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Abstract

We explore the effects of interleaved shuffling on the rate of conver-
gence for the discrete heat equation with Dirichlet boundary conditions.
We derive a closed form for the expected value of the shuffled discrete heat
equation and establish bounds on its rate of convergence. In particular
for any connected region D ⊂ Zd with volume |D| and a non-negative
initial state h0 ∈ R|D|, there is an upper bound on the spectral radius as-
sociated with the shuffled discrete heat equation that grows on the order
of 1 − Ω(1/|D|1/d). An analogous lower bound for the standard discrete
heat equation is also derived which grows on the order of 1−O(1/|D|2/d).

1 Introduction

Figure 1: Shuffled Discrete Heat Equation on an Example Region in Z2

The heat equation is a partial differential equation well-known in science dis-
ciplines for its simplicity and aptness in modeling dispersion processes. Straight-
forward applications of the equation can be found in physics and biology, such as
describing how temperature propagates down a rod or how the concentration of
a mixture changes in space and time. In many real-world cases, dispersion pro-
cesses operate within regions too complicated to solve analytically with the heat
equation. It is instead more practical to obtain numerical approximations of the
region using a discretized version of the heat equation. Interestingly enough,
this discrete heat equation finds uses in computer science and applied math be-
yond numerical evaluation. Some noteworthy examples include its application
in random walks and its use in exponential kernel families [6] [8].

In this paper we explore a supplementary topic on the rates of convergence for
different discrete heat equation variants. The rate of convergence specifies how
quickly a linearly convergent sequence converges to its limiting value. We induce
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a sequence from the discrete heat equation by chronologically enumerating each
discrete time step to a countable set. By characterizing the rate of convergence,
we can determine how quickly each discrete heat variant reaches its equilibrium
state.

Spectral theorem will provide a convenient eigenbasis to simplify the dis-
persion dynamics present in these discrete heat equation variants. By conse-
quence of its formal definition, the rate of convergence will be exactly equal to
the largest magnitude eigenvalue, the spectral radius, of the eigenbasis above.
Knowing this, we refine our search to establishing bounds on the spectral radius
of discrete heat equation variants. By providing these bounds we hope to aid
discussion in classifying time complexities for more general discrete dispersion
processes.

We begin this paper with a formal description of the discrete heat equation
and its conditions for convergence. Next we define a shuffled variant of the
discrete heat equation and solve for its expected value as a function of time.
Finally we characterize the rate of convergence of each equation by bounding
the spectral radius of pertinent linear operators.

Both the bound on the spectral radius and the closed form solution for the
expectation of the shuffled heat equation are novel. Both spectral radii bounds
share a similar function form which allows for straightforward comparison on
the rate of convergence for the two discrete dispersion processes. The bound
for the standard discrete heat equation can also be obtained by leveraging the
eigenvalue bound for the negative Laplacian on bounded domains [11] [15].

2 Discrete Formulation of the Heat Equation
For a function h : Rd × R≥0 → R, the heat equation is expressed as

∂

∂t
h(x, t) = α∇2h(x, t). (1)

It is common to refer to x ∈ Rd as the spatial position and t ∈ R≥0 as the
temporal position of the function h(·, ·). The real-valued variable α is a constant
describing how quickly h(·, ·) disperses in the medium of interest. The Laplacian
in equation (1) acts on the spatial components of h(·, ·). That is to say, if our
dispersive region occupies d dimensions such that x = (x1, · · · , xd) then

∇2 =
d∑
i=1

∂2

∂x2i
.

In the discrete case we add the condition that our spatio-temporal inputs
must be integer-valued. This discrete input function is denoted by ht : Zd → R
with discrete time indexes t ∈ N0. We have ht(·) evolve according to the d-
dimensional discrete heat equation defined by G. Lawler in [10]

∆ht(x) = αLht(x) α ∈ (0, 1). (2)
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Here ∆ is the forward difference operator in t and L is the negative normalized
discrete Laplacian with the following formal definition

Lht(x) =
1

2d

∑
||y−x||1=1

[ht(y)− ht(x)]. (3)

Borrowing further conventions from [10], for a set D ⊂ Zd the boundary ∂D is
defined as

∂D = {x ∈ Zd \D | inf
y∈D
||y − x||1 = 1}. (4)

We provide a visualization of equation (4) in Figure 2.

Figure 2: Example region (gray) in Z2 with boundary (black)

Our analysis is restricted to the case where D is finite and connected and
the elements of ∂D satisfy the homogeneous Dirichlet boundary condition. We
define an enumeration I : D → N such that function ht(·) has a vector rep-
resentation in R|D|. Using the same enumeration I we introduce a matrix
representation for L where

L =
1

2d
AD − I. (5)

HereAD is the adjacency matrix of (D,ED), the natural induced graph structure
of Zd, with ED = {(u, v) ∈ D ×D | ||u− v||1 = 1} and I is the identity matrix
in R|D|×|D|. Equations (3) and (5) are equivalent for homogeneous Dirichlet
boundary conditions, but the representation in (5) will allow for more conve-
nient handling of ht. Revisiting the discrete formulation in (2), the following
simplifications are produced

ht+1 − ht = α
( 1

2d
AD − I

)
ht

ht+1 =
( α

2d
AD + (1− α)I

)
ht =

( α
2d
AD + (1− α)I

)t+1

h0. (6)
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Vector h0 ∈ R|D| is the non-negative initial state on D. The expression in (6) is
especially nice as it identifies the time evolution operator for the discrete heat
equation, α

2dAD+(1−α)I, in terms of readily known quantities. Questions about
the dynamics of (6) will conveniently simplify to analyzing the characteristics
of the time evolution operator and its interaction with the initial state h0.

2.1 Convergence of Discrete Heat Equation
For the sake of compactness, we will have B = α

2dAD + (1 − α)I and n = |D|.
Matrix AD is symmetric as it is the adjacency matrix of an undirected graph
(D,ED). Consequently B is symmetric as well. By spectral theorem there
exist eigenvectors {vi}ni=1 with eigenvalues {λi}ni=1 which form an orthonormal
eigenbasis for B. As {vi}ni=1 is an orthonormal basis we can write h0 as

h0 =
n∑
i=1

〈vi, h0〉vi.

Applying the above to (6) gives

ht+1 =
n∑
i=1

〈vi, h0〉λt+1
i vi. (7)

If the spectral radius of B, ρ(B), is less than 1 then equation (7) will converge 
to 0 ∈ Rn for all initial states h0. As we will see in the next subsections, the 
bound ρ(B) < 1 holds for all α ∈ (0, 1]. We will not consider corner case α = 0 

as it is uninteresting with trivial convergence ht = h0 for all t ∈ N.

2.1.1 Lemmas Bounding Spectral Radius ρ(B)

We start with a introduction of Perron–Frobenius Theorem and some standard 
lemmas from graph theory.

Theorem 1 (Perron–Frobenius Theorem for Irreducible Matrices). If A is a 
non-negative irreducible matrix, there exists a positive eigenvector of A with 
corresponding positive eigenvalue equal to the spectral radius. Furthermore if 
A is primitive, all other eigenvectors must have corresponding eigenvalue with 
magnitude less than the spectral radius.

Lemma 1. If G is a connected graph, then its adjacency matrix AG is irreducible.

Proof. A matrix A is said to be irreducible if for every i, j index pair there 
exists k ∈ N such that (Ak)ij > 0. When A is an adjacency matrix, (Ak)ij gives 
the number of walks of length k between vertex i and j. We are given in the 
problem statement that G is connected, so there always exists a walk of finite 
length between any pair of vertices.

Lemma 2. If H is a connected proper subgraph of graph G, then ρ(H) < ρ(G).
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Proof. Refer to [12] for a more general version of this proof.
Applying Theorem 1 and Lemma 1, let x be the positive eigenvector with pos-
itive eigenvalue equal to the spectral radius of graph H. As H is a subgraph
G and vector x is positive, it follows that AHx ≤ AGx. Furthermore since the
subgraph relation is proper there exists index i ∈ {1, · · · , n} such that

(AHx)i < (AGx)i.

Using Rayleigh’s quotient the following inequality is obtained

ρ(AH) =
〈x,AHx〉
〈x, x〉

<
〈x,AGx〉
〈x, x〉

≤ sup
x′ 6=0

∣∣∣∣∣ 〈x′, AGx′〉〈x′, x′〉

∣∣∣∣∣ = ρ(AG).

Lemma 3. Let G be a d-regular graph, the spectral radius of graph G has value
d and can be attained by the ones vector 1.

Proof. The 1-norm of a matrix calculates the maximum absolute column sum,
which in the case of a d-regular graph is d. Consider a 1-norm normalized
eigenvector x of adjacency matrix AG. Using standard matrix norm inequalities
we have

|λ| = ||AGx||1 ≤ ||AG||1||x||1 = d.

Since the above holds for every eigenvector x,

ρ(AG) ≤ d.

Each row of adjacency matrix AG has d non-zero elements, so the spectral upper
bound of d can be attained by the ones vector 1.

2.1.2 Convergence Argument

Note that graph (D,ED) is a proper subgraph of a 2d-regular graph. Utilizing
Lemmas 2 and 3 we get that ρ(AD) < 2d and equivalently

ρ(B) =
|α|
2d
ρ(AD) + |1− α|ρ(I) <

|α|
2d

2d+ |1− α| = 1.

The last equality holds for α ∈ (0, 1] which is our case of interest.

3 Shuffled Discrete Heat Equation
This next dispersion process introduces a random element into the standard
discrete heat equation. After each dispersive step, we allow for a random in-
dependent permutation between the ht(·) values of D (refer to Figure 1 for a
visualization). This dispersion process is formalized as so

ht+1(x) = σt(αLht(x) + ht(x)) x ∈ D,
Lht(x) = 0 x ∈ ∂D. (8)
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Here σt is a permutation map of the set {αLht(x)+ht(x) | x ∈ D}. Permutation
σt is drawn uniformally from the set of n-element permutations Sn.

Using the same enumeration I as in (5), permutation map σt admits matrix
representation Mt. To differentiate from (6) and emphasize ht(·) is random
quantity for t ∈ N, we let ht ∈ Rn stand in as the random vector of values
evolving according to the shuffled discrete heat equation defined above. Plugging
in the new matrix and vector representations we obtain the following relation

ht+1 = Mt

( α
2d
AD + (1− α)I

)
ht =

( t∏
i=0

Mi

( α
2d
AD + (1− α)I

))
h0. (9)

Currently the time evolution operator for the shuffled process is dependent on
time. In the next section, equation (9) will be simplified by considering the
expectation of ht+1.

3.1 Expectation of the Shuffled Discrete Heat Equation
Each permutation Mi is identically distributed and independent so the expec-
tation of ht+1 becomes

E[ht+1] =
(
E[M0]

( α
2d
AD + (1− α)I

))t+1

h0. (10)

For a given permutation matrix M , element (M)ij equals one if j is mapped to
i and equals zero otherwise. The number of permutations mapping j to i for a
set of n element permutations is (n− 1)!. Paired with the fact that each of the
n! permutations is equiprobable the expectation of M0 simplifies to

E[(M0)ij ] =
∑

M0∈Pn

(M0)ij Pr(M0) =
∑

σ∈Sn : σ(j)=i

1 · 1

n!
=

1

n

E[M0] =
1

n
11
′. (11)

Here Pn is the space of n × n permutation matrices and Sn is the same set of
n-element permutations introduced in (8).
Substituting E[M0] into (10) yields

E[ht+1] =
1

n
1

( α

2dn
1
′AD1+ (1− α)

)t
1
′(
α

2d
AD + (1− α)I

)
h0

=
( α

2dn
1
′AD1+ (1− α)

)t 1

n
11
′h1.

Vector h1 =
(
α
2dAD + (1 − α)I

)
h0 is the evolution of h0 after one time step

according to the normal discrete heat equation. Let dtot be the sum of all vertex
degrees in (D,ED). Notice 1′AD1 = dtot so

E[ht+1] =
( α

2dn
dtot + (1− α)

)t 1

n
11
′h1.
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As mentioned in Section 2.1.2, graph (D,ED) is a proper subgraph of a 2d
regular graph. Note that dtot is equal to 2dn minus the number of edges between
D and ∂D, which we will denote as E(D, ∂D). Applying this to the above yields

E[ht+1] =
(

1− αE(D, ∂D)

2dn

)t 1

n
11
′h1 (12)

3.2 Convergence in Expectation
Convergence for the shuffled heat equation hinges on whether the multiplicative
constant 1− αE(D,∂D)

2dn is less than 1. The sum of degrees in any graph is non-
negative, so dtot = 2dn − E(D, ∂D) implies E(D, ∂D) ≤ 2dn. Consequently,
any non-negative initial vector h0 will converge in expectation to 0 ∈ Rn for
α ∈ (0, 1] and 1

n11
′h0 for α = 0.

3.3 Convergence in Variance
Lemma 4. Let {Xk} be a non-negative bounded sequence of random values with
limk→∞E[Xk] = 0, then limk→∞Var(Xk) = 0.

Proof.

Var(Xk) = E[X2
k ]− E[Xk]2 =

∫ M

0

x2fXk
(x)dx− E[Xk]2,

where fXk
is the probability density function of Xk andM is a bound such that

Xk ≤M for all k ∈ N. Next note

fXk
(x) ≤

∫ ∞
x

fXk
(y)dy = P(Xk ≥ x).

Markov’s inequality on P (Xk ≥ x) is defined for x > 0 but with a little legwork
we can show∫ M

0

x2P(Xk ≥ x)dx = lim
δ→0+

∫ M

δ

x2P(Xk ≥ x)dx

≤ lim
δ→0+

∫ M

δ

xE[Xk]dx (Markov’s Ineq.)

= lim
δ→0+

E[Xk](M2 − δ2)/2 = E[Xk](M2/2).

Applying the above to Var(Xk),

Var(Xk) ≤
∫ M

0

x2P(Xk ≥ x)dx− E[Xk]2 ≤ E[Xk](M2/2)− E[Xk]2.

For ε > 0 find K ∈ N s uch t hat k ≥ K i mplies E[Xk] < ε . W ith t he same 
k ≥ K,

|Var(Xk)− 0| ≤ |(M2/2)ε− ε2| < max((M2/2)ε, ε2).

As ε can be made arbitrarily small we have limk→∞ Var(Xk) = 0.
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Equation (9) is the composition of non-negative terms, so {(ht)j}∞t=1 is a
non-negative sequence for j ∈ {1, · · · , n}. Let h∗0 be the largest component of
h0,

h1 = M0

( α
2d
AD + (1− α)I

)
h0 ≤M0

( α
2d
AD + (1− α)I

)
1h∗0

≤M01h
∗
0 = 1h∗0.

Iteratively applying Mi(
α
2dAD + (1 − α)I) with the same inequality argument

gives (ht)j ≤ h∗0 for j ∈ {1, · · · , n}. Each {(ht)j}∞t=1 is a non-negative bounded
sequence of random values and by Lemma 4 we have limt→∞Var((ht)j) = 0.

4 Spectral Radius Analysis
So far we have shown that the standard heat equation and the expectation of
the shuffled variant converge to 0 ∈ Rn for α ∈ (0, 1]. Noting this, we turn our
attention to defining the rate of convergence for different discrete time processes.

Definition 1 (Linear Convergence). Let {xk} be a sequence in Rn with limit
x∗. Sequence {xk} is said to converge linearly to x∗ if there exists a rate of
convergence µ ∈ (0, 1) such that

lim
k→∞

||xk+1 − x∗||
||xk − x∗||

= µ. (13)

It is straightforward to see that the rate of convergence for (12) is equal to
1 − αE(D,∂D)

2dn . The previous example was simple to solve because we had a
closed form to work with. For other cases when we do not have a closed form
it can be difficult to derive the rate of convergence. Luckily enough finding the
rate of convergence for sequences with elements of the form (7) simplifies to
computing the spectral radius of the operator generating the sequence. To see
this notice that for large t

||ht+1|| =
∣∣∣∣∣∣ n∑
i=1

〈vi, h0〉λt+1
i vi

∣∣∣∣∣∣ ≈ ||〈v∗, h0〉λt+1
∗ v∗||

= ρ(B)t+1||〈v∗, h0〉v∗||, (14)

where v∗ is the eigenvector associated with largest magnitude eigenvalue λ∗. 
Plugging the above into (13) gives equality between the rate of convergence and 
the spectral radius.

There is a slight sleight of hand in (14) where it is implicitly assumed that 
coefficient 〈v∗, h0〉 6= 0 and eigenvector v∗ uniquely attains the spectral radius. 
In the next subsection we will confirm ( 12) a nd ( 6) s atisfy t hese assumptions 
for α ∈ (0, 1).
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4.1 Spectral Radius Eigenvector Uniqueness and
Positivity

4.1.1 Shuffled Heat Equation

Starting with vector h1, the time evolution operator that which generates (12) is
(1−αE(D,∂D)

2dn ) 1
n11

′. The time evolution operator is symmetric and has positive
eigenvector (1/

√
n)1. The rest of the n− 1 eigenvectors lie in the subspace 1⊥,

the orthogonal complement to the ones vector, with eigenvalue 0. Since (1/
√
n)1

is the eigenvector uniquely attaining the spectral radius and both (1/
√
n)1 and

h1 are positive, we have equivalence between the rate of convergence and the
spectral radius of the time evolution operator for the shuffled heat equation.

4.1.2 Discrete Heat Equation

Previously mentioned in Section 2.1.1, Theorem 1 states if the matrix is non-
negative and primitive then there exists exactly one eigenvector attaining the
spectral radius. Furthermore this eigenvector and it’s corresponding eigenvalue
must be positive.

Lemma 5. Given a connected graph G, the matrix a1AG + a2I is primitive for
a1, a2 > 0.

Proof. A matrix A is primitive if there exists a natural number k such that all
entries (Ak)ij are positive. Lemma 1 implies AG is irreducible, so for every entry
(A)ij there exists some natural number m such that (Am)ij > 0. Let N be the
smallest natural number such that for any i, j there exists k ∈ {1, · · · , N} such
that (Ak)ij > 0. Next note that

(a1AG + a2I)N =
N∑
k=0

(
N

k

)
ak1a

N−k
2 AkG.

Since a1, a2 are positive it equivalently follows that for every i, j entry
((a1AG + a2I)N )ij is positive.

The matrix B = α
2dAD + (1−α)I with α ∈ (0, 1) is a specific case of Lemma

5, so there exists a unique positive eigenvector x attaining the spectral radius
of B.

4.2 Spectral Radius Comparison
For an easier comparison both processes are arranged in a standard form with
right vector h1

ht+1 =
( α

2d
AD + (1− α)I

)t
h1,

E[ht+1] =
( 1√

n
1
′
( α

2d
AD + (1− α)I

) 1√
n
1

)t 1

n
11
′h1.
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We introduce the shorthand matrix C to shorten the expression for E[ht+1]
above

C =
( 1√

n
1
′
( α

2d
AD + (1− α)I

) 1√
n
1

) 1

n
11
′,

E[ht+1] = Cth1.

Through some algebraic manipulations, an inequality can be produced between
ρ(C) and ρ(B)

ρ(C) =
〈1, C1〉
〈1,1〉

=
〈 1√

n
1, B 1√

n
1〉

〈 1√
n
1, 1√

n
1〉
≤ sup

x6=0

〈x,Bx〉
〈x, x〉

= ρ(B).

The above inequality is actually strict as 1 cannot be an eigenvector of B. To
prove this it is sufficient to show 1 is not an eigenvector of AD. The matrix-
vector product AD1 produces a vector of vertex degrees. For any vertex u ∈ D

deg(u) =

{
< 2d, if dist(u, ∂D) = 1.

2d, otherwise.

As there exists no scalar λ such that AD1 = λ1, the following strict inequality
is obtained

ρ(C) < ρ(B). (15)

Since ρ(Ct) = ρ(C)t and ρ(Bt) = ρ(B)t, the above holds for Ct, Bt with t ∈ N.

5 Bounds on the Rates of Convergence
In this section we will be looking at d-dimensional cubes in Zd which are subsets
of D. Each element of D is considered a d-dimensional cube with side length
1, so as long as D is not empty a d-dimensional cube of side length ` ≥ 1 can
always be found.

We will denote largest d-dimensional cube found in D by SD (refer to Figure
3 for a visualization). It will be useful to relate the volume of SD to the total
volume of D through a proportionality constant γ. Formally this relation can
be written as

`d = γn. (16)

5.1 Upper Bound on ρ(C)

In Section 4.1.1 an equality between the spectral radius of the time evolution
operator C and the rate of convergence for the shuffled heat equation was es-
tablished

ρ(C) = 1− αE(D, ∂D)

2dn
. (17)
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Figure 3: One choice of SD (gray) with ` = 4 for previous example region

In Zd the term E(D, ∂D) can be interpreted as the surface area of the region
D. Term E(D, ∂D) can be bounded by noticing the surface area of D will
always be greater than or equal to the surface area of SD. The surface area of
a d-dimensional cube of side length ` is 2d`d−1 so

E(D, ∂D) ≥ 2d`d−1 = 2dγ
d−1
d n

d−1
d . (18)

Applying the above relation to (17) yields the bound

ρ(C1) ≤ 1− αγ
d−1
d

1

n1/d
. (19)

This inequality is strict in cases where D is not a d-dimensional cube with side 
lengths equal to n1/d.

A tighter bound for (18) can be obtained by utilizing the isoperimetric in-
equality for graphs in Zd found in [13] [1]. This isoperimetric inequality differs 
from (18) in that it does not require proportionality constant γ

d
d
−1 

to maintain 
the inequality between the surface area and volume of graph (D,ED). Surpris-
ingly, this constant does not affect the asymptotic behavior of ρ(C) for large n 
and will find a  parallel use in bounding ρ(B).

5.2 Lower Bound on ρ(B)

First we show a useful property of Cartesian graph products in the context of 
spectral radii.

Lemma 6. Let G1, G2 be graphs of size r, s respectively. If AG1
xi = λixi and 

AG2
vj = µjvj, then the Kronecker product xi ⊗vj is an eigenvector of the graph 

Cartesian product G1�G2 with eigenvalue λi + µj.

Proof. Referencing [7], the adjacency matrix of a graph formed through a Carte-
sian graph product can be represented as the Kronecker sum of the component
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adjacency matrices

AG1�G2
= AG1

⊗ Ir +AG2
⊗ Is.

Using the Mixed Product and Billinear properties of Kronecker products

AG1�G2
(xi ⊗ vj) = (AG1 ⊗ Ir +AG2 ⊗ Is)(xi ⊗ vj)

= (AG1 ⊗ Ir)(xi ⊗ vj) + (AG2 ⊗ Is)(xi ⊗ vj) (Bilinearity)
= (AG1xi)⊗ vj + xi ⊗ (AG2vj) (Mixed Product)
= (λixi)⊗ vj + xi ⊗ (µjvj)

= (λi + µj)(xi ⊗ vj) (Bilinearity).

A d-dimensional cube with side length ` is equivalent to the Cartesian prod-
uct of d path graphs of length `. The eigenvalues of path graphs are well-known
and take the form

λk = 2 cos
( kπ

`+ 1

)
, k ∈ {1, · · · , `}.

Graph (SD, ESD
) is a subgraph to (D,ED), which by Lemma 2 gives a lower

bound for ρ(AD). The result from Lemma 6 holds for any finite number of
Cartesian graph products so the largest positive eigenvalue of (SD, ESD

) equals

λmax = 2d cos
( π

`+ 1

)
.

Applying this bound to ρ(B),

ρ(B) =
α

2d
ρ(AD) + (1− α)ρ(I) ≥ α cos

( π

`+ 1

)
+ 1− α

= 1− α
(

1− cos
( π

`+ 1

))
. (20)

Next we expand cos(π/(`+ 1)) about 0 with Taylor’s Remainder Theorem,

cos
( π

`+ 1

))
= 1−

( π

2!(`+ 1)

)
+R4

( π

`+ 1

)
,

where R4(π/(` + 1)) is the remainder term for the expansion. Plugging in the
expansion for cos(π/(`+ 1))

ρ(B) ≥ 1− α π2

2(`+ 1)2
+ αR4(π/(`+ 1)).

The remainder term is non-negative for ` ≥ 1 since

R4(π/(`+ 1)) ≥ inf
x∈[0,π/(`+1)]

cos(x)

4!

( π

(`+ 1)

)4
≥ 0.
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Dropping the remainder term maintains

ρ(B) ≥ 1− α π2

2(`+ 1)2
.

Using volume relation (16) and the fact −1/(`+ 1)2 > −1/`2 for ` ≥ 1,

ρ(B) > 1− α π2

2γ2/d
1

n2/d
. (21)

5.3 Asymptotic Rates of Convergence for Shape-Preserved
Growth

The bounds solved for in Section 5.1 and 5.2 are parametrized by two geometrical
values, the volume of region D and the isoperimetric constant γ. Ideally we
would like our bounds to grow solely with the volume n without having to worry
about the behavior of γ. There is also the question of how will we maintain the
shape of D while increasing volume n.

To combat these problems we introduce a method to increase the volume
of a region in Zd that preserves the original shape of the region. This method
of shape-preserved growth is a simple redefintion of the unit length in Zd. We
define the new unit length of Zd such that the old unit length is an integral
multiple of the new length. An example region after this redefinition is given in
Figure 4. Take note that the grid mesh in Figure 4 is significantly more refined
than the mesh present Figure 3.

Figure 4: Unit length redefintion with m = 3 for previous example region

Let D′ be the enlarged region produced by the shape-preserved growth 
method for integral multiple m ∈ N. Similarly let n′ be the volume of D′
and `′ the side length of d-dimensional cube SD′ . Relating the quantities before 
and after a unit length redefinition gives

`′ = m`,

n′ = mdn.
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A convenient consequence of this method is that γ is left unchanged after each
length redefinition

(`′)d = md`d = mdγn = γn′.

Since γ is kept constant, the fractional n dependence in (19) and (21) correctly
describes growth of the spectral radius for each process asD increases in volume.
This leads to the following asymptotic rates of convergence for the shuffled and
standard discrete heat equation

ρ(C) = 1− Ω(1/|D|1/d), (22)

ρ(B) = 1−O(1/|D|2/d), (23)

where the notation n = |D| from Section 2.1 is reintroduced.
Equations (22) and (23) allow us to write down worst/best case functional

forms for the rate of convergence of the shuffled/standard discrete heat equation
without having to know the specific geometry of D. The similar forms of (22)
and (23) makes it simple see that, for every regionD ⊂ Zd, the asymptotic worst
case rate of convergence for the shuffled heat equation will always be faster than
the asymptotic best case rate of convergence for the standard discrete equation.
This growth difference between the rates of convergence respects a previously
solved inequality (15) in Section 4.2.

6 Application to Numerical Simulations
Suppose we are prototyping a three dimensional model specialized for dissipating
heat. This model must satisfy certain geometric constraints and achieve an
average temperature of s after some time T . The cooling constraint is tested
through simulation with a finite difference method specified by the equation (6).

In order to use the finite difference method the original model in R3 is
approximated in Z3 according to some user defined step size. Preforming an
exhaustive search of possible models is straightforward in Z3 but the compu-
tational complexity of such a search will depend on symmetries present in the
geometric constraints. For complicated constraints this model generation step
may take a long time, by optimizing the simulation step used in testing the cool-
ing constraint we hope to save computational time and improve tractability. For
the large T regime the average temperature can be approximated as

1

|D|
〈hT ,1〉 ≈

ρ(B)T

|D|
〈h0,1〉.

If Tcrit is the critical time where the average of hT equals s then,

Tcrit = log
( s

〈h0,1〉
|D|
)
/ log(ρ(B)).

One issue with the above is that for large |D| finding ρ(B) exactly can be very 
computationally intensive. To combat this one can use (20) to produce a bound
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in terms of ` (defined in Section 5),

Tcrit ≤ log
( s

〈h0,1〉
|D|
)
/ log

(
1− α

(
1− cos

( π

`+ 1

)))
. (24)

Although ` was originally defined a s t he s ide l ength o f t he l argest c ube found 
inside D ⊂ Z3, bound (24) will also hold for ` associated to any smaller cubes 
found inside D. This second option would produce a looser bound on Tcrit but 
can be used to avoid doing an extensive search of cubes within D. Depending 
on how one iterates through models in Z3, the largest cube information may 
also be obtained in the model generation step.

If the bound on Tcrit is less than T then region D will satisfy the cooling con-
straint for the large T regime. By comparing (24) to T we obtain a time ecient 
veto mechanism on whether a region D ⊂ Z3 satisfies the cooling constraint.

7 Future Work with the Shuffled Heat Equation
We have shown that shuffling elements during a heat equation dispersion process 
greatly speeds up the rate at which the process reaches equilibrium. In order 
to aid our physical intuition as to why this may be, we consider vector ht to 
be the concentration of some solute dissolved throughout D. This mixture is 
connected to an infinite reservoir ∂D containing the same solvent that is within 
D. If this solute is left to sit in D it’s concentration will disperse according to 
the heat equation [14].

Suppose a strong mixing force was introduced to our domain D. Intuitively 
we would expect this mixing to aid the dispersed solute to reach the equilib-
rium state faster. In a discrete setting this strong physical mixing force shares 
similarities with the shuffling term introduced in Section 3. Equation (8) can 
be seen as discrete dispersion under the presence of a strong mixing force. In 
the presence of turbulent flow, a  particle’s motion can be modeled as a  random 
walk [3]. Clearly a random walk is not the sample as intermittent shuffling but 
one may view shuffling as a simplification to the random walk model after some 
modifications.

The main discrepancy between the random walk model and the shuffled 
model is that a random walk always propagates locally from some starting 
position while the shuffled model allows for nonlocal transport of elements across 
D. For suciently strong mixing where the variance of the random walk far 
surpasses the diameter of the domain D, it may be possible to excuse this 
nonlocal behavior but as a result we will be constrained to working with a very 
specific regime of mixing processes.

For future work it would be worthwhile to consider shuffling that is limited 
to displacing elements a maximum of r units away, where r is some predefined 
mixing length depending on the scale of the time step. One approach could be 
to select a random partition P of set D at each time step and require that each 
cell of P is connected and at most diameter r. Similar to the previous model 
we allow for uniform shuffling of elements within each cell of the partition.
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Depending on the analysis carried out, one may define each random partition to
be sampled with equal probability or allow for unequal sampling probabilities
for different classes of possible partitions.
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