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Abstract

This note is concerned with the qualitative properties of the solutions of a class
of linear ordinary differential equations. The existence and uniqueness of solutions
are addressed, and properties of the graph of the solution when imposing some
restrictions are derived. A new notion of derivative, called the force derivative,
is introduced and an orthogonality result, between the force derivative of the
solution and the force function, is obtained. All the important results are verified
by numerical examples using MATLAB. Finally, an inequality result reminiscent
of the famous G. Talenti’s inequality is proved.
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1 Introduction

In physics, the catenary describes the curve assumed by a hanging flexible wire
or chain when supported at its ends and acted upon by gravity. When the acting
vertical force is generalized by f(x), the vertical displacement denoted by u satisfies the
equation: {

−u′′ = f(x), x ∈ (−1, 1)

u(±1) = 0.
(1)
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To further generalize the idea, consider there is horizontal force on the wire, which
is denoted by A(x). This note discusses some qualitative properties of the solutions of
the following boundary value problem:{

− d
dx

(
A(x)du

dx

)
= f(x), x ∈ (−1, 1)

u(±1) = 0.
(2)

Here, the function A(x) and f(x) are assumed to be smooth functions on the closed
interval [−1, 1] and A(x) ≥ 1, f(x) ≥ 0 ; These assumptions guarantee the solution u
will be classical; i.e. u ∈ C2(−1, 1)∩C1[−1, 1]. More conditions shall be added to A(x)
and f(x) in the following content in order to obtain desired results.

In what follows, this paper will first prove a basic result concerning the existence
and uniqueness of solutions to (2). This is achieved by deriving an explicit formula for
the solution u. Once this result is established, further conditions that both functions
are even are imposed on A(x) and f(x). Such conditions shall be enforced throughout
the rest of the note. As a consequence of the additional restrictions, the solution u
will turn out to be even and non-increasing on (0, 1). This, in turn, gives rise to the
concept of free boundary points of u. Let α be the value of u(x). ∀α ∈ (0, uM), these
are the two endpoints (u(x) = α) of the interval {x ∈ [−1, 1] : u(x) ≥ α}; thanks to the
even-ness of u, such points are well defined. The first main result is an implicit formula
that computes the locations of the free boundary points. Using this implicit formula,
one will be able to derive an interesting inequality reminiscent of the well known G.
Talenti’s inequality, see for example [2].

Another main result is concerned with particular perturbations of (2). More
precisely, f(x) in (2) shall be replaced by ft(x) = f(x− t), for small values of t, while
keeping A(x) intact. The corresponding family of solutions denoted ut(x) contribute to
the introduction of a new notion of derivative that is called force derivative of u. The
force derivative of u is denoted by u̇ to differ from the usual derivative u′. It shall be
proved that u̇ is orthogonal to f(x) in L2(−1, 1); i.e.∫ 1

−1
u̇(x)f(x)dx = 0.

2 Basic results

In this section some basic results are collected about the solutions of the boundary
value problem (2).

Theorem 2.1. The boundary value problem (2) has a unique solution:

u(x) = C

∫ x

−1

dy

A(y)
−
∫ x

−1

F (y)

A(y)
dy, (3)
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where F (x) =
∫ x
−1 f(y)dy and C is the constant given by the following formula

C =

∫ 1

−1
F (y)
A(y)

dy∫ 1

−1
dy
A(y)

=

∫ 1

−1

∫ y
−1

f(s)
A(y)

dsdy∫ 1

−1
dy
A(y)

.

Proof. Reduce the order of the differential equation in (2) from two to one by setting
v = u′. This yields the following first order linear ODE

A(x)v′ + a(x)v = −f(x), (4)

where the notation a(x) = A′(x) has been used. The reduced equation (4) can be
readily solved, and its general solution, in conjunction with the boundary conditions
u(±1) = 0, will lead to the formula displayed in (3).

Remark 2.1. This remark shows that the uniqueness of solutions to the boundary value
problem (2) can be proved once the existence of solutions has been established. To this
end, first show that if f ≡ 0 in (2), then u must be the zero function in [−1, 1]. So,
begin it with {

− d
dx

(
A(x)du

dx

)
= 0, x ∈ (−1, 1)

u(±1) = 0.
(5)

Multiplying the differential equation in (5) by u, integrating the result from −1 to 1,
and applying integration by parts yields∫ 1

−1
u(A(x)u′)′dx = u(A(x)u′)|1−1 −

∫ 1

−1
A(x)u′2dx = 0−

∫ 1

−1
A(x)u′2dx = 0, (6)

where the boundary conditions u(±1) = 0 are used. Since the integrand of the last
integral in (6) is continuous, and non-negative, it can be deduced that A(x)u′2 = 0 in
[−1, 1]. Since A(x) ≥ 1, it implies that u′ = 0 throughout [−1, 1]. Whence, u must be
constant. The boundary conditions u(±1) = 0 ensure that u = 0 in [−1, 1].

Next, assume (2) has two solutions, say, u1 and u2. It shall be proved that u1 = u2,
and this completes the proof of uniqueness. Introduce the difference function w(x) =
u1(x)− u2(x), and observe that the following holds{

− d
dx

(
A(x)dw

dx

)
= 0, x ∈ (−1, 1)

w(±1) = 0.
(7)

Using the argument in the beginning of this remark, it can be inferred that w ≡ 0. In
other words, u1 = u2, which is the desired result.

Theorem 2.2. If f is not identically zero in the interval [−1, 1], then u is positive (i.e.
u > 0) on (−1, 1). Hence, u has a positive maximum denoted uM .
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Proof. To derive a contradiction, first assume there exists x∗ ∈ (−1, 1) such that u(x∗) =
minx∈[−1,1] u(x) ≤ 0. Note that in this case u′(x∗) = 0. Next, integrate the differential
equation in (2) from x∗ to an arbitrary x ∈ (x∗, 1) and obtain

−
∫ x

x∗
(A(t)u′(t))′dt =

∫ x

x∗
f(t)dt. (8)

Since f is non-negative, the last equation implies that u′(x) is non-positive for every
x ∈ (x∗, 1). By using a similar argument, one can verify that u′(x) is non-negative
for every x ∈ (−1, x∗). Whence, u must be constant throughout [−1, 1]. This is a
contradiction due to the boundary conditions u(±1) = 0 and the fact that u cannot be
the zero function.

As noted earlier, the conditions imposed on A and f gradually become stricter.
In the next lemma it shall be assumed that both of these functions are even.

Theorem 2.3. If f and A are even, then u is even and non-increasing on (0, 1).

Proof. Let w(x) = u(x) − u(−x). Then observe that w(±1) = 0. Differentiate w(x)
and get

w′(x) = u′(x) + u′(−x). (9)

Multiply (9) by A(x), differentiate the result, and use the differential equation in (2)
to yield

(A(x)w′(x))′ = (A(x)u′(x) + A(−x)u′(−x))′

= f(x)− f(−x) = 0,

because A and f are even functions. Using the uniqueness result proved in Remark 2.1,
one can infer w = 0. This, in turn, implies that u(x) = u(−x), as desired.

To prove the second part of the assertion, fix x0 ∈ (0, 1), and integrate the differential
equation in (2) from 0 to x0:∫ x0

0

−(A(x)u′)′dx =

∫ x0

0

f(x)dx. (10)

Note that the integral on the right hand side of (10) is non-negative, and the integral
on the left hand side can be explicitly evaluated to get

−(A(x0)u
′(x0)− A(0)u′(0)) ≥ 0.

Since u is even, u′ is odd and u′(0) = 0. This, coupled with the last inequality, implies

u′(x0) ≤ 0.
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Since x0 is arbitrary, it can be deduced that u is non-increasing on (0, 1). This completes
the proof of the lemma. Particularly, if f(x) > 0 for x ∈ (0, 1), then u is strictly
decreasing on (0, 1).

The rest of content is based on the following assumptions:
1. f and A are even.
2. f ≥ 0, A ≥ 1.
3. There exists some x ∈ [−1, 1], such that f(x) > 0, i.e. f is not constantly 0. (A)

Theorem 2.4. Let x̂ = inf{x > 0 : f(x) > 0}, then u = uM on [−x̂, x̂]. On the
other hand, u is strictly decreasing on [x̂, 1]. Hence, u : (x̂, 1) → (0, uM) defines a
homeomorphism. Note that uM = maxx∈[−1,1] u(x) here.

Proof. Fix x ∈ (0, 1). Integrating the differential equation in (2) from 0 to x gives

−
∫ x

0

(A(t)u′(t))′dt =


∫ x
0
f(t)dt = 0 x ∈ (0, x̂)∫ x

x̂
f(t)dt > 0 x ∈ (x̂, 1).

(11)

Recalling u′(0) = 0, the integral on the left hand side of the inequality (11) is equal to
−A(x)u′(x). Hence, one can obtain the desired results.

Theorem 2.4 infers the restriction of u to the interval (x̂, 1) is invertible, i.e.

(u|(x̂,1))−1 exists. Henceforth, this paper abuses the notation and writes u−1 instead of 
(u|(x̂,1))−1.

3 Main results

The main results of this note are gathered in this section that splits into three subsec-
tions.

3.1 Free boundary points and their locations

Definition 3.1. Let u be the solution to the boundary value problem (2). For α ∈ 
(0, uM ), the α-cut of u, denoted by uα, is define as follows.

uα = {x ∈ (−1, 1) : u(x) ≥ α}.

The boundary points of uα, denoted by ∂uα, are called the free boundary points of u:

∂uα = {±u−1(α)}.
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Theorem 3.1. If u is the solution to the boundary value problem (2), then for α ∈
(0, uM), the free boundary point u−1(α) is implicitly computed by

α =

∫ 1

u−1(α)

F (y)

A(y)
dy, (12)

where F (y) =
∫ y
0
f(x)dx.

Proof. First integrate the differential equation in (2) over uα = [−u−1(α), u−1(α)] which
yields

−
∫ u−1(α)

−u−1(α)

(A(x)u′(x))′dx =

∫ u−1(α)

−u−1(α)

f(x)dx. (13)

Recalling that u′ is odd, (13) leads to

−A(u−1(α))u′(u−1(α)) =

∫ u−1(α)

0

f(x)dx. (14)

By the definition of the derivative of inverse functions, (14) yields

−A(u−1(α))

(u−1)′(α)
=

∫ u−1(α)

0

f(x)dx.

Hence,

−(u−1)′(α) =
A(u−1(α))∫ u−1(α)

0
f(x)dx

.

Next, use the change of variable y = u−1(α) to obtain

−y′(α) =
A(y)∫ y

0
f(x)dx

=
A(y)

F (y)
= − dy

dα
, (15)

where F (y) =
∫ y
0
f(x)dx. Finally, by integrating (15), one can get∫ 1

u−1(α)

F (y)

A(y)
dy = −

∫ u−1(α)

1

F (y)

A(y)
dy =

∫ α

0

ds = α.

Example 1. Here is an example that confirms the validity of the formula (12). Consider
the following BVP: {

− d
dx

(
A(x)du

dx

)
= f(x), x ∈ (−1, 1)

u(±1) = 0.
(16)

A(x) = cos(x2) + 1, f(x) = cosx. One can obtain a numerical solution as Figure 1(a):
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Figure 1: (a)Numerical result of u in example 1; (b)Graph of e versus α

Let e be the error of true α and numerical α calculated by formula 12, i.e.

e = α−
∫ 1

u−1(α)

F (y)

A(y)
dy.

The graph Figure 1(b) plots the error with different values of α shows that the error is
sufficiently small. Thus, ∫ 1

u−1(α)

F (y)

A(y)
dy = α.

Example 2. Consider the following boundary value problem{
−((1 + x2)u′)′ = 1 x ∈ (−1, 1)
u(±1) = 0.

(17)

Here, A(x) = 1 +x2 and f(x) = 1, hence F (y) =
∫ y
0
f(x)dx = y. From the formula (12)

one can get

α =

∫ 1

u−1(α)

y

1 + y2
dy.

This, in turn, gives u−1(α) =
√

2e−2α − 1. Noted that since 2e−2α − 1 is non-negative,
it can be inferred α ≤ ln 2

2
. So, in particular, uM = ln 2

2
.

The next definition concerns the force function f(x) in (2).

Definition 3.2. The function f is said to be of Positon type if f(0) > 0.

Corollary 3.2. If f is of Positon type, then by Theorem 3.1:

uM = α =

∫ 1

0

F (y)

A(y)
dy.
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3.2 The force derivative and orthogonality

Throughout this section, such assumption is made that, for a small positive ε, the force
function f satisfies

{x ∈ [−1, 1] : f(x) > 0} ⊆ [−1 + ε, 1− ε]. (B)

Next, consider the following perturbations of f :

ft(x) = f(x− t), 0 < t < ε.

This models the time-dependent acting force f(x) along the wire. In a sufficiently small
length of time, f(x) is perturbed towards the right. In reality the slight translation of
force might happen. Note that under the assumption, {x ∈ [−1, 1] : ft(x) > 0} ⊆
[−1, 1]. Let ut denote the solution of (2) with f replaced by ft; i.e. ut is the solution of
the following: {

−(A(x)u′t)
′ = ft(x), in (−1, 1)

ut(±1) = 0

In the next definition, a new way shall be defined to differentiate u. In order not to
confuse this type of derivative with the usual one, this paper uses “dot” to indicate this
particular derivative.

Definition 3.3. Let u be the solution of (2) while ut be the solutions of (2) with f
replaced by ft. The force derivative of u is denoted by u̇ and defined as

u̇(x) = lim
t→0

ut(x)− u(x)

t
. (18)

An immediate question rises that whether or not the limit in (18) exists. This question
is addressed in the next lemma.

Lemma 3.3. The limit in (18) exists and its value is finite.

Proof. From Theorem 2.1 one can get,

ut(x) = C(t)

∫ x

−1

dy

A(y)
−
∫ x

−1

Ft(y)

A(y)
dy,

where

Ft(x) =

∫ x

−1
ft(y)dy =

∫ x

−1
f(y − t)dy and C(t) =

∫ 1

−1

∫ y
−1

ft(s)
A(y)

dsdy∫ 1

−1
dy
A(y)

.
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Here
ut(x)− u(x)

t
= H(x)

∫ 1

−1
G(y)dy −

∫ x

−1
G(y)dy,

H(x) =

∫ x
−1

dy
A(y)∫ 1

−1
dy
A(y)

and G(y) =

∫ y

−1

1

A(y)

f(s− t)− f(s)

t
ds.

Note that f(x) are smooth, so one can derive

u̇(x) = −
∫ x
−1

dy
A(y)∫ 1

−1
dy
A(y)

∫ 1

−1

∫ y

−1

f ′(s)

A(y)
dsdy +

∫ x

−1

∫ y

−1

f ′(s)

A(y)
dsdy. (19)

Theorem 3.4. Let u be the solution of (2), and u̇ be its force derivative. Then u̇ is
L2-orthogonal to the force function f(x); i.e.

〈u̇, f〉L2(−1,1) :=

∫ 1

−1
u̇(x)f(x) dx = 0. (20)

Proof. Begin the proof by recalling the boundary value problem{
−(A(x)u′t(x))′ = ft(x) in (−1, 1)
u(±1) = 0.

(21)

Consider a test function ϕ ∈ C∞0 (−1, 1). Multiply the differential equation in (21) by
ϕ and integrate the result over the interval (−1, 1) to obtain

−
∫ 1

−1
ϕ(A(x)u′t)

′dx =

∫ 1

−1
ft(x)ϕ(x)dx. (22)

Applying integration by parts twice to the integral on the left hand side of (22), and
keeping in mind that ϕ(±1) = 0, one can get

−
∫ 1

−1
ut(x)(A(x)ϕ′(x))′dx =

∫ 1

−1
ft(x)ϕ(x)dx. (23)

Similarly, one can derive

−
∫ 1

−1
u(x)(A(x)ϕ′(x))′dx =

∫ 1

−1
f(x)ϕ(x)dx. (24)

From (23) and (24) it can be found that

lim
t→0

∫ 1

−1

ut(x)− u(x)

t
(A(x)ϕ′(x))′dx = − lim

t→0

∫ 1

−1

ft(x)− f(x)

t
ϕ(x)dx. (25)
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Changing the order of limits and integrals in (25) gives∫ 1

−1
u̇(x)(A(x)ϕ′(x))′dx =

∫ 1

−1
f ′(x)ϕ(x)dx. (26)

Apply integration by parts twice to the left hand side integral of (26). Note that u̇ is
twice continuously differentiable, and that ϕ(±1) = 0, then one can obtain∫ 1

−1
(A(x)u̇′(x))′ϕ(x)dx =

∫ 1

−1
f ′(x)ϕ(x)dx, ∀ϕ ∈ C∞0 (−1, 1). (27)

From (27) and the trivial facts that u̇(±1) = 0, one can derive{
(A(x)u̇′(x))′ = f ′(x), x ∈ (−1, 1)

u̇(±1) = 0.
(28)

Next, multiply the differential equation in (28) by u and integrate the result on (−1, 1).
Because u(±1) = 0, the following identity holds:

−
∫ 1

−1
A(x)u̇′(x)u′(x)dx =

∫ 1

−1
f ′(x)u(x)dx. (29)

Since u(x) is even, and f ′(x) odd, the integral
∫ 1

−1 f
′(x)u(x)dx vanishes. (29) implies

that ∫ 1

−1
A(x)u̇′(x)u′(x)dx = 0. (30)

Multiply the differential equation in (2) by u̇, integrate the result on (−1, 1), and apply
integration by parts, to get∫ 1

−1
A(x)u̇′(x)u′(x)dx =

∫ 1

−1
f(x)u̇(x)dx. (31)

The assertion (20) follows from (30) and (31).

Example 3. This example follows from Example 1, with A(x) = cos(x2) + 1, f(x) =
cosx. It demonstrates the existence of u̇ as well as its orthogonality to f .

Approximate u̇ with a converging sequence {u̇ti}, where ti = 10−i, and u̇ti is defined as
follows:

u̇ti(x) =
uti(x)− u(x)

(32)
ti

If u̇ exists, u̇ ti converges to u̇ as i increases. From Figure 2, it is clear that u̇ ti converges. 
Hence the existence of u̇ i s verified, which i s consistent with Lemma 3.3. Use this u̇ t6 as
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a numerical approximation of u̇ and look into the orthogonality property in the Hilbert
space L2(−1, 1). The inner product of u̇t6 and f is found to be of 10−7 magnitude,
which is consistent with Theorem 3.4.
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Figure 2: Behavior of u̇ti . Here when t = t6 = 10−6, the inner product of u̇t6 and f is
1.5159× 10−7.

3.3 Schwarz symmetrization and estimates

Throughout this section the assumption of the even-ness of function hold for A(x) and
f(x), except that the assumption (B) is no longer enforced. Recall the definition of the
Schwarz symmetrization of a function h : [−1, 1]→ [0, 1].

Definition 3.4. For a smooth function h : [−1, 1]→ [0,∞), the Schwarz symmetriza-
tion of h is denoted by h] such that h] : [−1, 1]→ [0,∞) uniquely satisfies the following
conditions:

i) The length of h]α, the α-cut of h], is equal to the length of hα;
ii) The function h] is even, and non-increasing on the interval [0, 1].

A useful property of Schwarz symmetrization, referring to [1], is the following inequality:∫ γ

−γ
h(t)dt ≤

∫ γ

−γ
h](t)dt, ∀γ ∈ (0, 1). (33)

It is now ready to state and prove the last main result of this note which should be
reminiscent of the famous G. Talenti’s inequality, in reference to [2].
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Theorem 3.5. Let u be the unique solution of the boundary value problem (2). Let
v(x) be the solution of the following boundary value problem:{

−Z ′′(x) = f ](x) in (−1, 1)

Z(±1) = 0,
(34)

where f ](x) denotes the Schwarz symmetrization of f(x). Then

u(x) ≤ v(x) ∀ x ∈ (−1, 1). (35)

Proof. Set vM = maxx∈[−1,1] v(x), and as usual uM denotes the maximum value of u on
[−1, 1]. Fix α ∈ (0, uM ∧ vM), where “a ∧ b” denotes the minimum of a and b. Then,
by (12), ∫ 1

u−1(α)

F (y)

A(y)
dy =

∫ 1

v−1(α)

F̃ (y)dy, (36)

where

F (y) =

∫ y

0

f(x)dx and F̃ (y) =

∫ y

0

f ](x)dx.

Inequality (33) infers F (y) ≤ F̃ (y). Together with A(x) ≥ 1, it can be deduced from
(36) that ∫ 1

v−1(α)

F̃ (y)dy ≤
∫ 1

u−1(α)

F̃ (y)dy,

hence u−1(α) ≤ v−1(α). This, in turn, implies that

[−u−1(α), u−1(α)] ⊆ [−v−1(α), v−1(α)], ∀α ∈ (0, uM ∧ vM). (37)

Since f(x) is positive at some point, f ](0) is a positon type. Hence v(x) is strictly
decreasing on [0, 1]. Thus, v−1(vM) = 0. If uM ≥ vM , then vM ∈ (0, uM ∧ vM ].
u−1(vM) ≤ 0, so uM = u(0) = vM . Together with (37), these complete the proof of
(35).
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