Proportions

0 0 1 1 0 0

1 0 16 16 0 0

2 0 120 120 0 0

3 0 560 560 0 0

4 4 1816 1820 0.000268258 1

5 48 4320 4368 0.0032191 2

6 264 7744 8008 0.017705 4

7 880 10560 11440 0.0590168 7

8 1974 10896 12870 0.132385 12

9 3120 8320 11440 0.209242 16

10 3528 4480 8008 0.236604 20

11 2832 1536 4368 0.189927 26

12 1564 256 1820 0.104889 42

13 560 0 560 0.0375562 53

14 120 0 120 0.00804775 30

15 16 0 16 0.00107303 7

16 1 0 1 6.70646 · 10−5 1

Total 14911 50625 65536 1 221

6. Conclusion. In this paper, we find the first occurrence of invisible rectangles of size275

m× n for 1 ≤ m,n ≤ 4. In addition, we record the invisible patterns and their corresponding276

frequencies of occurrence up to (x, y) = (24000000, 24000000), and we observe and explain the277

patterns that do not occur. We gather statistics that demonstrate nice patterns relating the278

number of points in a pattern to the proportion at which this pattern occurs, and the next279

step would be attempting to prove whether or not these patterns hold generally. We find the280

first occurring 4 × 4 invisible rectangle computationally, but based on the expected growth281

rate between previous invisible squares, finding the first occurring 5 × 5 invisible rectangle282

does not seem like a feasible computational problem with the current method. Therefore, we283

would need to utilize a different approach than brute force to find the first occurrence of this284

next invisible block. One consideration might be to look where small, distinct prime divisors285

occur most commonly in invisible rectangles to narrow the search criteria. For example, the286

x and y coordinates of the lower left point of most invisible rectangles are divisible by 2.287
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[2] E. Cesàro, Mathesis, PhD thesis, 1881.290

[3] E. H. Goins, P. E. Harris, B. Kubik, and A. Mbirika, Lattice point visibility on generalized lines of291

sight, Amer. Math. Monthly, 125 (2018), pp. 593–601, https://doi.org/10.1080/00029890.2018.1465760,292

https://doi.org/10.1080/00029890.2018.1465760.293

[4] A. Goodrich, a. Mbirika, and J. Nielsen, New methods to find patches of invisible integer lattice294

points, Involve, 14 (2021), pp. 283–310, https://doi.org/10.2140/involve.2021.14.283, https://doi.org/295

10.2140/involve.2021.14.283.296

286



[5] F. Herzog and B. M. Stewart, Patterns of visible and nonvisible lattice points, Amer. Math. Monthly,297

78 (1971), pp. 487–496, https://doi.org/10.2307/2317753, https://doi.org/10.2307/2317753.298

[6] B. Hutz, An experimental introduction to number theory, vol. 31 of Pure and Applied Undergrdauate299

Texts, American Mathematical Socity, 2018.300

[7] P. Schumer, Strings of strongly composite integers and invisible lattice points, College Math. J., 21 (1990),301

pp. 37–40, https://doi.org/10.2307/2686720, https://doi.org/10.2307/2686720.302

287




