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=
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f n: , ®

with weights w w
n1

,..., ,Î  bias bÎ, 
and activation function r : , ®  which 
is typically the rectified linear unit (ReLU)
r( ) max{ , }.x x= 0  Arranging these artifi-
cial neurons into layers yields the definition 
of an artificial neural network F  of depth L :

   
Φ( ): ( ( ( ( ( ))) )),x T T T x

L L
= … …−r r r

1 1

                      
Φ : , 

n→

where T x W x b
k k k
( ) ( ) ,= −  k L= …1, ,  are 

affine-linear functions with W
k
 as the weight 

matrices and b
k
 as the bias vectors. It is 

worth noting that an artificial neural network 
is indeed a purely mathematical object.

Let us next discuss the workflow for the 
application of (artificial) neural networks, 
which automatically leads to key research 
directions in the realm of reliability. Given 
a data set ( , )x y

i i i—which may be sampled 
from a classification function of data on a 
manifold , i.e., g K: { ,..., }® 1 —the 
key task of a neural network F  is to approx-
imate the data and the underlying function 
g. After splitting the data set into a training 
set and a test set, we can proceed as follows:

(i) Choose an architecture by determin-
ing the number of layers in the network, the 
number of neurons in each layer, and so forth.

(ii) Train the neural network by optimiz-
ing the weight matrices and bias vectors. 
This step is accomplished via stochastic 
gradient descent, which solves the optimi-
zation problem

      

min ( ( ), ), ,W b W b i ik k k k
i

x y∑ +Φ

l( , ).W bk k

sification of these higher-order bifurcations 
reveals new insights into emergent phe-
nomena, such as self-organized criticality 
[11] and the formation of localized states 
[2]. Our recent work analyzes intrigu-
ing higher-order bifurcations to understand 
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From a Point to a Torus: Unveiling Emergent 
Dynamics with Higher-order Bifurcations
By Zachary G. Nicolaou             
and Adilson E. Motter

Bifurcation theory describes qualitative 
changes in the solutions of dynamical 

systems as parameters vary. The theory’s 
origins date back to Henri Poincaré, who 
foresaw the potential for complexity when 
stable and unstable manifolds intersect 
transversally [1, 5]. Many other mathema-
ticians have since contributed to the sys-
tematic classification of bifurcations [1, 6]. 
This classification is aided by consideration 
of the bifurcation’s codimension, which 
is the number of parameters that must be 
varied for the bifurcation to be observ-
able. Only two generic codimension-one 
bifurcations of fixed points exist for con-
tinuous-time dynamics: saddle-node and 
Andronov-Hopf bifurcations. Likewise, 
there are three generic codimension-one 
bifurcations of limit cycles: saddle-node, 
period-doubling, and torus bifurcations.

Despite longstanding interest in the field, 
research continues to reveal new bifurca-
tion phenomena. Bifurcations that are asso-
ciated with higher codimensions, higher-

dimensional invariant sets, and global topo-
logical changes are prominent research 
subjects — as is the analysis of higher-
order bifurcations, which occur with the 
vanishing of leading-order terms in a local 
expansion. Another important line of inqui-
ry concerns system symmetries, which can 

guarantee conditions that would otherwise 
be nongeneric and lower the codimension 
of higher-order bifurcations [4]. Common 
codimension-one examples include pitch-
fork and transcritical bifurcations of fixed 
points — though other important, less-stud-
ied cases exist as well. The ongoing clas-

Figure 1. Driven array of pendulums with an alternating offset length of ∆= 0 5. . 1a. For a sufficiently small driving amplitude ad—which 
depends on driving frequency wd—the system relaxes to a steady state in which the pendulums do not swing. The seismometer-style plots 
indicate time traces of the pendulum bobs’ Cartesian coordinates. 1b–1c. As the control parameter ad  increases, the steady state can bifurcate 
to either a periodic solution with a subharmonic response (as in 1b) or a quasiperiodic solution with an anharmonic response (as in 1c), depend-
ing on wd . The insets depict the corresponding orbits. Figure courtesy of Zachary Nicolaou.

See Bifurcations on page 3

See Artificial Intelligence on page 4

The Mathematics of Reliable 
Artificial Intelligence
By Gitta Kutyniok

The recent unprecedented success of 
foundation models like GPT-4 has 

heightened the general public’s awareness 
of artificial intelligence (AI) and inspired 
vivid discussion about its associated possi-
bilities and threats. In March 2023, a group 
of technology leaders published an open 
letter1 that called for a public pause in AI 
development to allow time for the creation 
and implementation of shared safety proto-
cols. Policymakers around the world have 
also responded to rapid advancements in AI 
technology with various regulatory efforts, 
including the European Union (EU) AI Act2 
and the Hiroshima AI Process.3

One of the current problems—and con-
sequential dangers—of AI technology is 

1 https://futureoflife.org/open-letter/pause- 
giant-ai-experiments

2 https://artificialintelligenceact.eu
3 https://www.soumu.go.jp/hiroshimaai

process/en

its unreliability and subsequent lack of 
trustworthiness. In recent years, AI-based 
technologies have often encountered severe 
issues in terms of safety, security, privacy, 
and responsibility with respect to fairness 
and interpretability. Privacy violations, 
unfair decisions, unexplainable results, and 
accidents involving self-driving cars are all 
examples of concerning outcomes.

Overcoming these and other prob-
lems while simultaneously fulfilling legal 
requirements necessitates a deep mathemati-
cal understanding. Here, we will explore the 
mathematics of reliable AI [1] with a partic-
ular focus on artificial neural networks: AI’s 
current workhorse. Artificial neural net-
works are not a new phenomenon; in 1943, 
Warren McCulloch and Walter Pitts devel-
oped preliminary algorithmic approaches 
to learning by introducing a mathematical 
model to mimic the functionality of the 
human brain, which consists of a network 
of neurons [10]. Their approach inspired the 
following definition of an artificial neuron:

Figure 1. Double descent curve that demonstrates the positive effects of overparameterization. 
Figure courtesy of the author.
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5  The Importance of 
Mathematics in Political 
Decision-making

 Paul Nahin reviews 
Mathematics in Politics and 
Governance, a new book by 
Francisco Aragόn-Artacho 
and Miguel Goberna. Through 
a series of true political sto-
ries, historical anecdotes, and 
college-level mathematical 
analyses, the authors demon-
strate that the disparate worlds 
of mathematical reasoning and 
governmental policymaking 
need not be mutually exclusive.

5  Does Air Rotate          
with the Tire?

 Does the air in a rolling tire 
rotate at the same speed as 
the tire, assuming that the tire 
has been rolling with constant 
speed for some time? Mark Levi 
explores this question in the 
context of air flow and drift—
acknowledging that the air in the 
tire is continuously deformed 
because the lower part of the tire 
is flattened by the road—and 
presents a few amusing puzzles.

6  Modeling the Impact of 
Rainfall Variability on 
Vegetation in Drylands

 Given global efforts to adapt to 
the changing climate and bet-
ter align mathematical models 
with the natural timescales 
of rainfall features and their 
effects on vegetation patterns, 
Mary Silber, Punit Gandhi, and 
Lily Liu build upon an existing 
fast-slow switching model that 
contains fast hydrological pro-
cesses and slow biomass dynam-
ics. Lakshmi Chandrasekaran 
reports on this research.

8  LS24 Panel Overviews 
Industry and Government 
Career Prospects in the 
Life Sciences

 During the 2024 SIAM 
Conference on the Life 
Sciences—which took place this 
June in Portland, Ore.—a panel 
of five researchers from indus-
try and national laboratories 
reflected on their personal career 
trajectories, commented on the 
necessary background knowl-
edge and skillsets for life sci-
ence projects, and offered advice 
to junior scientists who are 
seeking employment in the field.
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The Geometry of the Neuromanifold
By Kathlén Kohn

Machine learning with neural networks 
works quite well for a variety of 

applications, even though the underlying 
optimization problems are highly noncon-
vex. Yet despite researchers’ attempts to 
understand this peculiar phenomenon, a 
complete explanation does not yet exist. A 
comprehensive theory will require interdis-
ciplinary insights from all areas of math-
ematics. In particular and at its core, this 
phenomenon is governed by geometry and 
its interplay with optimization [2].

The neuromanifold is a key player in the 
optimization problem of training a neural 
network. A fixed neural network architec-
ture parametrizes a set of functions, wherein 
each choice of parameters gives rise to an 
individual function. This set of functions 
is the neuromanifold of the network. For 
instance, the neuromanifold in Figure 1 
is the set of all linear maps  

3 2®  with 
rank at most one. The neuromanifold in this 
simple example is a well-studied algebraic 
variety, but it suggests several tough ques-
tions for real-life networks: What is the 
geometry of the neuromanifold? What does 
it look like? And how does the geometry 
affect the training of the network?

Let us explore another simple example 
of geometry’s ability to govern optimiza-
tion. Imagine the neuromanifold as a full-
dimensional subset of n  that is closed in 
the usual Euclidean topology (see Figure 
2a). In a supervised learning setting, we 
provide some training data that is repre-
sented as a point in the ambient space n. 
Independent of the choice of loss function 
to be minimized, only two scenarios can 
occur during network training: (i) If the 
data point is inside the neuromanifold, then 
that point is the global minimum; or (ii) if 
the data point is outside of the neuromani-
fold, then the global minimum lies on the 
neuromanifold’s boundary. These scenarios 
have practical consequences. If we can test 
a point’s membership in the neuromanifold, 
we can hence reduce the number of optimi-
zation parameters by constructing a smaller 
network that only parametrizes the bound-
ary of the original neuromanifold.

This behavior changes drastically when 
the neuromanifold is a lower-dimensional 
subset of its ambient space n. Suppose 

that the neuromanifold is a closed, two-
dimensional disk inside 3, and the loss 
function we want to minimize is the stan-
dard Euclidean distance from a given data 
point. In this case, the global minimum for 
data points inside the cylinder over the disk 
will be in the (relative) interior of the neu-
romanifold, while the minimum for all other 
points will fall on the (relative) boundary 
(see Figure 2b). When we alter the loss 
function, the cylinder changes its shape — 
which can be challenging to understand.

The boundary points of the neuromani-
fold are not the only interesting points that 
can become more exposed during training. 
A neuromanifold often has singularities: 
points at which it does not look locally like 
a regular manifold. For instance, imagine 
the neuromanifold as the plane curve in 
Figure 3 (on page 4), which has one singu-
larity: a cusp. Figure 3 illustrates the data 
points whose global minimum is the cusp 
during the minimization of the Euclidean 
distance. This set of data points has a posi-
tive measure, which means that the cusp is 
the global minimum with positive probabil-
ity over the data. On the contrary, any other 
fixed nonsingular point on the curve is the 
minimum with probability zero.

Of course, the neuromanifolds of actual 
neural networks are more complicated than 
these toy examples. Their boundary points 
and singularities are difficult to describe, 
but—as in the previous examples—they are 
important for understanding neural network 
training. In the context of these optimization 
properties, an additional layer of complex-
ity arises because the network training does 

not occur in the space of func-
tions where the neuromanifold 
lives, but rather in the space of 
the parameters. Different net-
works can yield the same neu-
romanifold, but they param-
etrize that neuromanifold in 
distinct ways. Such parametri-
zation often induces spurious 
critical points in parameter 
space that do not serve as crit-
ical points on the neuroman-
ifold in function space [7].

Among the easiest network 
architectures to study are fully 
connected linear networks. 

This architecture has no activation function, 
and all neurons from one layer are con-
nected to all neurons in the next layer. As in 
Figure 1, the neuromanifold of such a net-
work is an algebraic variety (i.e., a solution 
set of polynomial equations) that consists of 
low-rank matrices. Though it has no bound-
ary points, it does have singularities (i.e., 
matrices of even lower rank). Depending 
on the loss function, these singularities can 
be critical points with positive probability 
(see Figure 3, on page 4). Along with the 
spurious critical points in parameter space, 
they play a crucial role in the analysis of the 
convergence of gradient descent [5].

In a linear convolutional network, not 
all neurons between neighboring layers 
are connected, and several edges between 
neurons share the same parameter. More 
concretely, this type of network param-
etrizes linear convolutions that themselves 
are composed of many individual con-
volutions: one for each network layer. 
For instance, a linear convolution on one-
dimensional signals is a linear map wherein 
each coordinate function takes the inner 
product of a fixed filter vector with part of 
the input vector (see Figure 4, on page 4). 
The composition of such convolutions in 
a neural network is equivalent to the mul-
tiplication of certain sparse polynomials. 
And unlike the fully connected case, this 
network’s neuromanifold is typically not an 
algebraic variety. Instead, it is a semi-alge-
braic set — i.e., the solution set of polyno-
mial equations and polynomial inequalities 
(like the disk in Figure 2b) [3]. Moreover, 
the neuromanifold is closed in the standard 
Euclidean topology. It typically has a non-
empty (relative) boundary whose relevance 
for network training depends on the net-
work architecture, and particularly on the 
strides of the individual layers.

The stride of a linear convolution on one-
dimensional signals measures the speed at 
which the filter moves through the input 
vector. If the linear convolutions in all 
network layers have stride one, the neuro-
manifold is a full-dimensional subset of an 
ambient vector space with no singularities 
(see Figure 2a). Its boundary points often 
manifest as critical points, and spurious 
critical points also frequently appear [3].

If the linear convolutions in all network 
layers have strides that are strictly larger 
than one, the dimension of the neuro-
manifold is smaller than the dimension of 
the smallest vector space that contains it 
[4]. The neuromanifold typically has both 
singularities and boundary points, but—in 
contrast to all of the other network archi-
tectures that we described—they almost 
never appear as critical points when we 
train the network via squared error loss 
(under mild assumptions). More concrete-
ly, in the presence of a sufficient amount 
of generic (i.e., slightly noisy) data, all 
nonzero critical points of the squared error 
loss are nonsingular points in the (relative) 
interior of the neuromanifold [4].

In addition, no nonzero spurious criti-
cal points are present in parameter space, 
which allows us to describe and count all 
critical points via algebraic methods in 
function space [6]. Ultimately, the behavior 

Figure 1. A neural network without an activation function. 
The parameters ( , , , ,a b c d  and e) give rise to a linear func-
tion  

3 2®  of rank one, namely ( , , ) ( ( ),x y z d ax by cz + +  
e ax by cz( )).+ +  Figure courtesy of the author.

Figure 2. Optimization on a Euclidean closed subset of n . 2a. Full-dimensional subset. 2b. 
Lower-dimensional subset. Figure courtesy of the author.

See Neuromanifold on page 4
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novel symmetry phenomena in networks of 
coupled oscillators [7-10].

The bifurcations in a vibration-driven 
array of pendulums with alternating lengths 
serve as one such example (see Figure 1, 
on page 1) [8, 10]. The dynamics of this 
system are governed by

                   

 q qi i=− −0 1.

1 1 4

1 1

2+ − +

− −
+
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(1)           
 
where qi is the angle of the ith pendulum 
with respect to the vertical direction, ad  
is the driving amplitude, wd  is the driving 
frequency, and D is the alternating offset 
length. The attracting state for a small driv-
ing amplitude corresponds to all pendulums 
in the vertical position (see Figure 1a, on 
page 1). This steady state’s stability is 
determined by the Floquet multipliers of 
the stroboscopic map between consecutive 
driving periods. For an increasing driving 
amplitude ad , one might expect (based on 
previous studies of Faraday waves) that the 
pendulums will respond in a subharmonic 
fashion and oscillate at half the driving 
frequency, ultimately forming a limit cycle. 
Such a response does indeed occur for a 
range of driving frequencies (see Figure 1b, 
on page 1). However, for other driving fre-
quencies, the first bifurcation that the sys-
tem encounters is a direct transition from a 
fixed point to an invariant torus (see Figure 
1c, on page 1) [10]. We can interpret the 
latter as a continuous form of a Neimark-
Sacker bifurcation, not to be confused with 
the torus bifurcation (i.e., the torus’ emer-
gence from a limit cycle). For the system in 
(1), this counterintuitive bifurcation yields 
an anharmonic response in which the pendu-
lums oscillate at frequencies that are incom-
mensurate with the driving frequency wd .

1

From a symmetry perspective, the alter-
nating structure of the pendulum lengths 
partially breaks the translational symme-
try, which manifests as a band gap in 
the dispersion relation between the wave 
modes’ frequencies and the wavelengths 
for the corresponding undriven system. The 
anharmonic response occurs precisely when 
the system is driven at frequencies within 
this band gap [10], which suppresses the 
usual subharmonic response. The underly-
ing mechanism is a coresonance—wherein 
two wave modes mix in order to resonate 
with the driving frequency—that happens 
when the frequencies of the wave modes 
differ by an integer multiple of the driving 
frequency. Since this condition is typi-
cally satisfied when the individual wave 
mode frequencies are incommensurate with 
the driving, it provides a simple criterion 
for the driving frequencies — leading to 
the anharmonic response and the corre-
sponding response frequencies. We can 
use this criterion to continuously tune the 
response frequencies by varying the driving 
frequency. Another consequence of band 

1 See the online version of this article for 
an animation of the bifurcations that lead to 
the anharmonic response.

gaps is the formation of localized states2 
(gap solitons), which arise from secondary 
bifurcations that themselves emerge from 
subcritical primary instabilities [8]. These 
secondary bifurcations in the pendulum 
array—which are pitchfork and transcriti-
cal bifurcations—lead to both subharmonic 
and anharmonic gap solitons (see Figure 2) 
[7]. The soliton solutions are connected by 
a complicated tangle of bifurcations that 
appear to exhibit a fractal structure that 
depends on the system symmetry. 

Recent studies have also emphasized the 
appearance of novel global bifurcations in 
systems with symmetries that involve time 
reversal. For instance, homoclinic orbits 
are structurally unstable in generic damped-
driven systems [6], but they can persist 
under one-parameter variations in autono-
mous Hamiltonian systems — which are 
invariant under time reversal. This phe-
nomenon gives rise to the well-character-
ized branches of localized steady states in 
the cubic-quintic Swift-Hohenberg equa-
tion that emanate from a Hamiltonian-Hopf 
bifurcation point [2]. Only recently has the 
community broadly appreciated the pres-
ence of other time-related symmetries in dis-
sipative systems as well, such as parity-time 
(PT) symmetries in non-Hermitian quantum 
systems [3]. These symmetries constrain the 
eigenvalues of invariant fixed points (and 
the Floquet multipliers of invariant limit 
cycles) so that they are either imaginary 
or appear in pairs with opposite real parts. 
Bifurcation points in such systems can thus 
correspond to exceptional points, where 
eigenvectors coalesce as two or more eigen-
values come together on the imaginary axis.

We recently identified related bifurcation 
phenomena that are governed by PT sym-
metries in the rings of Janus oscillators [7, 
9]. The Janus oscillators are comprised of 
pairs of detuned Kuramoto oscillators and 
defined as θ ν β θ θνi i i ii

= + − ++/ sin( )2
σ θ θνsin( ),i ii- -  where b  and s are cou-
pling constants and ni

i= −( ) ;1  an interac-
tive interface that explores the dynamics 
of Janus oscillator networks is available 
online.3 The rotationally symmetric ring 
of Janus oscillators exhibits a surprisingly 
large number of chimera states: patterns of 
coexisting synchrony and asynchrony [9]. 
It also exhibits a synchronous state wherein 

2 See the online version of this article for 
an animation of these localized states.

3 https://www.complexity-explorables.
org/explorables/janus-bunch

the even and odd oscillators form phase-
locked groups that appear via a higher-order 
bifurcation (see Figure 3a). This bifurca-
tion involves a time-reversal invariant limit 
cycle whose Floquet multipliers are all 
neutrally stable [7]. Consequently, multiple 
unstable steady states emerge from this 
higher-order bifurcation point. For larger 
coupling constants, the unstable steady 
states undergo global bifurcations of het-
eroclinic cycles (see Figure 3b) that yield 
the aforementioned chimera states.

More than a century has passed since 
researchers first attempted to classify 
bifurcations. During this time, we have 
seen considerable progress in both the 
classification of generic bifurcations with 
low codimension and the recognition of 
universality as dictated by system sym-
metry. Advancements have also connected 
bifurcations with dynamical phenomena 
in network systems. These efforts will 
certainly find important applications as 
researchers continue to strive for greater 
control of complex systems.
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Figure 2. Localized states in the pendulum array for wd= 3 4. . 2a–2b. Attracting subharmonic (2a) and anharmonic (2b) localized states that 

emerge from random initial conditions for ad= 0 045. . 2c. Bifurcation diagram for the norm | | ( ) /q q= ∫Σi i
dt2 1 2 versus the driving amplitude ad , 

which illustrates the tangle of localized limit cycles that stem from numerical continuation. The thin lines represent unstable limit cycles, the 
thick lines represent stable limit cycles, and the dots represent higher-order branching bifurcation points. Figure courtesy of Zachary Nicolaou.

Figure 3. Bifurcations in the Janus oscillator model. 3a. Kuramoto order parameter r  as a function of the coupling parameter s for β σ= . The 
solid black line indicates the stable synchronized steady state, the colored lines indicate the unstable steady states, and the dash-dotted line 
indicates the time-reversal invariant limit cycle. 3b. Bifurcations of traveling chimera solutions that emerge from heteroclinic cycles (“x” sym-
bols) and connect a subset of the unstable states from 3a (dotted and dash-dotted lines). The thick and thin solid lines respectively represent 
stable and unstable chimera states. Figure courtesy of Zachary Nicolaou.

Bifurcations
Continued from page 1
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Continued from page 1

Here,  is a loss function (such as the 
square loss) and   is a regularization term.

(iii) Use the test data to analyze the 
trained neural network’s ability to general-
ize to unseen data.

These steps lead to three particular 
research directions—expressivity, training, 
and generalization—that are associated with 
the three error components in a statistical 
learning problem: approximation error, error 
from the algorithm, and out-of-sample error.

The area of expressivity seeks to deter-
mine approximation properties of the con-
sidered class of neural networks with respect 
to certain “natural” function classes, while 
also typically accounting for the neural 
networks’ required complexity in terms of 
the number of nonzero parameters (weights 
and biases). Expressivity is perhaps the most 
thoroughly explored mathematical research 
direction of AI. An early highlight was 
the development of the famous universal 
approximation theorem in the 1980s [6]. 
This theorem shows that we can approxi-
mate any continuous function up to an arbi-
trary degree for non-polynomial activation 
functions of shallow neural networks, which 
were state of the art at the time. Intriguingly, 
recent results prove that neural networks 
can simulate most known approximation 
schemes, including approximation by affine 
systems like wavelets and shearlets [4].

The difficulty of training stems from the 
optimization problem’s high nonconvexity 
and the presence of spurious local minima, 
saddle points, and local maxima in the loss 
landscape. It is therefore particularly surpris-
ing that stochastic gradient descent seems 
to find “good” local minima in the result-
ing generalization performance. Achieving 
this success requires analysis of the loss 
landscape via a combination of training 
dynamics and techniques from areas such 
as algebraic geometry. One recent highlight 
is the phenomenon of neural collapse [11], 
wherein the class features form well-sep-
arated clusters in feature space during the 
final stages of training. This result helped 
us understand why training beyond the point 
of zero training error does not yield a highly 
overfitted model, as we might expect.

We can essentially subdivide general-
ization into two classes: functional ana-
lytic approaches and stochastic/statistical 
approaches. The first class typically aims 
for error bounds in deterministic settings. 
For example, we can precisely determine 
the generalization error of spectral graph 
convolutional neural networks for input 
graphs that model the same phenomenon, 
e.g., in the sense of graphons [9]. In con-
trast, the second class typically seeks to 
analyze the so-called double descent curve, 

which exhibits the surprisingly positive 
effects of overparameterization (see Figure 
1, on page 1). Such analysis usually relies 
on methods like the Vapnik-Chervonenkis 
dimension, Rademacher complexity, or 
neural tangent kernels [7].

A deep mathematical understanding 
of expressivity, training, and generaliza-
tion will be crucial to ensure reliabili-
ty. However, the aforementioned EU AI 
Act and other similar regulations question 
whether reliability is achievable without 
detailed information about the entire train-
ing process. These policies ask for a “right 
to explanation” for AI technologies. Such 
requests lead to the concept of explainabil-
ity, which aims to clarify the way in which 
neural networks reach decisions by deter-
mining and highlighting the main features 
of the input data that contribute to a particu-
lar decision. This ability would be highly 
useful for both explaining decisions to 
customers and deriving additional insights 
from data in scientific applications. One 
goal is to develop explainability approaches 
that enable human users to communicate 
with a neural network in the same way that 
they might communicate with a human; 
the advent of large language models has 
brought this vision one step closer to reality. 
But from a mathematical standpoint, such 
an approach must also be reliable itself. 
Several potential mathematically grounded 
explainability methods are presently avail-
able, such as Shapley values from game 
theory [13] and rate-distortion explanations 
from information theory [8].

While users are currently applying deep 
neural networks and AI techniques to a 
wide variety of problems in science and 
industry, these methods do have significant 
limitations. This research direction is unfor-
tunately not a major focus at the moment, 
but some results are still worth highlighting. 
For example, recent work demonstrated that 
the minimal number of training samples 
to guarantee a given uniform accuracy on 
any learning problem scales exponentially 
in both the depth and input dimension of 
the network architecture; this means that 
learning ReLU networks to high uniform 
accuracy is intractable [2]. In 2022, another 
study analyzed the problem of running 
AI-based algorithms on digital hardware 
(like graphical processing units) that is 
modeled as a Turing machine, whereas the 
problems themselves are typically of a con-
tinuum nature [5]. Unfortunately, this dis-
crepancy makes various problems—includ-
ing inverse problems—noncomputable and 
causes serious reliability issues. At the same 
time, other results indicate that Blum-Shub-
Smale machines—which relate to innova-
tive analog hardware, such as neuromorphic 
chips or quantum computing—could sur-
mount this obstacle [3]. Such hardware will 

hopefully also overcome the acute concern 
of energy consumption by digital hardware 
(see Figure 2), which is a key item in the 
U.S. CHIPS and Science Act.4

To summarize, unreliability is one of the 
most serious impediments in the develop-
ment of AI technology, and many areas of 
mathematics will help address this compli-
cation. Furthermore, the automatic verifica-
tion of properties that are legally required 
for AI-based approaches is only attainable 
through a mathematization of terms like 
the “right to explanation.” AI reliability is 
hence inextricably linked to mathematics, 
ultimately creating very exciting research 
opportunities for our community.
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of critical points for linear convolutional 
networks with all strides larger than one is 
more favorable than that of linear networks 
that are fully connected or convolutional 
with stride one; this is because the latter 
networks commonly have nontrivial spuri-
ous and singular/boundary critical points, at 
which gradient descent can get stuck.

In conclusion, we can drastically change 
the geometry of a neuromanifold by vary-
ing the architecture of its neural net-
work. For the simple architectures that 
we describe here, the neuromanifold is a 
stratified manifold that consists of low-
rank matrices/tensors or reducible polyno-
mials. Its geometry governs the optimiza-
tion behavior during network training. We 
have demonstrated the impact of replacing 
fully connected layers with convolutional 

layers in linear networks; future 
work will reveal the correspond-
ing effect on nonlinear networks. 
Interested researchers can use 
algebro-geometric tools [2] to 
explore algebraic activation func-
tions, such as the rectified linear 
unit [8] or polynomial activation. 
The study of other activation func-
tions will require analytic tech-
niques and collaborations between 
several mathematical areas.
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Figure 4. The filter ( , , )a b c  moves with stride two through a 
vector of length seven and yields a linear convolution  
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Mathematics in Politics and Governance. 
By Francisco J. Aragόn-Artacho and Miguel 
A. Goberna. Springer Nature, Cham, 
Switzerland, April 2024. 220 pages, $49.99.

Let me be perfectly clear (as politicians 
like to say, while often doing quite 

the opposite): Mathematics in Politics and 
Governance is not a perfect book. Several 
things about it—not many, but a few—con-
cerned me. And yet … if I had to select 
just one mathematics book to take with 
me on a two-week sea cruise—on a ship 
with no library of mystery novels to dis-
tract me—and I wanted a text that would 
be challenging, informative, and intimately 
connected to the real world, this would be 
the one. Written by Spanish academic math-
ematicians Francisco Aragόn-Artacho and 
Miguel Goberna, Mathematics in Politics 
and Governance offers numerous, quite spe-
cific examples (names are named!) of how 
the disparate worlds of hard-nosed, rigorous 
mathematical reasoning and soft, hand-wavy 
policymaking need not be mutually exclu-
sive. To that end, the book is loaded with 
true-story politics, historical anecdotes, and 
lots of solid analyses that assume reader 
familiarity with college-level math.

The text opens with a story about U.S. 
President Abraham Lincoln. Lincoln admit-
ted that he simply could not understand 
what it meant to demonstrate something 
during his early studies of the law; it wasn’t 
until he mastered Euclid’s geometry that 
he fully grasped the concept. The authors 
point out that most politicians typically 
remain in Lincoln’s earlier, limited state of 
understanding and only possess a minimal 
knowledge of mathematics. Of course, there 

The application of math to societal prob-
lems likely began with the development of 
geometry; for instance, people presumably 

needed to re-establish prop-
erty boundary lines after the 
annual flooding of the Nile. 
While that particular example 
is not in the book, the authors 

do present an interesting alternative illustra-
tion with the ancient Dido’s problem: Given 

a city to be built on a 
river’s straight shore-
line, what curve of 
a fixed length (with 
its endpoints on the 
shoreline) includes 
the greatest area? 
The answer is of 
course a semicircle, 
and Aragόn-Artacho 
and Goberna dis-
cuss Jakob Steiner’s 
famous 1842 proof 
that uses only sim-
ple geometric argu-
ments. They also 
demonstrate that 
town planners actu-
ally knew about this 
solution much ear-
lier, as evidenced by 
a map of the German 
city of Cologne 
along the Rhine that 
is dated to 1800. The 

semicircle boundary is clearly visible.
From this point on, the book’s math 

content becomes a bit more advanced. 
Commentary about various mathematical 
areas is embedded in specific examples of 

political scenarios that are generally pre-
sented as problems that optimize an objec-
tive function by some criteria. These scenar-
ios span a broad swath of human concerns: 
healthcare, energy pricing, the allocation of 
scarce resources, and numerous other sub-
jects where policy decisions are routinely 
made by politicians who may or may not 
understand the associated analytics. Linear 
programming and game theory in the con-
text of nuclear war strategy lend themselves 
to particularly interesting dialogues. It may 
be asking too much for presidents to be 
familiar with such esoteric concepts, but 
we should all hope that several members of 
their support staff are math literate.

The appeal of Mathematics in Politics and 
Governance is greatly enhanced by numer-
ous biographical sketches and photographs 
of the featured mathematicians. Also com-
pelling is the authors’ willingness to com-
ment on some less-than-flattering episodes, 
such as the 1975 Nobel Economics Prize 
committee’s outrageous snub of George 
Dantzig, despite his pioneering work on 
the simplex algorithm. Even the two men 
who shared the prize were stunned by the 
committee’s disregard for Dantzig, and both 
mentioned their missing colleague in their 
acceptance speeches. Up to three individuals 
can receive the prize, so Dantzig’s exclusion 
felt like a significant rebuff. It thus strikes 
me as somewhat ironic that Dantzig’s photo 
is missing from the book. Also missing 
is any mention of Richard Bellman and 
dynamic programming. I realize that it is 
unfair to criticize a small book of only 200 
or so pages for not including everything, but 
Bellman’s omission seems like an oversight.

are rare exceptions. U.S. President James 
Garfield discovered an elegant new proof of 
the Pythagorean theorem while he was still 
a congressman, and former 
German Chancellor Angela 
Merkel holds a doctorate in 
quantum chemistry.

At the other end of the math-
ematical literacy spectrum, Mathematics 
in Politics and Governance offers numer-
ous examples of 
politicians who 
fail to comprehend 
mathematics (or, 
depending on one’s 
level of cynicism, 
seem to purpose-
fully mislead). In 
one example, U.S. 
President Richard 
N i x o n — w h o m 
A r a gόn - A r t a c h o 
and Goberna call 
a “master illusion-
ist”—asserted in a 
formal speech that 
“the pace of infla-
tion change is slow-
ing.” As the authors 
observe, this claim 
is a subtle diversion 
from the actual price 
of goods to the third 
derivative of prices. 
Although Nixon was 
a Republican, the book has no particular 
axe to grind and we learn that Democratic 
U.S. President Barack Obama made similar 
mathematical missteps. Math illiteracy is a 
nonpartisan attribute.

The Importance of Mathematics in Political Decision-making

BOOK REVIEW
By Paul J. Nahin

Mathematics in Politics and Governance. 
By Francisco Aragόn-Artacho and Miguel 
Goberna. Courtesy of Springer Nature.

See Political Decision-making on page 8

Does the air in a rolling tire rotate at the 
same speed as the tire, assuming that 

the tire has been rolling with constant speed 
for some time? This question is not quite as 
silly as it seems because the lower part of the 
tire is flattened by the road, which means that 
the air in the tire is continuously deformed.

Flow Induced by Squeezing
Imagine squeezing a tire in the vicinity 

of q q= 0, thus expelling the air particles 
away from q0 and moving them towards 
the diametrically opposite point θ π0 + . 
The simplest imaginable expression for the 
resulting speed is

   q q q= −a sin( ),0   (1)

where q stands for the angular coordinate of 
an air particle. We can think of the tire as a 
thin tube, like a bike tire. This is certainly 
not an accurate model, but it provides an 
excuse for some possibly amusing math-
ematical observations.

Flow in a Rolling Tire 
In Figure 1, a rolling tire is simultane-

ously squeezed in the forward part of the 
flattened patch (segment OB) and released 
in the rear part (segment AO). According to 
(1), the resulting air motion is given by

q q q q q= − − − =a asin( ) sin( )
0 1

2a msin( ).q q-

Estimating the Drift for Large w
The drift1 for solutions of (2) for large w 

turns out to be
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So, the air in our utterly idealized tire cir-
culates backwards relative to the tire with 
angular velocity »1 2/ .w  For the ground 
observer, the air in the rolling tire rotates 
with the tire, but not quite as fast — name-
ly, with the angular velocity w w-1 2/ . 
Equivalently, the “cork” on the wave in 
Figure 2b drifts slowly to the right with 
speed 1 2/ w  when w is large. The faster the 
wave, the slower the drift.

Proof of (3)
A routine proof of (3)—which I omit 

so as not to bore the reader—involves 
putting oneself into a moving frame by 
setting ϕ θ ω= − t  as the new dependent 
variable; doing so obtains an autonomous 
ordinary differential equation (ODE) that 
we can then solve in quadratures before 
expanding the result in powers of w-1. This 
method works for any ODE of the form 
θ θ ω= −v t( )—where v is a periodic func-
tion—and shows that the speed of the drift is

v2

w

1 This is known as Stokes drift.

And since the tire is rolling, θ ωm t=  (the 
ground rotates counterclockwise in the 
tire’s frame, as in Figure 1). By taking 
2 1a =  to minimize mess, we then have 
an angular velocity of air particles in the 
wheel’s reference frame:

    θ θ ω= −sin( ).t   (2)

Figure 2 offers some alter-
native interpretations of (2):

1. q moves down the gra-
dient of the time-dependent 
potential V t t( , ) cos( ).θ θ ω= −  
This movement is loosely akin 
to a cork bobbing on a wave 
that is traveling to the right with speed w. 
Our initial question amounts to estimating 
the drift of the cork.

2. Consider a “bicycle,” i.e., a moving 
segment RF  of fixed length 1 in the plane. 
The velocity of the “rear” R  is constrained 
to lie along RF  so that R cannot “sideslip.” 
Let us guide the “front” F  around the circle 

Does Air Rotate with the Tire?

Figure 2. Alternative interpretations of (2). 2a. Equation (1) gives the flow on the circle. 2b. Equation (2) is the gradient descent flow of the sinu-
soidal potential V t= −cos( )θ ω  that is sliding with speed w. 2c. q is the angle between the “bike” RF  and a fixed direction as the front F  moves 
in a circle of radius w-1 with angular velocity w. Each zigzag of R corresponds to one trip of F  around the circle. Figure courtesy of the author.

See Does Air Rotate on page 7

of radius w-1, with angular velocity w and 
unit speed F. The angle q  that is formed by 
RF  with a fixed direction then satisfies (2).

A naive look at (2) may suggest zero 
drift, since the average of the right side with 
respect to both t  and q is zero. However, the 
“bike” interpretation in Figure 2 is a con-
vincing indication that there is drift, i.e., that 
q increases with a nonzero average speed.

Another convincing no-
calculation argument for non-
zero drift comes from looking 
at the limiting case of small 
w (the opposite of the one in 
which we are interested). In 
this case, the wave in Figure 

2 moves slowly and a typical solution is 
trapped by the potential’s slowly moving 
well. The solution thus has the same drift 
w as the wave, suggesting that the drift is 
positive for all w — including w1. For 
large w, however, the drift speed is actually 
a decreasing function of w (in contrast to 
the case of small w).

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. The wheel is rolling to the right. In the tire’s frame of reference, the flattened section travels counterclockwise. This tire is under-
inflated for illustrative purposes. Figure courtesy of the author.
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Modeling the Impact of Rainfall                   
Variability on Vegetation in Drylands
By Lakshmi Chandrasekaran

The global population continues to 
face the detrimental effects of food 

insecurity and climate change, with an 
estimated 1.3 billion people having expe-
rienced food insecurity in 2022 [4]. At 
the 2023 United Nations Climate Change 
Conference1 (COP28)—which took place 
last December in Dubai, the United Arab 
Emirates (UAE)—more than 150 coun-
tries endorsed the COP28 UAE Declaration 
on Sustainable Agriculture, Resilient Food 
Systems, and Climate Action.2 This global 
commitment aims to better align countries’ 
efforts to manage food systems and agricul-
ture and adapt to the changing climate.

Given the urgency of this issue, exist-
ing mathematical models investigate the 
impact of changing rainfall levels on some 
of the driest regions on Earth. The Horn of 
Africa is a particularly well-studied loca-
tion, as the distinct self-organized spatial 
patterns in this region are easily visible 
via satellite images. In fact, applied math-
ematician Mary Silber of the University of 
Chicago has employed mathematical mod-
els of terrain topography3 to investigate the 
shape of vegetation patterns and their slow 
dynamics in drylands [1].

Previous modeling studies use mean 
annual rainfall levels as a bifurcation 
parameter to explore vegetation patterns on 
decadal (and longer) timescales. However, 
this approach does not resolve other fea-
tures of rainfall, such as the intensity and 
timing of storms and their variability on 
short timescales. “These are fast pro-
cesses—maybe hours—over short times, 
and we’re simulating things on a year-
long timescale,” Punit Gandhi of Virginia 
Commonwealth University (a frequent col-
laborator of Silber) said. 

To better associate mathematical models 
with the natural timescale of these pro-
cesses, Silber, Gandhi, and Lily Liu (who 
was an undergraduate at the University of 
Chicago during this project and is currently 
a Ph.D. student at New York University) 
built upon an existing fast-slow switching 
model that contains fast hydrological pro-
cesses and slow biomass dynamics [2]. The 
model’s fast subsystem is represented with 
partial differential equations:

1 https://unfccc.int/cop28
2 https://www.cop28.com/en/food-and-

agriculture
3 https://sinews.siam.org/Details-Page/

modeling-vegetation-patterns-in-vulnerable-
ecosystems
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where H  is the surface water height, W  is 
the soil water column height, and B  is the 
biomass density. Here, H X T( , ) evolves on 
a short timescale of rain events, B X T( , ) 
evolves on a long timescale between rain 
events, and W X T( , ) corresponds to sev-
eral processes that act on both fast and 
slow timescales. The first, second, and third 
terms on the right side of (1) respectively 
denote precipitation, soil infiltration, and 
advection. The infiltration rate I  is modeled 
as a function of surface water height, soil 
water column height, and biomass density. 
The important positive feedbacks between 
biomass and soil moisture distribution come 
from I  (which is higher when biomass is 
present) and the flow speed function V  
(which is slower when vegetation is present, 
allowing more time for infiltration).

Biomass and soil water evolve on a 
slow timescale that is associated with plant 
growth; they are governed by
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This subsystem evolves the soil water 
W X T( , ) and is initialized by the post-
storm distribution W X( ) and biomass den-
sity B X T( , ). The two terms on the right 
side of (3) denote evapotranspiration and 
diffusion, the parameter L represents the 
evaporation rate, and GB  signifies the tran-
spiration rate. In (4), the three right terms 
respectively denote growth, death, and dis-
persal. The death rate M  is constant and the 
dispersal is modeled via linear diffusion. 
Transpiration dictates the biomass growth 
rate, whose efficiency is set by C .

In a recent paper that published in the 
SIAM Journal of Applied Dynamical 
Systems4 last year, Gandhi, Liu, and Silber 

4 https://www.siam.org/publications/journals/
siam-journal-on-applied-dynamical-systems-siads

expanded this existing framework to create 
a mathematical model that explores rainfall 
pattern variability over shorter timescales 
and its corresponding impact on the forma-
tion of vegetation patterns in dry ecosys-
tems [3]. The climatology of the Horn of 
Africa inspired this new pulsed-precipita-
tion model, which represents rainstorms as 
instantaneous “kicks” to the soil water — i.e., 
Dirac delta function impulses that deposit a 
uniform layer of water on the surface.

Though they retained the same reaction-
diffusion model in the slow subsystem, 
the team made two significant changes to 
the fast subsystem that allowed them to 
determine the output soil moisture distribu-
tion W X( ) in a closed-form expression. 
First, the term P T( ) in (1) now signifies 
rain events that instantaneously deposit a 
uniform water column of height H

0
. The 

timing and strength of these precipitation 
pulses are the random variables in the sto-
chastic simulations. And second, the infil-
tration rate I  is now given by

 
 
I H B X K

B X fQ
B X Q

H
I

( , ( ))
( )
( )

( ).≡
+
+










Θ

(5)

The Heaviside unit step function Q( )H  
indicates that the infiltration is independent 
of soil saturation and is modeled as a simple 
on-off switch in the presence or absence of 
surface water, assuming that Θ( ) .0 0=

Using these modifications, the research-
ers reformulated the fast-slow model to a 
pulsed-precipitation framework in which 
the rainstorm instantaneously 
deposits water on the surface 
at a fast timescale, after which 
an intervening dry period 
evolves on a slow timescale.
This new model reveals inter-
esting insights about rainfall 
patterns. Figure 1a illustrates 
the time series for periodic 
rainfall during the last two 
years of a 100-year simula-
tion. Figure 1b depicts spatial 
profiles—derived from the 
simulation’s final year—that 
compare soil water and bio-
mass given the farthest dis-
tance that surface water trav-
els before infiltration during 
a rainstorm. Figure 1c then 
offers a time series of total 
annual rainfall, along with the 
five-band spacing of annu-
ally averaged soil water and 
biomass. Similarly, Figure 2 
presents the simulated results 
for stochastic rainfall in the 
form of a stochastic travel-

ing wave solution that fluctuates based on 
season and rainfall variability.

Figure 3 compares patterns under period-
ic and stochastic rainfall in a smaller domain 
than Figures 1 and 2. The team changed the 
size of the periodic domain L to enforce dif-
ferent band spacings and restricted L to less 
than 250 meters (m). When L  ranges from 
100-167 m or falls under 59 m, the simula-
tions do not exhibit a traveling wave state 
with periodic rainfall. But for these values 
of L  in the case of stochastic rainfall, the 
simulations do show a stochastic traveling 
wave. “It was surprising to find that under 
periodic rainfall, we sometimes saw crazy 
behavior,” Gandhi said.

Gandhi and his collaborators utilized lin-
ear stability analysis techniques to explain 
these differences. Using the periodic rain-
fall scenario with uniform vegetation in 
the pulsed-precipitation model, they intro-
duced a small sinusoidal perturbation to the 
initial state to see whether it would grow 
into a full vegetation band. The research-
ers found that for mean annual precipita-
tion (MAP) values that were greater than 
roughly 43 centimeters, the perturbation 
dampens and yields uniform vegetation 
(see Figure 4, on page 7). But as the MAP 
decreases to lower values (which is expect-
ed in arid regions like the Horn of Africa), 
the analysis—in the presence of spatially 
periodic perturbation—reveals resonance 
tongues across multiple regions with grow-
ing vegetation patterns.

This finding proves that the regular-
ity of “artificial” periodic rainfall patterns 

Figure 1. Outcomes at the end of a 100-year simulation for periodic rainfall on a one-
kilometer domain that is sloped uphill towards the right. The mean annual precipitation is 16 
centimeters (cm) and the mean storm depth is H

0
1=  cm. 1a. Time series during the last two 

years of the simulation. 1b. Spatial profiles that are derived from the simulation’s final year. 
The vertical axis of the top panel refers to the farthest distance that surface water travels 
during a rainstorm before it infiltrates the ground at point X. The lower two panels are pro-
files for soil water and biomass. 1c. The left panel is a time series of total annual rainfall (in 
blue), with a 1 cm contribution from each rainstorm (in orange). The middle and right panels 
respectively portray the five-band spacing of annually averaged soil water and biomass. The 
heat maps indicate less to more water or biomass, with colors ranging from yellow (at 0) to 
dark blue (at 8) or dark green (at 1). Figure courtesy of [3].

Figure 2. Results at the end of a 100-year simulation with stochastic rainfall, with similar 
parameters to Figure 1. 2a. Time series during the last two years of the simulation. 2b. 
Spatial profiles of surface water travel distance, soil water, and biomass that are derived from 
the simulation’s final year. 2c. Time series of annual rainfall and spacetime plots of annually 
averaged soil water and biomass. Figure courtesy of [3].

Figure 3. Snapshots of annual rainfall, soil water, and biomass 
at different domain sizes L  for periodic and stochastic rainfall. 
In each scenario, the vertical axis spans 100 years and the 
horizontal rainfall axis spans 40 centimeters (cm). The model 
parameters are fixed at a mean annual precipitation of 16 cm 
and a mean storm depth of H

0
1=  cm. Figure courtesy of [3].

See Vegetation in Drylands on page 7
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could lead to spatial resonance that in turn 
controls the preferred spacing of the veg-
etation bands. Specifically, vegetation band 
spacing is determined by the distance that 
surface water travels in the time that it takes 
for the precipitation pulse to fully infiltrate 
the soil. “The important thing to note is that 
the surface hydrology, which happens on 
timescales of seconds or minutes during 
storms, controls this large-scale vegetation 
pattern that evolves over decades,” Gandhi 
said. Further simulations revealed that even 
during stochastic rainfall, the distance that 
water travels on the surface is a key compo-
nent of pattern formation.

The pulsed-precipitation model reveals 
many interesting MAP insights, but a major 
question prevails: How will climate change 
influence these patterns? To investigate, the 
collaborators explored the implications of 
storm depth and rainy season duration on 
vegetation patterns. They found that longer 
rainy seasons—which correspond to shorter 
dry intervals, during which the biomass can 
survive without rain—could increase the 
vegetation’s mean survival time. Similarly, 
more frequent but less intense storms—
which are associated with a reduction in 

seasonal rainfall variability—could help 
prevent vegetation collapse.

The disappearance of spatial resonance 
with stochasticity in the rainfall model 
presents an intriguing mathematical chal-
lenge that merits further exploration. Many 
math modelers study vegetation patterns in 
vulnerable ecosystems under a changing 
climate, but Silber notes that this focus 
alone is not enough. “We also need to be 
thinking about water because it’s a tightly 
coupled system,” she said. “You have to 
think about the resource and the time in 
which water is acting.”

While previous vegetation models have 
drawn tremendous inspiration from his-
torical papers, Gandhi, Silber, and Liu’s 
efforts highlight the vast potential for inter-
disciplinary collaborations. For instance, 
their current work could spur investiga-
tions into a variety of research problems, 
such as the use of mathematical models to 
inform measurable quantities for remote 
sensing of moisture, or model validation 
via feedback from field-based hydrology 
monitoring efforts. Most importantly, how-
ever, this study highlights the intricate inter-
play between the timescales of fast-acting 
hydrological processes and slowly evolving 
dryland vegetation patterns. A thorough 
understanding of these interactions may 

help future researchers assess the resilience 
of dryland ecosystems.
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to the leading order.2 This expression indeed 
agrees with (3) for v = sin.  

Here, instead, is a shortcut to (3) that uses 
the following fact about “bicycles,” i.e., unit 
length segments RF  where the velocity of 
R is constrained to the direction RF : Let 
the front F  trace a closed path of small 
diameter d  enclosing area A and returning 
to the starting point. The segment RF  then 
rotates around F  through the angle

   ∆θ δ= +A o( ).2    (4)

The Prytz planimeter (also called the 
hatchet planimeter)—a simple device that 
measures areas—is based on this observa-
tion. Details about this interesting topic are 
available in [1].

Now, (4) yields (3) almost immedi-
ately. Indeed, one revolution of F  around 
the circle in Figure 2 (on page 5) results 
in ∆θ π= +r o r2 2( ), where r =1/ .w  
And the time of one revolution of F  is 
∆t=2π ω/ , since  The speed 
of the drift is thus

which confirms (3).
I would like to conclude with two puzzles 

for possible amusement.

Puzzles 
Puzzle 1: The speed of the drift is an 

increasing function of w for small w and a 
decreasing function for large w. Which w 
maximizes the drift speed?

Puzzle 2: On another note, the subject of 
bikes came up twice already in this article: 
first in the initial question and second (in a 
completely different way) in Figure 2 (on 
page 5). This gives an excuse for another 
bike tire question that came to mind after 
I saw a bike at the bottom of the Limmat 
river in Zurich, Switzerland. Some miscre-
ant probably threw the bike in, and I must 
reluctantly acknowledge that anonymous 
vandal’s contribution; without him, this 
puzzle would not have arisen.

Assume that the air pressure in the bike 
tire was initially 2 atmospheres before it 
was thrown from the bridge and sunk to 
the depth of 10 meters.3 Now the tire is 
squeezed from the outside by an additional 
pressure of 1 atmosphere. With this added 
compression, is the new pressure inside the 
tire 2 1 3+ =  atmospheres?

References
[1] Foote, R., Levi, M., & Tabachnikov, 
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Figure 4. Results from the linear stability 
analysis. Figure courtesy of [3].
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Political Decision-making
Continued from page 5

Finally, one glaring problem—which is 
particularly irritating because it would have 
been so easy to avoid—is the complete 
absence of proper names in an already ane-
mic index. During the copyediting phase, 
Springer provides software support that 
automatically generates an index if authors 
simply submit a list of entries. Why Aragόn-
Artacho and Goberna did not include proper 
names is a mystery to me.

Yet despite these minor grumblings, 
Mathematics in Politics and Governance is 
well worth a read. Just take my advice and 
pencil proper names into the index — the 
next time you read it and want to look up 
Dantzig or anybody else, you’ll be very 
glad that you did!

Paul J. Nahin is a professor emeritus of 
electrical engineering at the University of 
New Hampshire. He is the author of 25 books 
on mathematics, physics, and electrical engi-
neering; his latest book, How to Compute It 
When You Can’t Solve It, will be published 
by Princeton University Press in late 2025.

By Lina Sorg

The evolving nature of research and 
development in industry and govern-

ment presents many exciting opportunities 
for applied and computational mathemati-
cians who work in the life sciences. This 
broad subject area addresses a multitude of 
problems at various spatial, temporal, and 
organizational scales, with applications that 
range from biology, medicine, and epide-
miology to climate change and even social 
justice. During the 2024 SIAM Conference 
on the Life Sciences1 (LS24)—which took 
place this June in Portland, Ore.—a panel2 
of five researchers from industry and nation-
al laboratories reflected on their personal 
career trajectories, commented on the nec-
essary background knowledge and skill-
sets for life science projects, and offered 
advice to junior scientists who are seeking 
employment. The session was moderated by 
Nessy Tania of Pfizer and included panel-
ists Sara Del Valle of Los Alamos National 
Laboratory (LANL), Elamin Elbasha of 
Merck & Co., Khamir Mehta of Amgen, 
Paul Patrone of the National Institute of 
Standards and Technology (NIST), and 
Monica Susilo of Genentech.

Although all five panelists currently enjoy 
successful careers in the life sciences, this 
particular field was not necessarily part of 
their original plans. As an undergraduate 
student, Patrone studied philosophy at St. 
John’s College, a small liberal arts institu-
tion in Annapolis, Md. After reading many 
philosophical publications about math and 
science, he realized that he wanted to con-
tribute directly to the discipline. While pur-
suing his Ph.D. in physics at the University 
of Maryland, College Park, Patrone began 
working at NIST; apart from a brief stint at 
Boeing after graduation, he has remained 
there ever since. “We have a very high-level 
view not only on science itself, but on mathe-
matics,” he said of his role as a staff scientist 
within NIST’s Applied and Computational 
Mathematics Division. “We have some of 
the best experimentalists in the world.”

Elbasha’s professional journey also 
began in a completely different area of 
study. After obtaining undergraduate and 
M.A. degrees in economics in Sudan and 
Egypt respectively, he received a scholar-
ship to the University of Minnesota and 
eventually earned a Ph.D. in agricultural 
and applied economics. Although Elbasha 
initially intended to become a professor, 
difficulties in securing an academic role 
led him to accept a position as an econo-

1 https://www.siam.org/conferences/cm/
conference/ls24

2 https://meetings.siam.org/sess/dsp_
programsess.cfm?SESSIONCODE=80678

which sets them apart from traditional 
academic institutions. She explained that 
mathematicians, physicists, computer sci-
entists, and biologists frequently collabo-
rate to generate solutions for complicated 
problems. “Most of the teams we have are 
very interdisciplinary,” Del Valle said of 
LANL. “A diverse set of ideas, diverse 
people, and diverse approaches bring about 
breakthroughs, and that’s one of the things 
I like about Los Alamos.”

Because most jobs in industry or govern-
ment involve at least some sort of multi-
disciplinary collaboration, the panelists all 
agreed that scientific and technical com-
munication skills are paramount. “Around 
80 percent of my work is writing propos-
als and papers and communicating with 
decision-makers and sponsors,” Del Valle 

said. “Being able to commu-
nicate complex terms and 
sophisticated models to a 
decision-maker or sponsor 
who does not have any sci-
entific background is key.”

Elbasha agreed, noting 
that quantitative scientists often do not uti-
lize the same frameworks as their colleagues 
from other disciplines — even though every-
one is working towards a common objective. 
“You’ll be dealing with really smart people, 
but the language is different,” he said. 
“Learning how to work within a multidisci-
plinary team is one of the best skills you can 
have in an industrial environment.”

Patrone is thankful for his liberal arts 
education, which trained him to communi-
cate effectively and ask pertinent questions 
to better understand a problem: fundamental 
skills that are remarkably valuable dur-
ing the interview process. As such, he is 
especially impressed by candidates who ask 
insightful questions, demonstrate an inter-
est in both the company and its projects, 
and can think on their feet. “I want to see 
if you have an idea about how to tackle a 
problem,” Patrone said. “The most interest-
ing questions are the ones that people don’t 
have an answer to. And if someone shows 
the initiative, that’s a good person to hire.”

When an audience member inquired 
about the role of machine learning (ML) in 
the current landscape, Del Valle confirmed 
that LANL utilizes the technology in nearly 
all of its projects to better interpret the data 
at hand. While Patrone affirmed the power 
of ML, he cautioned attendees to remain 
cognizant of the associated uncertainty pen-
alties. “Having machine learning in your 
toolbox is useful, but it’s just as important 
to try to understand it as a fundamental 
tool and recognize its limits as well as its 
strengths,” he said. In addition to ML, the 
panelists concurred that coursework in lin-
ear algebra, differential equations, computer 
programming, and statistics is equally use-
ful for industrial careers.

Next, conversation turned to top strate-
gies for finding and applying to internships 
and job openings. As a general rule, Susilo 
encouraged attendees to seek out internship 
listings on company websites and career 
portals early in the calendar year, especially 
between January and March. Patrone added 
that NIST advertises many positions—
including the National Research Council 
postdoctoral program3—on its website4 and 
collaborates with neighboring universities in 
the Washington, D.C., area to find suitable 
candidates. Merck,5 Amgen,6 Genentech,7 
and LANL8 similarly publicize perma-
nent openings, postdoctoral opportunities, 

3 https://www.nist.gov/iaao/academic-
affairs-office/postdoctoral-students-nrc-postdocs

4 https://www.nist.gov/itl/math/how-work-us
5 https://jobs.merck.com/us/en
6 https://careers.amgen.com/en/search-jobs
7 https://careers.gene.com/us/en
8 https://lanl.jobs

and summer programs online. But while 
online sources—including platforms such 
as LinkedIn—are typically the best places 
to find individual job listings, it is beneficial 
to have an internal contact when it comes 
to actually submitting an application; other-
wise, one’s file might get lost in the shuffle.

If job seekers do not personally know 
someone at a company of interest, Del 
Valle encouraged them to reach out to 
employees with whom they would like 
to work prior to submitting their materi-
als. “We get 1,000 applications a day, 
maybe more,” she said of LANL. “It’s 
very overwhelming to look through all of 
those applications.” However, Del Valle 
acknowledged that she cannot respond to 
all of the inquiries that she receives due 
to their sheer volume; as such, she is more 
likely to reply if a message comes from a 
trusted contact or personal acquaintance on 
behalf of a prospective applicant.

SIAM plays a critical role in helping 
junior scientists make valuable connections 
that grow their networks, set them up for 
long-term success, and increase their desir-
ability in the job market. Mehta urged 
audience members to attend SIAM Career 
Fairs,9 which allow students and early-
career researchers to forge direct connec-
tions with actively recruiting companies. 
Elbasha noted that Merck has hired employ-
ees via postings on SIAM’s Career Center,10 
as well as through similar pages of other 
mathematical and scientific societies. And 
of course, conferences like LS24 serve as 
prime occasions for early-career attendees to 
get acquainted with more senior colleagues.

When crafting application documents, 
individuals should personalize their cover 
letters as much as possible, avoid generics, 
and demonstrate their skills’ relevancy to 
the job requirements. Candidates should 
also show that they are excited about the 
position and understand its responsibili-
ties and logistics. Finally, Patrone remind-
ed listeners that enthusiasm goes a long 
way — especially because most positions 
offer some amount of on-the-job training. 
“Nothing beats hunger,” he said. “I’ve seen 
people come from behind because they 
really wanted something. People can have 
skills, but if you don’t have hunger then 
you won’t succeed.”

Lina Sorg is the managing editor of 
SIAM News.

9 https://www.siam.org/careers/resources/
siam-career-fairs

10 https://jobs.siam.org

mist at the Centers for Disease Control and 
Prevention: his first foray into public health.

Now with more than 25 years of experi-
ence in the pharmaceutical sector, Elbasha 
is the executive director of Health Economic 
Decision Sciences at Merck, where he 
leads a group of quantitative scientists and 
applied mathematicians who create math-
ematical models of infectious diseases and 
assess the value of vaccines. “I know I can 
make a difference,” he said. “It’s rewarding 
to know that you’re improving someone’s 
life and making it safer.”

Susilo shares the same sentiment about 
her position as a modeling and simula-
tion scientist in the field of clinical phar-
macology, which supports clinical trials 
and identifies doses/regimens that are both 
safe and efficacious. At Genentech, she 
routinely collaborates with 
clinicians and safety scien-
tists on all aspects of drug 
development. “I love that I’m 
applying what I know from 
simulations and working with 
everyone on one goal: to get 
the best dose for the patient,” Susilo said.

Susilo’s introduction to clinical pharma-
cology marked a significant shift from her 
previous studies. Prior to a postdoctoral 
appointment at Pfizer, she was completely 
unfamiliar with mathematical pharmacol-
ogy — having completed her Ph.D. research 
on the mechanics of soft tissue. Luckily, 
she found that much of her mechanical 
engineering education was transmissible to 
a pharmacological career.

Mehta, who holds a degree in chemical 
engineering, concurred with Susilo about 
the transferability of the engineering tool-
kit. When he was a junior researcher and 
began to think seriously about his future, he 
decided that he wanted to make a positive 
change to existing protocols. Now, Mehta 
utilizes systems models to explore drug 
development processes at Amgen. “Seeing 
whether we can make more sense of a sys-
tem by using more complex mathematics 
has been driving my work thus far,” he said.

As a senior scientist at LANL, Del Valle 
leads an interdisciplinary team that inves-
tigates infectious diseases from the level 
of differential equations to large, agent-
based simulations. These studies fall under 
the umbrella of national security, which 
is LANL’s area of focus. Del Valle ini-
tially accepted an internship at LANL as a 
Ph.D. student at the University of Iowa and 
has been there ever since. “I never really 
thought that I would end up working at a 
national lab,” she said. “I assumed I would 
teach mathematics because I thought that’s 
what most mathematicians did.”

Del Valle spoke highly of the nation-
al laboratories’ interdisciplinary nature, 

LS24 Panel Overviews Industry and 
Government Career Prospects in the Life Sciences

CAREERS IN 
MATHEMATICAL 

SCIENCES   

During a panel discussion at the 2024 SIAM Conference on the Life Sciences, which took 
place in June in Portland, Ore., researchers from industry and government settings com-
mented on their respective experiences with mathematical careers in the life sciences and 
fielded questions from the audience. From left to right: moderator Nessy Tania of Pfizer and 
panelists Elamin Elbasha of Merck & Co., Monica Susilo of Genentech, Paul Patrone of the 
National Institute of Standards and Technology, Khamir Mehta of Amgen, and Sara Del Valle 
of Los Alamos National Laboratory. SIAM photo.
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July 22–August 2, 2024 
Providence, Rhode Island, U.S.

SIAM Activity Group on Equity, 
Diversity, and Inclusion Business 
Meeting  
July 29, 2024 at 12:00 p.m. / Online 
Sponsored by the SIAM Activity Group on Equity, 
Diversity, and Inclusion

GLSIAM Meeting 2024 
October 12, 2024 
Hammond, Indiana, U.S.

SIAM Conference on Mathematics of 
Data Science 
October 21–25, 2024 
Atlanta, Georgia, U.S. 
Sponsored by the SIAM Activity Group on Data 
Science

Bulgarian Section of SIAM Annual 
Meeting 2024 
December 9–11, 2024 
Sofia, Bulgaria

ACM-SIAM Symposium on Discrete 
Algorithms 
January 12–15, 2025 
New Orleans, Louisiana, U.S. 
Sponsored by the SIAM Activity Group on 
Discrete Mathematics and the ACM Special 
Interest Group on Algorithms and Computation 
Theory

SIAM Symposium on Algorithm 
Engineering and Experiments 
January 12–13, 2025 
New Orleans, Louisiana, U.S.

SIAM Symposium on Simplicity in 
Algorithms 
January 13–14, 2025 
New Orleans, Louisiana, U.S.

SIAM Conference on Computational 
Science and Engineering 
March 3–7, 2025 
Fort Worth, Texas, U.S. 
Sponsored by the SIAM Activity Group on 
Computational Science and Engineering

SIAM International Conference on 
Data Mining 
May 1–3, 2025 
Alexandria, Virginia, U.S. 
Sponsored by the SIAM Activity Group on Data 
Science

Students and Early Career Researchers: Apply Now for Conference Support
SIAM is dedicated to giving students and early career professionals the support they need to be 
successful. The SIAM Travel Awards Program awards $240,000+ in conference travel funding yearly to 
these two groups. Apply now at siam.smapply.org/prog/travel_awards_program.
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Annual SIAM Membership Report 
As of December 31, 2023, SIAM had 12,791 members from 103 countries. Forty percent (40%) of SIAM members reside outside the United States. The 
charts on this page show information about SIAM members.

Nominations are open for the SIAM Fellows Class of 2025!
Support your profession by nominating up to two colleagues for excellence in research, industrial work, 
educational activities, or other activities related to the goals of SIAM. Class of 2025 Fellows nominations  
are being accepted at nominatefellows.siam.org until October 18, 2024.
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FOR MORE INFORMATION ON SIAM MEMBERSHIP: siam.org/membership

Nominate two of your students for free membership! 
SIAM members (excluding student members) can nominate up to two students per year for free membership.  
Go to www.siam.org/Forms/Nominate-a-Student to make your nominations.

When You Renew Your SIAM Membership This Fall...
Please consider checking the “auto-renew” box to have your membership automatically renew at the end of 2024. You can update or cancel your 
auto-renewal information and preferences any time at my.siam.org.

SIAM-Simons Undergraduate Summer Research Program Seeks Mentors
The program seeks mentors for the summer 2025 cycle. Funding covers food, lodging, travel, and stipend for 
participants and stipend for mentors. Applications to be a mentor for two students for eight weeks open in July 
and close at the end of August. Visit siam.org/simons for more information.
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booksbooks
Quality and Value in Mathematical Science Literature

FOR MORE INFORMATION ON SIAM BOOKS: siam.org/books

Algorithmic Mathematics in Machine Learning  
Bastian Bohn, Jochen Garcke, and Michael Griebel 
This unique book explores several well-known machine learning and data 
analysis algorithms from a mathematical and programming perspective. The 
authors present machine learning methods, review the underlying mathematics, 
and provide programming exercises to deepen the reader’s understanding.  
They provide new terminology and background information on mathematical 
concepts, as well as exercises, in “info-boxes” throughout the text.  Application 
areas are accompanied by exercises that explore the unique characteristics of 
real-world data sets.  
2024 / xii + 225 pages / Softcover / 978-1-61197-787-5 / List $64.00 / SIAM Member $44.80 / DI03   

A Toolbox for Digital Twins  
From Model-Based to Data-Driven 
Mark Asch 
This book brings together the mathematical and numerical frameworks needed 
for developing digital twins. Starting from the basics and moving on to data 
assimilation, inverse problems, and Bayesian uncertainty quantification, the 
book provides a comprehensive toolbox for digital twins. Emphasis is also 
placed on the design process, denoted as the “inference cycle,” the aim of 
which is to propose a global methodology for complex problems. 
2022 / xxiv + 832 pages / Softcover / 978-1-611976-96-0 / List $120.00 / SIAM Member $84.00 / MN06 

Introduction to Nonlinear Optimization  
Theory, Algorithms, and Applications  
with Python and MATLAB, Second Edition 
Amir Beck 
Built on the framework of the successful first edition, this book serves as 
a modern introduction to the field of optimization. The author provides the 
foundations of theory and algorithms of nonlinear optimization and presents 
a variety of applications from diverse areas of applied sciences. The book 
gradually yet rigorously builds the connections between theory, algorithms, 
applications, and actual implementation and contains several topics not typically 
included in optimization books. 
2023 / xii + 354 / softcover / 978-1-61197-761-5 / List $84.00 / SIAM Member $58.80 / MO32 

Numerical Linear Algebra with Julia 
Eric Darve and Mary Wootters 
This book provides in-depth coverage of fundamental topics in numerical linear 
algebra, including how to solve dense and sparse linear systems, compute QR 
factorizations, compute the eigendecomposition of a matrix, and solve linear 
systems using iterative methods such as conjugate gradient. It contains detailed 
descriptions of algorithms along with illustrations and graphics that emphasize 
core concepts and demonstrate the algorithms. Julia code is provided to 
illustrate concepts and allow readers to explore methods on their own. 
2021 / xiv + 406 pages / Softcover / 978-1-611976-54-0 / List $89.00 / SIAM Member $62.30 / OT172

Computed Tomography  
Algorithms, Insight, and Just Enough Theory 
Edited by Per Christian Hansen, Jakob Sauer Jørgensen,  
and William R. B. Lionheart 
This book describes fundamental computational methods for image 
reconstruction in computed tomography (CT) with a focus on a pedagogical 
presentation of these methods and their underlying concepts. Insights into 
the advantages, limitations, and theoretical and computational aspects of the 
methods are included, giving a balanced presentation that allows readers to 
understand and implement CT reconstruction algorithms. 
2021 / xviii + 337 pages / Softcover / 978-1-611976-66-3 / List $89.00 / SIAM Member $62.30 / FA18 

Scientific Computing 
An Introductory Survey, Revised Second Edition 
Michael T. Heath 
This book presents a broad overview of methods and software for solving 
mathematical problems arising in computational modeling and data analysis, 
including proper problem formulation, selection of effective solution algorithms, 
and interpretation of results. Its focus is on the motivation and ideas behind the 
algorithms presented.  
2018 / xx + 567 pages / Softcover / 978-1-611975-57-4 / List $100.00 / SIAM Member $70.00 / CL80

Order online: bookstore.siam.org 
Or call toll-free in U.S. and Canada:  

800-447-SIAM; worldwide: +1-215-382-9800

If you live outside North or South America,
order from eurospanbookstore.com/siam  

for speedier service.  
Eurospan honors the SIAM member discount. 
Contact customer service (service@siam.org)  

for the code to use when ordering.

Look for These Books and Others 
at SIAM's Summer Conferences

Handbook of 
Writing for the 
Mathematical 
Sciences  
Third Edition
Nicholas J. Higham 
This third edition revises, 
updates, and expands the 
best-selling second edition to reflect modern 
writing and publishing practices and builds on 
the author's extensive experience in writing 
and speaking about mathematics. 
2019 / xxii + 353 pages / Softcover / 978-1-611976-09-0 
List $71.50 / SIAM Member $50.05 / Student  $34.50 
OT167 

How to Be Creative 
A Practical Guide  
for the Mathematical 
Sciences
Nicholas J. Higham 
Do you know precisely 
how your creativity 
happens? Can you coach 
other people to be more 
creative? This book is a how-to guide focused 
on helping people working in the mathematical 
sciences to generate great—or even greater—
ideas by showing them “how to do it” and how 
to teach others how to do it, too. It provides a 
proven process for idea generation and a wide 
range of mathematically oriented examples. 
2022 / xii + 109 pages / Softcover / 978-1-611977-02-8 
List $29.00 / SIAM Member $20.30 / OT179 

BIG Jobs Guide 
Business, Industry, and 
Government Careers for 
Mathematical Scientists, 
Statisticians, and Operations 
Researchers 
Rachel Levy, Richard Laugesen,  
and Fadil Santosa 
Jobs using mathematics, 
statistics, and operations 
research are projected to 
grow by almost 30% over 
the next decade. BIG Jobs 
Guide helps job seekers at 
every stage of their careers 
in these fields explore 
opportunities in business, 
industry, and government (BIG) by providing 
insight on topics such as what skills to offer 
employers, how to write a high-impact resumé, 
where to find a rewarding internship, and what 
kinds of jobs are out there. 
2018 / xii + 141 pages / Softcover / 978-1-611975-28-4 
List $28.00 / SIAM Member $19.60 / Student $15.00 
OT158 
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Where You Go to Know and Be Known

FOR MORE INFORMATION ON SIAM JOURNALS: epubs.siam.org/journals
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Recently Posted Articles
Mean Field Games in a Stackelberg Problem  
with an Informed Major Player
Philippe Bergault, Pierre Cardaliaguet,  
and Catherine Rainer
Distributed Global Consensus of LTI Mass 
with Heterogeneous Actuator Saturation and 
Communication Noises
Xiaoling Wang, Juan Qian, Housheng Su, Xiujuan Lu, 
and James Lam   

SIAM Journal on  
DISCRETE MATHEMATICS
On the Minimum Number of Arcs in k-Dicritical 
Oriented Graphs
Pierre Aboulker, Thomas Bellitto, Frédéric Havet,  
and Clément Rambaud
On Graphs Coverable by k Shortest Paths
Maël Dumas, Florent Foucaud, Anthony Perez,  
and Ioan Todinca
Brillouin Zones of Integer Lattices and Their 
Perturbations
Herbert Edelsbrunner, Alexey Garber,  
Mohadese Ghafari, Teresa Heiss, Morteza Saghafian,  
and Mathijs Wintraecken        

SIAM Journal on  
FINANCIAL MATHEMATICS
Nonasymptotic Estimation of Risk Measures Using 
Stochastic Gradient Langevin Dynamics
Jiarui Chu and Ludovic Tangpi
Risk Measures beyond Frictionless Markets
Maria Arduca and Cosimo Munari
Optimal Clearing Payments in a Financial Contagion 
Model
Giuseppe C. Calafiore, Giulia Fracastoro,  
and Anton V. Proskurnikov                

SIAM Journal on IMAGING SCIENCES
Stable Local-Smooth Principal Component Pursuit
Jiangjun Peng, Hailin Wang, Xiangyong Cao, Xixi Jia, 
Hongying Zhang, and Deyu Meng
Extrapolated Plug-and-Play Three-Operator  
Splitting Methods for Nonconvex Optimization  
with Applications to Image Restoration
Zhongming Wu, Chaoyan Huang, and Tieyong Zeng
Stochastic Variance Reduced Gradient for Affine Rank 
Minimization Problem
Ningning Han, Juan Nie, Jian Lu, and Michael K. Ng         

SIAM Journal on  
MATHEMATICAL ANALYSIS
Uniform Far-Field Asymptotics of the Two-Layered 
Green Function in Two Dimensions and Application to 
Wave Scattering in a Two-Layered Medium
Long Li, Jiansheng Yang, Bo Zhang, and Haiwen Zhang
Nonlocal Problems with Local Boundary Conditions I: 
Function Spaces and Variational Principles
James M. Scott and Qiang Du
Generalized Impedance Boundary Conditions  
with Vanishing or Sign-Changing Impedance
Laurent Bourgeois and Lucas Chesnel      

SIAM Journal on  
MATHEMATICS of DATA SCIENCE 
The Geometric Median and Applications to Robust 
Mean Estimation
Stanislav Minsker and Nate Strawn
Scalable Tensor Methods for Nonuniform 
Hypergraphs
Sinan G. Aksoy, Ilya Amburg, and Stephen J. Young  

MULTISCALE MODELING & SIMULATION:  
A SIAM Interdisciplinary Journal
On the Nature of the Boundary Resonance Error in 
Numerical Homogenization and Its Reduction
Sean P. Carney, Milica Dussinger, and Björn Engquist
Topological Sensitivity-Based Analysis and 
Optimization of Microstructured Interfaces
Marie Touboul, Rémi Cornaggia, and Cédric Bellis
Boundary Homogenization for Partially Reactive 
Patches
Claire E. Plunkett and Sean D. Lawley   

SIAM Journal on  
APPLIED ALGEBRA and GEOMETRY 
Explicit Non-special Divisors of Small Degree, 
Algebraic Geometric Hulls, and LCD Codes  
from Kummer Extensions
Eduardo Camps Moreno, Hiram H. López,  
and Gretchen L. Matthews
Decomposable Context-Specific Models
Yulia Alexandr, Eliana Duarte, and Julian Vill
Function Space and Critical Points of Linear 
Convolutional Networks
Kathlén Kohn, Guido Montúfar, Vahid Shahverdi,  
and Matthew Trager   

SIAM Journal on  
APPLIED DYNAMICAL SYSTEMS
On Higher Order Drift and Diffusion Estimates  
for Stochastic SINDy
Mathias Wanner and Igor Mezić
N-Body Oscillator Interactions of Higher-Order 
Coupling Functions
Youngmin Park and Dan Wilson
Emergence of Polarization in a Sigmoidal  
Bounded-Confidence Model of Opinion Dynamics
Heather Z. Brooks, Philip S. Chodrow,  
and Mason A. Porter  

SIAM Journal on  
APPLIED MATHEMATICS
Exact Power Spectrum in a Minimal Hybrid Model of 
Stochastic Gene Expression Oscillations
Chen Jia, Hong Qian, and Michael Q. Zhang
A Stabilizing Effect of Advection on Planar 
Interfaces in Singularly Perturbed Reaction-Diffusion 
Equations
Paul Carter
Longitudinal Shear Flow over a Superhydrophobic 
Grating with Partially Invaded Grooves and Curved 
Menisci
Ehud Yariv        

SIAM Journal on COMPUTING 
AdWords in a Panorama
Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang
Rapid Mixing of Glauber Dynamics via Spectral 
Independence for All Degrees
Xiaoyu Chen, Weiming Feng, Yitong Yin,  
and Xinyuan Zhang
Semialgebraic Proofs, IPS Lower Bounds, and the 
τ-Conjecture: Can a Natural Number Be Negative?
Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, 
and Iddo Tzameret 

SIAM Journal on  
CONTROL and OPTIMIZATION
Global Uniform Finite-Time Output Feedback 
Stabilization for Disturbed Nonlinear Uncertain 
Systems: Backstepping-Like Observer and 
Nonseparation Principle Design
Wenwu Zhu and Haibo Du

Robust and Tuning-Free Sparse Linear Regression 
via Square-Root Slope
Stanislav Minsker, Mohamed Ndaoud, and Lang Wang        

SIAM Journal on  
MATRIX ANALYSIS and APPLICATIONS 
Preconditioner Design via Bregman Divergences
Andreas A. Bock and Martin S. Andersen
A Skew-Symmetric Lanczos Bidiagonalization 
Method for Computing Several Extremal Eigenpairs 
of a Large Skew-Symmetric Matrix
Jinzhi Huang and Zhongxiao Jia
Differential Geometry with Extreme Eigenvalues  
in the Positive Semidefinite Cone
Cyrus Mostajeran, Nathaël Da Costa,  
Graham Van Goffrier, and Rodolphe Sepulchre      

SIAM Journal on  
NUMERICAL ANALYSIS
A Finite Element Method for Hyperbolic 
Metamaterials with Applications for Hyperlens
Fuhao Liu, Wei Yang, and Jichun Li
The (p, p – 1)-HDG Method for the Helmholtz 
Equation with Large Wave Number
Bingxin Zhu and Haijun Wu
Inverse Wave-Number-Dependent Source Problems 
for the Helmholtz Equation
Hongxia Guo and Guanghui Hu           

SIAM Journal on OPTIMIZATION
Parameter-Free Accelerated Gradient Descent  
for Nonconvex Minimization
Naoki Marumo and Akiko Takeda
Approximation Guarantees for Min-Max-Min  
Robust Optimization and k-Adaptability under 
Objective Uncertainty
Jannis Kurtz
Stochastic Trust-Region and Direct-Search 
Methods: A Weak Tail Bound Condition and 
Reduced Sample Sizing
F. Rinaldi, L. N. Vicente, and D. Zeffiro    

SIAM Journal on  
SCIENTIFIC COMPUTING
Spectral Analysis of Implicit s-Stage Block  
Runge–Kutta Preconditioners
Martin J. Gander and Michal Outrata
A New Locally Divergence-Free Path-Conservative 
Central-Upwind Scheme for Ideal and Shallow 
Water Magnetohydrodynamics
Alina Chertock, Alexander Kurganov, Michael Redle, 
and Kailiang Wu
The Numerical Flow Iteration for the Vlasov–
Poisson Equation
Matthias Kirchhart and R. Paul Wilhelm     

SIAM/ASA Journal on  
UNCERTAINTY QUANTIFICATION
One-Shot Learning of Surrogates in PDE-
Constrained Optimization under Uncertainty
Philipp A. Guth, Claudia Schillings,  
and Simon Weissmann
Computationally Efficient Sampling Methods for 
Sparsity Promoting Hierarchical Bayesian Models
D. Calvetti and E. Somersalo
Differential Equation–Constrained Optimization 
with Stochasticity
Qin Li, Li Wang, and Yunan Yang


