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Abstract. This paper aims to maximize the energy functionals of the Cauchy problem for one-dimensional
wave and heat equations through a rearrangement class of initial conditions. The energy functional
is defined to be the classical physical energy on a restricted interval. The corresponding result of
wave equations is considered separately for three cases and that of heat equations can be generalized
to higher dimensions. Moreover, uniqueness of the solution and stability problems are studied for
heat equations.

1. Introduction. Wave equations model the vibration and wave propagation phenomena
[8]. In particular, the classical one-dimensional Cauchy problem for the wave equation

(1.1)


utt = c2uxx, x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R,
ut(x, 0) = g(x), x ∈ R,

governs the motion of a stretched string for some initial displacement function f(x) and initial
velocity g(x) where c > 0 is the wave speed, f ∈ C2(R) and g ∈ C1(R). The corresponding
physical energy functional is defined as

(1.2) E(t) =
1

2

∫ ∞

−∞

(
ut

2 + c2u2x
)
dx

and we know E(t) is conserved, i.e., E′(t) = 0 under certain conditions (See Section 4.3 in
[6]). For convenience, we choose to drop the normalizing constant 1

2 and replace the infinite
integral with a more comfortable integration over a bounded interval [−L,L]. In other words,
we let L be any positive constant and recast our energy functional as follows

(1.3) EL(f, g, t) =

∫ L

−L

[(
∂uf,g
∂t

)2

+ c2
(
∂uf,g
∂x

)2
]
dx

where uf,g is the solution of (1.1) given by the d’Alembert’s formula (See Section 4.2 in [6]):

(1.4) uf,g(x, t) =
1

2
[f(x+ ct)− f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(y)dy.
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RENJING WANG

Note that here we make the sub-index uf,g to emphasize the dependence of initial conditions
f and g. Roughly speaking, our aim is to find some appropriate initial conditions f and g that
maximize (1.3). In what follows, we consider the admissible set for possible initial conditions
to be the class of rearrangements:

(1.5) R(η) := {h : µh(s) = µη(s) for all s ∈ R},

where η : R → R is a fixed measurable function, µh(t) = |{x : h(x) > t}| and |A| denotes the
measure of a Lebesgue measurable set A. µh is also called the distribution function of h. So
we consider our problem in the following generalized form:

Problem 1.1. Fix non-negative g0 ∈ L2(R) and f0 ∈ H1(R) where H1(R) denotes the
Sobolev space such that the function and its distributional derivative are both in L2(R). Find
two functions g ∈ R(g0) and f ∈ R(f0) (if possible) such that EL(f, g, t) attains the maximum.

If f0 is non-trivial and |{f0 > 0}| ≤ 2L, it shall be proved that

sup
f∈R(f0)
g∈R(g0)

EL(f, g, t) = ∞.

For the special case f0 = 0 and ct ≤ L,

sup
f∈R(f0)
g∈R(g0)

EL(f, g, t) = EL(g
⋆, t)

where we applied an abuse of notation as f = 0 is fixed. Note that g⋆ denotes the Schwarz
symmetrization or symmetric decreasing rearrangement of g, which we will define in Section 2.

Heat equations describe the process of heat conduction in isotropic bodies [8]. In partic-
ular, the classical one-dimensional Cauchy problem for the heat equation

(1.6)

{
ut = kuxx, x ∈ R, t > 0,

u(x, 0) = h(x), x ∈ R,

models the distribution of temperature in a rod where k > 0 is the diffusion constant and
h ∈ L1(R). The corresponding physical energy is

(1.7) E(t) =

∫ ∞

−∞
u(x, t)dx

and E(t) is conserved under certain conditions (See Section 5.3 in [6]). Similarly, as discussed
for wave equations, our new energy functional is defined as

(1.8) EL(h, t) =

∫ L

−L
uh(x, t)dx

where uh is the particular (or tailor-made) solution to (1.6) given by:

(1.9) uh(x, t) =

∫ ∞

−∞
Φ(x− y, t)h(y)dy
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with

Φ(x, t) =
1√
4πkt

e−
x2

4kt

to be the fundamental solution of the heat equation. In what follows, our problem is formulated
as:

Problem 1.2. Fix a non-negative h0 ∈ L1(R). Find one h ∈ R(h0) (if possible) such that
EL(h, t) attains the maximum. In other words, we intend to solve

(1.10) sup
h∈R(h0)

EL(h, t).

Different from the results in wave equations, we have

sup
h∈R(h0)

EL(h, t) = EL(h
⋆, t).

Additionally, uniqueness and stability problems will also be addressed.

2. Schwarz Symmetrization. In this section, we firstly introduce the notion of Schwarz
symmetrization and several related useful properties and inequalities.

If A is a measurable set of finite measure in Rn, we define A⋆, the symmetric rearrangement
of the set A, to be the open ball centered at the origin whose volume is the same as that of A.
Let f : Rn → R+ be a measurable function vanishing at infinity, i.e., |{x : f(x) > t}| is finite
for all t > 0. For E ⊆ Rn, the notation χE(x) stands for the characteristic function of E, i.e.,
χE(x) = 1 for x ∈ E while χE(x) = 0 for x /∈ E. f⋆ is defined as the “unique” symmetric
decreasing rearrangement (also called the Schwarz symmetrization) of f :

f⋆(x) :=

∫ ∞

0
χ{f>t}⋆(x)dt,

where we use {f > t} to denote the upper level set {x : f(x) > t}. Some of the important
properties of f⋆ that we shall use later on are listed as follows:

1. f⋆ is radially symmetric and non-increasing, i.e.,

f⋆(x) ≥ f⋆(y) if |x| ≤ |y|

and f⋆(x) = f⋆(y) if |x| = |y|. Incidentally, we say that f⋆ is strictly symmetric
decreasing if f⋆(x) > f⋆(y) if |x| < |y|.

2. If Ψ : R+ → R+ is non-decreasing, then

(2.1) (Ψ ◦ f)⋆ = Ψ ◦ f⋆.

3. If f , g ∈ Lp(Rn), where 1 ≤ p ≤ ∞. Then

(2.2) ∥f⋆ − g⋆∥p ≤ ∥f − g∥p.

Finally, we state a well-known result:
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Proposition 2.1. Fix a non-negative g0 ∈ L2(R). If g ∈ R(g0), then g ∈ L2(R) and fur-
thermore we have ∥g∥2 = ∥g0∥2, where ∥ · ∥2 denotes the L2 norm.

Proof. This is a direct consequence of layer cake representation and Fubini Theorem, see
Lemma 2.1 in [3] or the point (iv) in Section 3.3 of [5].

For more details of discussion, see Chapter 3 in [5] and Chapter 1 in [4]. On the other hand,
for a rich survey on the development of the rearrangement theory, we refer to Talenti’s article
[7].

3. Energy Optimization in One-Dimensional Wave Equations with Initial Velocity. We
firstly consider our Problem 1.1 when f0 = 0. In this section, we use ug to denote the
d’Alembert solution (1.4) for (1.1) with f = 0. This time our energy functional (1.3) becomes

(3.1) EL(g, t) =

∫ L

−L

[
(ug)

2
t + c2(ug)

2
x

]
dx.

Some basic properties of our solution are initially examined.

Proposition 3.1. Let v be the solution of the following Cauchy problem:

(3.2)


utt = c2uxx, x ∈ R, t > 0,

u(x, 0) = 0, x ∈ R,
ut(x, 0) = g⋆(x), x ∈ R.

Then v = v⋆.

Proof. By d’Alembert’s formula (1.4), we have v(x, t) =
1

2c

∫ x+ct

x−ct
g⋆(y)dy. Firstly, v is

even. Indeed,

v(−x, t) =
1

2c

∫ −x+ct

−x−ct
g⋆(y)dy =

1

2c

∫ x+ct

x−ct
g⋆(−y)dy =

1

2c

∫ x+ct

x−ct
g⋆(y)dy = v(x, t),

where we used the fact that g⋆ is even in the third equality. Then we show v is decreasing in
x for x > 0. In fact, when 0 < x < ct,

∂v

∂x
=

1

2c
[g⋆(x+ ct)− g⋆(x− ct)] =

1

2c
[g⋆(ct+ x)− g⋆(ct− x)] ≤ 0

and when x ≥ ct,
∂v

∂x
=

1

2c
[g⋆(x+ ct)− g⋆(x− ct)] ≤ 0.

So then by the uniqueness of symmetric decreasing rearrangement, we conclude that v = v⋆.

Now we can show the existence of supg∈R(g0)EL(g, t).

Proposition 3.2. Fix L > 0. Then supg∈R(g0)EL(g, t) is finite.
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Proof. By direct calculation, we have

(ug)t =
1

2
[g(x+ ct) + g(x− ct)] and (ug)x =

1

2c
[g(x+ ct)− g(x− ct)].

Hence, EL(g, t) is computed as

(3.3)

EL(g, t) =

∫ L

−L
[(ug)

2
t + c2(ug)

2
x]dx

=
1

2

∫ L

−L

[
g2(x+ ct) + g2(x− ct)

]
dx.

Using Proposition 2.1, we have

EL(g, t) ≤
1

2

∫ ∞

−∞
g2(x+ ct)dx+

1

2

∫ ∞

−∞
g2(x− ct)dx

=

∫ ∞

−∞
g2(x)dx =

∫ ∞

−∞
g20(x)dx < ∞.

Now, we can state one of the main results we obtain for wave equations:

Theorem 3.3. Fix L > 0. If ct ≤ L, then EL(g, t) ≤ EL(g
⋆, t), i.e., supg∈R(g0)EL(g, t) =

EL(g
⋆, t).

Proof. Using (3.3) and making a change of variable, we have

(3.4)

EL(g, t) =
1

2

∫ L

−L

[
g2(x+ ct) + g2(x− ct)

]
dx

=
1

2

∫ L+ct

−L+ct
g2(x)dx+

1

2

∫ L−ct

−L−ct
g2(x)dx

=
1

2

∫ L+ct

−L−ct
g2(x)dx+

1

2

∫ L−ct

−L+ct
g2(x)dx

when ct ≤ L. Then by Hardy-Littlewood inequality (See Theorem 3.4 in [5]) we have∫ L+ct

−L−ct
g2(x)dx =

∫ ∞

−∞
g2(x)χ[−L−ct,L+ct](x)dx

≤
∫ ∞

−∞
(g2)⋆(x)χ⋆

[−L−ct,L+ct](x)dx =

∫ L+ct

−L−ct
(g⋆)2(x)dx,

where (g2)⋆(x) = (g⋆)2(x) in the last equality is due to (2.1). Similarly, we obtain∫ L−ct

−L+ct
g2(x)dx ≤

∫ L−ct

−L+ct
(g⋆)2(x)dx.
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Combining these two inequalities, (3.4) becomes

EL(g, t) ≤
1

2

(∫ L+ct

−L−ct
(g⋆)2(x)dx+

∫ L−ct

−L+ct
(g⋆)2(x)dx

)
=

1

2

∫ L

−L
[(g⋆)2(x+ ct) + (g⋆)2(x− ct)]dx

= EL(g
⋆, t).

However, the proof of Theorem 3.3 does not work for the case when ct > L. This is because
our energy functional becomes

EL(g, t) =
1

2

∫ L+ct

−L−ct
g2(x)dx− 1

2

∫ −L+ct

L−ct
g2(x)dx,

and the sign in front of the second term is negative. Indeed, we can give a counterexample that
a similar result as for Theorem 3.3 is not correct, i.e., the symmetric decreasing rearrangement
of g does not yield the maximal energy EL(g, t) in general.

Example 3.4. Consider the following Cauchy problem:

(3.5)


utt = uxx, x ∈ R, t > 0,

u(x, 0) = 0, x ∈ R,
ut(x, 0) = g(x), x ∈ R,

where

g(x) =


√
x, if x ∈ [0, 1],

√
2− x, if x ∈ [1, 2],

0, if x /∈ [0, 2].

Let L = 1 and 1 < t < 2. Observing that c = 1, EL(g, t) (see Figure 1) is computed as

EL(g, t) =
1

2

(∫ 1+t

−1−t
g2(x)dx−

∫ −1+t

1−t
g2(x)dx

)
=

1

2

∫ 2

−1+t
g2(x)dx =

1

2

[
1− 1

2
(t− 1)2

]
.

Now

g⋆(x) =


√
1− x, if x ∈ [0, 1],

√
x+ 1, if x ∈ [−1, 0],

0, if x /∈ [−1, 1],

and EL(g
⋆, t) (see Figure 2) is similarly computed to be

EL(g
⋆, t) =

1

2

(∫ 1−t

−1
(g⋆)2(x)dx+

∫ 1

−1+t
(g⋆)2(x)dx

)
=

1

2
(2− t)2.

Thus, we have EL(g
⋆, t) < EL(g, t) when 1 < t < 2, which is a desired counterexample.
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x-axis

y-axis

g2(x)

(2, 0)

(1, 1)

t− 1

EL(g, t)

Figure 1. EL(g, t)

x-axis

y-axis
(g⋆)2(x)

(0, 1)

(1, 0)(−1, 0)
1− t t− 1

EL(g
⋆, t)

Figure 2. EL(g
⋆, t)

4. Energy Optimization in One-Dimensional Wave Equations with Initial Displace-
ment. Now we consider the case when g0 = 0 and f0 is non-trivial. In this section, we use
uf to denote the d’Alembert solution of (1.1) when g = 0. This time our energy functional
becomes

(4.1) EL(f, t) =

∫ L

−L

[
(uf )

2
t + c2(uf )

2
x

]
dx.

We aim to study

(4.2) sup
f∈R(f0)

EL(f, t).

Surprisingly, different from the case with only initial velocity, the energy functional goes to
infinity when we consider certain rearrangement sequences of f0.

Lemma 4.1. Fix L > 0, and suppose |{f0 > 0}| ≤ 2L. Then supf∈R(f0)EL(f, t) = ∞ when
ct ≤ L.

Proof. Performing a similar calculation as in (3.4), we have

(4.3)

EL(f, t) =
c2

2

∫ L

−L
(f ′)2(x+ ct)dx+

c2

2

∫ L

−L
(f ′)2(x− ct)dx

=
c2

2

∫ L+ct

−L+ct
(f ′)2(x)dx+

c2

2

∫ L−ct

−L−ct
(f ′)2(x)dx

=
c2

2

∫ L+ct

−L−ct
(f ′)2(x)dx+

c2

2

∫ L−ct

−L+ct
(f ′)2(x)dx.

Set f1 = (f0)
⋆ and note that the support of f1 is in [−L,L]. Then we observe that f1 ∈

H1(R) by Pólya-Szegö inequality (See Theorem 3.20 in [1]). On the other hand, we have∫ L

−L
(f ′

1)
2(x)dx > 0. Indeed, if

∫ L

−L
(f ′

1)
2(x)dx = 0, then f1 equals to some constant a.e. on

[−L, L] (See Lemma 8.1 in [2]). Since |{f1 > 0}| ≤ 2L and f1 is constant, by Theorem 8.2 in
[2], we have f1 = 0 a.e. on R contradicting the fact that f0 is non-trivial.
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Now define f2 : R → R to be (see Figure 3):

f2(x) =


f1(2x− L), x ∈ [0, L],

f1(2x+ L), x ∈ [−L, 0],

0, x ∈ R\[−L,L].

For any t ≥ 0, as f1 is continuous (replace it by its continuous representation if necessary,
see Theorem 8.2 and Remark 5 in Page 204 of [2]) and symmetric decreasing, we have {f1 >
t} = (−s, s) for some s ∈ [0, L]. By our definition of f2, one easily sees that {f2 > t} =(−L

2 − s
2 ,

−L
2 + s

2

)
∪
(
L
2 − s

2 ,
L
2 + s

2

)
. So |{f2 > t}| = |{f1 > t}| and f2 ∈ R(f0). Moreover, we

have

(4.4)

∫ L

−L
(f ′

2)
2(x)dx =

∫ L

0

(
d

dx
f1(2x− L)

)2

dx+

∫ 0

−L

(
d

dx
f1(2x+ L)

)2

dx

= 2

∫ L

−L

(
df1
dy

(y)

)2

dy + 2

∫ L

−L

(
df1
dy

(y)

)2

dy = 4

∫ L

−L
(f ′

1)
2(x)dx.

Continuing this process inductively, we obtain a sequence (fn)n∈N ⊂ R(f0) and

(4.5)

∫ L

−L
(f ′

n)
2(x)dx = 4n−1

∫ L

−L
(f ′

1)
2(x)dx.

When ct ≤ L, by (4.5), (4.3) becomes

EL(fn, t) =
c2

2

∫ L+ct

−L−ct
(f ′

n)
2(x)dx+

c2

2

∫ L−ct

−L+ct
(f ′

n)
2(x)dx

≥ c2

2

∫ L

−L
(f ′

n)
2(x)dx

=
c24n−1

2

∫ L

−L
(f ′

1)
2(x)dx.

Recalling that
∫ L
−L(f

′
1)

2(x)dx > 0, this implies supn∈NEL(fn, t) = ∞. Consequently, we have

supf∈R(f0) EL(f, t) = ∞ as desired.

Actually, the above lemma is also correct for ct > L, which is different f rom t he c ase in 
Theorem 3.3 and we conclude it as follow:

Theorem 4.2. Fix L > 0, and suppose |{f0 > 0}| ≤ 2L. Then supf∈R(f0) EL(f, t) = ∞.

Proof. The case when ct ≤ L follows directly from Lemma 4.1. For the case when ct > L, 
we just need to modify our fn. Indeed, define ( f̄n) to be

f̄n(x) = (fn)⋆(x − ct) x ∈ R.

This is just the translation of fn defined in Lemma 4.1 (see Figure 4) and note that supp f̄ n = 
[−L + ct, L + ct]. Clearly, f̄n ∈ R(fn) = R(f0). Now, a similar calculation as in (4.3) shows

314



OPTIMIZING ENERGY IN A CLASS OF REARRANGEMENTS

that

EL(f̄n, t) =
c2

2

∫ L+ct

−L+ct
(f̄ ′

n)
2(x)dx+

c2

2

∫ L−ct

−L−ct
(f̄ ′

n)
2(x)dx

=
c2

2

∫ L+ct

−L+ct
(f̄ ′

n)
2(x)dx

=
c2

2

∫ L

−L
(f ′

n)
2(x)dx =

c24n−1

2

∫ L

−L
(f ′

1)
2(x)dx

where we used the facts −L + ct > L − ct and supp f̄n = [−L + ct, L + ct] in the second
equality, and (4.5) in the last equality. Then performing a similar argument as in Lemma 4.1,
the proof is complete.

x-axis

y-axis

f1
f2
f3

−L LO

Figure 3. fn

x-axis

y-axis

f̄1
f̄2
f̄3

−L+ ct L+ ctO

Figure 4. f̄n

Remark 4.3. Comparing (4.3) with (3.4), one can see that to maximize the energy func-
tional with only initial displacement (i.e., g = 0) is equivalent to maximize the energy of the
following problem: 

utt = c2uxx, x ∈ R, t > 0,

u(x, 0) = 0, x ∈ R,
ut(x, 0) = cf ′(x), x ∈ R.

This can be interpreted in physics as: a “sharper” initial displacement yields a larger velocity,
since this time there are more potential conserved in the string.

5. General Energy Optimization in One-Dimensional Wave Equation. Now we are in
the position to solve Problem 1.1. Recalling uf,g is the solution of (1.1) and EL(f, g, t) is
defined in (1.3), we have

Theorem 5.1. Suppose f0 is non-trivial and |{f0 > 0}| ≤ 2L. Then sup f∈R(f0)
g∈R(g0)

EL(f, g, t) =

∞.

Proof. By d’Alembert’s formula, we have
(5.1)

EL(f, g, t) =
1

2

∫ L

−L

[
g2(x+ ct) + g2(x− ct)

]
dx+

c2

2

∫ L

−L

[
(f ′)2(x+ ct) + (f ′)2(x− ct)

]
dx

+ c

∫ L

−L

[
f ′(x+ ct)g(x+ ct)− f ′(x− ct)g(x− ct)

]
dx.
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By Cauchy-Schwarz inequality, Young’s inequality and Proposition 2.1, we have for any ε > 0,∣∣∣∣∫ L

−L
f ′(x+ ct)g(x+ ct)dx

∣∣∣∣ ≤ (∫ L

−L
(f ′)2(x+ ct)dx

) 1
2
(∫ L

−L
g2(x+ ct)dx

) 1
2

≤ 1

2ε

∫ L

−L
(f ′)2(x+ ct)dx+

ε

2

∫ L

−L
g2(x+ ct)dx

≤ 1

2ε

∫ L

−L
(f ′)2(x+ ct)dx+

ε

2
∥g0∥22 ,

which means

(5.2)

∫ L

−L
f ′(x+ ct)g(x+ ct)dx ≥ − 1

2ε

∫ L

−L
(f ′)2(x+ ct)dx− ε

2
∥g0∥22 .

Similarly, we obtain

(5.3)

∫ L

−L
f ′(x− ct)g(x− ct)dx ≤

∣∣∣∣∫ L

−L
f ′(x− ct)g(x− ct)dx

∣∣∣∣
≤ 1

2ε

∫ L

−L
(f ′)2(x− ct)dx+

ε

2

∫ L

−L
g2(x− ct)dx

≤ 1

2ε

∫ L

−L
(f ′)2(x− ct)dx+

ε

2
∥g0∥22 .

Using (5.2) and (5.3), (5.1) becomes

EL(f, g, t)

≥ 1

2

∫ L

−L

[
g2(x+ ct) + g2(x− ct)

]
dx+

c2

2

∫ L

−L

[
(f ′)2(x+ ct) + (f ′)2(x− ct)

]
dx

− c

2ε

∫ L

−L
(f ′)2(x+ ct)dx− εc

2
∥g0∥22 −

c

2ε

∫ L

−L
(f ′)2(x− ct)dx− εc

2
∥g0∥22

≥
(
c2

2
− c

2ε

)∫ L

−L
[(f ′)2(x+ ct) + (f ′)2(x− ct)]dx− εc ∥g0∥22 .

Now letting ε = 2
c , it follows that

EL(f, g, t) ≥
c2

4

∫ L

−L

[
(f ′)2(x+ ct) + (f ′)2(x− ct)

]
dx− 2 ∥g0∥22

≥ c2

4

∫ L

−L

[
(f ′)2(x+ ct) + (f ′)2(x− ct)

]
dx− 2 ∥g0∥22 =

1

2
EL(f, 0, t)− 2 ∥g0∥22

=
1

2
EL(f, t)− 2 ∥g0∥22 .

Thus sup f∈R(f0)
g∈R(g0)

EL(f, g, t) = ∞ by Theorem 4.2.
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6. Energy Optimization in One-Dimensional Heat Equation. In this section, we consider
Problem 1.2. Recall uh is the solution of (1.6) and it is given by (1.9). Then, we have

Theorem 6.1. Fix L > 0. Then EL(h, t) ≤ EL(h
⋆, t), i.e., suph∈R(h0)EL(h, t) = EL(h

⋆, t).
Moreover, EL(h, t) = EL(h

⋆, t) if and only if h = h⋆.

Proof. One easily sees that Φ(x, t) = Φ⋆(x, t) where the star operation is taken on x.
Using Riesz’s rearrangement inequality (Theorem 3.7 in [5]), we have

EL(h, t) =

∫ L

−L

∫ ∞

−∞
Φ(x− y, t)h(y)dydx =

∫ ∞

−∞

∫ ∞

−∞
χ[−L,L](x)Φ(x− y, t)h(y)dydx

≤
∫ ∞

−∞

∫ ∞

−∞
χ⋆
[−L,L](x)Φ

⋆(x− y, t)h⋆(y)dydx

=

∫ ∞

−∞

∫ ∞

−∞
χ[−L,L](x)Φ(x− y, t)h⋆(y)dydx

=

∫ L

−L

∫ ∞

−∞
Φ(x− y, t)h⋆(y)dydx = EL(h

⋆, t).

When EL(h, t) = EL(h
⋆, t), Riesz inequality takes the equality. Since the fundamental solution

Φ(x, t) is strictly symmetric decreasing in x, by strict rearrangement inequality (Theorem 3.9
in [5]), we obtain h(x) = h⋆(x). This completes the proof.

Remark 6.2. We can also prove Theorem 6.1 by using Hardy-Littlewood inequality instead
of Riesz inequality, and we include this alternative proof here to show the powerfulness of
rearrangement theory. Setting the error function erf(x) = 2√

π

∫ x
0 e−s2ds, the energy can be

transformed into the following form

EL(h, t) =

∫ ∞

−∞

1

2

[
erf

(
y + L

2
√
kt

)
− erf

(
y − L

2
√
kt

)]
h(y)dy.

Defining ζL(y, t) = 1
2

[
erf

(
y+L

2
√
kt

)
− erf

(
y−L

2
√
kt

)]
, it is easy to see ζL is positive and strictly

symmetric decreasing in y. By Hardy-Littlewood inequality, see Theorem 3.4 in [5], we deduce

EL(h, t) =

∫ ∞

−∞
ζL(y, t)h(y)dy ≤

∫ ∞

−∞
ζ⋆L(y, t)h

⋆(y)dy =

∫ ∞

−∞
ζL(y, t)h

⋆(y)dy = EL(h
⋆, t).

Moreover, if EL(h, t) = EL(h
⋆, t), then Hardy-Littlewood inequality takes the equality. As ζL

is strictly symmetric decreasing, we can use the last assertion of Theorem 3.4 in [5] to show
h⋆ is the unique maximizer.

We can also prove the stability of the problem.

Proposition 6.3. Given ε > 0 and fixed L > 0. Let h1, h2 be two non-negative functions in

1 2

L1(R) satisfying ∥h1 − h2∥1 ≤ ε, then the distance between two optimal energy values is less 
than ε, i.e.,

|EL(h
⋆, t) − EL(h

⋆, t)| ≤ ε.
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Proof. By (2.2), we have ∥h⋆1 − h⋆2∥1 ≤ ∥h1 − h2∥1 ≤ ε. Then using Fubini theorem, we
have

|EL(h
⋆
1, t)− EL(h

⋆
2, t)| =

∣∣∣∣∫ L

−L

∫ ∞

−∞
Φ(x− y, t)h⋆1(y)dydx−

∫ L

−L

∫ ∞

−∞
Φ(x− y, t)h⋆2(x)dydx

∣∣∣∣
=

∣∣∣∣∫ L

−L

∫ ∞

−∞
Φ(x− y, t)(h⋆1 − h⋆2)(y)dydx

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

∫ L

−L
Φ(x− y, t)(h⋆1 − h⋆2)(y)dxdy

∣∣∣∣
≤

∫ ∞

−∞

∣∣∣∣∫ L

−L
Φ(x− y, t)dx

∣∣∣∣ |(h⋆1 − h⋆2)(y)| dy

≤
∫ ∞

−∞
|(h⋆1 − h⋆2)(y)| dy = ∥h⋆1 − h⋆2∥1 ≤ ε.

Remark 6.4. The initial value problem of the higher-dimensional heat equation can be
similarly formulated as:

(6.1)

{
ut = k∆u, x ∈ Rn, t > 0,

u(x, 0) = h(x), x ∈ Rn,

and the energy functional can be similarly defined as

EL(h, t) =

∫
B(0,L)

uh(x, t)dx

where B(0, L) denotes the ball in Rn centered at the origin with radius L and uh denotes the
solution of (6.1). A similar result as Theorem 6.1 holds and the proof is in principle the same
as that of one-dimensional case by changing χ[−L,L] to χB(0,L).
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