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Abstract

The modeling of three-phase fluid flow has many important ap-
plications in reservoir simulation. In this paper, we introduce a
high order method for sequentially solving the phase pressure-
saturation formulation of three-phase flow. The sequential ap-
proach, while less stable than a fully coupled approach, is more
computationally efficient. We present a discontinuous Galerkin
method in space, suitable for the sequential approach due to its
high-order accuracy. We consider coarser meshes with high de-
gree polynomials to minimize the dimension of the system while
maximizing accuracy. Numerical results are given for homoge-
neous media.

1 Introduction

The modeling of three-phase flow – particularly of water, oil and gas – in porous media
has many important applications, especially in the energy-related industry. Efficient
extraction of fossil fuels is becoming increasingly crucial due to limited supply and
increasing demand. The equations that model these phenomena are often extremely
complex with no known analytical solution. Thus, the need for accurate and robust
numerical solvers is a key component to effectively modeling three-phase flow in
porous media.

In this paper, we discuss a high-order method for solving the pressure-saturation
formulation of the three-phase flow equations. For the spatial discretization we use
a discontinuous Galerkin (DG) method. The DG methods have recently gained pop-
ularity in multiphase flow simulations [9, 10, 14, 5] for three main reasons: (1) high
degree of flexibility in regards to modifying the degree of the basis; (2) well-suitedness
to handling the convective terms introduced in the three-phase formulation; and (3)
local mass conservation, which is a crucial property for flow problems in porous media
[13].

It is well known that the pressure-saturation formulation results in a strong cou-
pling of pressure and saturations. Rather than solving the equations simultaneously,
which can become very computationally expensive due to the necessity of computing a
large Jacobian at each time step, we choose to decouple the equations and solve them
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The Three-Phase Flow Formulation

sequentially. More traditional methods for simulating multiphase flow include finite
differencing schemes [12, 4, 3], classical finite element methods [6], and finite volume
schemes [2]. These methods are of low order, typically no more than second order
in accuracy. Furthermore, the sharp saturation fronts that are typical of numerical
reservoir simulation [9] may not be well-resolved by these traditional methods, but
are handled easily by the discontinuous basis functions employed by the DG method.
The goal of our work is to investigate a more accurate and flexible method using
coarser meshes and higher polynomial degrees. We consider varying the degree of
the basis while keeping the global of the dimension of system constant. In this way,
we can compare the computational efficiency of a high degree basis while keeping all
other parameters constant.

This paper will focus on one-dimensional simulations. We first define the three-
phase formulation in Section 2. The discrete formulation of the model problem is then
given in Section 3 followed by the timestepping scheme and decoupling algorithm in
Section 4. Finally, we present several numerical simulations in Section 5 followed by
conclusions.

2 The Three-Phase Flow Formulation

The governing equations for incompressible three-phase flow in porous media are
given by Darcy’s law and the mass conservation equation [3, 12]:

∂(φsα)

∂t
+∇ · uα = qα (2.1a)

uα = −kkrα
µα
∇pα (2.1b)

where α is the phase corresponding to water, oil and gas (w, o and g respectively)
and φ and k are the porosity and absolute permeability of the medium. The variables
ρα, uα and µα are the density, volumetric flow rate, and viscosity of the phase. The
saturation and pressure of the α phase are given by sα and pα. Additionally, krα is
the relative permeability of the phase. Lastly, qα is the source term. It denotes an
injection or leakage of the α-phase from the system. We neglect gravity effects for
the test cases in this paper.

From equations (2.1a) and (2.1b), we have three pairs of equations for three-
phase flow. In order to obtain a numerical solution, we will use the phase pressure-
saturation formulation in terms of a total velocity [8]. Before giving the phase
pressure-saturation formulation, we define the phase mobility λα and fractional flow
fα. The total mobility λ is the sum of the phase mobilities. We have:

λα =
krα
µα

, λ = λw + λo + λg, fα =
λα
λ

Choosing the primary variable for pressure to be the oil pressure, we introduce the
water-oil and gas-oil capillary pressures pcwo and pcgo following [3]:

pcwo = pw − po, pcgo = pg − po

The capillary pressures are functions of the phase saturations [8]. We express the
total velocity u – the sum of the phase velocities uα – in terms of the oil pressure
and oil capillary pressures:

u = −kλ (∇po + fw∇pcwo + fg∇pcgo) (2.2)
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2.1 The Test Case: Quadratic Capillary Pressures

Using the definition that the sum of the saturations is unity and summing equation
(2.1a) for all three phases, we obtain:

∇ · u =
∑
α

qα (2.3)

The initial condition and boundary conditions for the oil pressure are given by

po(t = 0) = p0o in Ω

po = po,D on ∂Ω× [0, T ]

Here, Ω denotes the computational domain and ∂Ω, its boundary. T denotes the final
time. The saturation equations are expressed in terms of u and thus dependent on the
oil pressure and capillary pressures. Furthermore, the presence of the ∇(pcβo− pcαo)
term increases the strength of the coupling of the system:

∂(φsα)

∂t
+∇ ·

fαu + kfα
∑
β

λβ∇(pcβo − pcαo)

 = qα in Ω (2.4)

with boundary conditions and initial condition given by

sα(t = 0) = s0α in Ω

sα = sα,D on ∂Ω× [0, T ]

We consider the case of the pressure-saturation formulation where the capillary pres-
sures are quadratic and increasing.

2.1 The Test Case: Quadratic Capillary Pressures

We take k = 1 and φ = 1. Additionally, qw = qo = qg = 0. The phase mobilities are
chosen as:

λw = sw, λg = sg, λo = 1− sw − sg
We choose the following quadratic capillary pressures:

pcwo = s2w − 1, pcgo = s2g − 1 (2.5)

The three-phase flow equations corresponding to the quadratic capillary pressures
take the following form:

− ∂2po
∂x2

=
∂

∂x

(
2s2w

∂sw
∂x

)
+

∂

∂x

(
2s2g

∂sg
∂x

)
(2.6a)

∂sw
∂t

+
∂

∂x

((
−∂po
∂x
− 2s2w

∂sw
∂x

)
sw

)
− ∂

∂x

(
2s2w(1− sw)

∂sw
∂x

)
= 0 (2.6b)

∂sg
∂t

+
∂

∂x

((
−∂po
∂x
− 2s2g

∂sg
∂x

)
sg

)
− ∂

∂x

(
2s2g(1− sg)

∂sg
∂x

)
= 0 (2.6c)

We can see that the first equation can be expressed as a diffusion equation for the
oil pressure with a source term that is dependent on the water and gas saturations.
The second and third equations are non-linear convection-diffusion equations. The
presence of the pressure gradient in the convection coefficient causes a coupling of
the saturations with the pressure.

Furthermore, the convection coefficient is directly related to the pressure gradi-
ent. For a large pressure gradient, the problem becomes convection-dominated. The
conventional continuous finite element methods are ill-posed to handle the convective
terms in this regard [11]. Thus, we choose the discontinuous Galerkin method in
space, which is shown to possess superior stability properties for convection domi-
nated problems [1].
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3 The DG Formulation for a Convection-Diffusion Equation

3 The DG Formulation for a Convection-Diffusion Equation

Each of the saturation equations takes the form of a non-linear convection-diffusion
equation:

∂s(x, t)

∂t
+

∂

∂x

(
γ

(
s,
∂s

∂x

)
s(x, t)

)
− ∂

∂x

(
α(s)

∂s(x, t)

∂x

)
= f(x, t) x0 ≤ x ≤ xN

(3.1)
s(x0, t) = g0(t)

s(xN , t) = gN (t)

s(x, t0) = s0

Here, the convection coefficient γ is a function of both the solution s and its spatial
derivative ∂s

∂x . We define in the following sections a bilinear operator a(r; s, v) asso-
ciated with the diffusion term and another bilinear operator b(r; s, v) associated with
the convection term. We associate the right-hand side with the linear operator `(v).
Additionally, the L2 inner product on [x0, xN ] is denoted by (·, ·). Thus, the discrete
formulation is

(
∂s

∂t
, v) + b(s;u, v) + a(s;u, v) = `(v)

We partition the domain [x0, xN ] into N intervals by introducing the interior nodes
{x1, . . . , xn, xn+1, . . . , xN−1}. The subinterval [xn, xn+1] is denoted by In. We con-
sider uniform meshes in this paper with mesh size h:

h = x1 − x0 = · · · = xN − xN−1

Let VDG denote the space of piecewise discontinuous polynomials of degree p:

VDG = {v : v|In ∈ Pp(In), ∀n = 0, 1, . . . , N − 1}

We seek sh ∈ VDG such that for all vh ∈ VDG:

(
∂sh
∂t

, vh) + b(sh; sh, vh) + a(sh; sh, vh) = `(vh) (3.2)

3.1 The Diffusion Term

We first define the jump and average as follows:

{v(xn)} =
1

2
(v(x+n ) + v(x−n ))

[v(xn)] = v(x−n )− v(x+n )

where v(x+n ) = limx→x+
n
v(x) and v(x−n ) = limx→x−

n
v(x). The DG formulation of the

diffusion term is given in [13]:

a(r; s, v) =
N−1∑
n=0

∫ xn+1

xn

α(r)s′(x)v′(x)dx−
N∑
n=0

{α(r)s′(xn)}[v(xn)]

+ ε
N∑
n=0

{α(r)v′(xn)}[s(xn)] +
N∑
n=0

σ

h
[s(xn)][v(xn)]

(3.3)

In this bilinear form, σ is a penalty parameter introduced to “penalize” the jump
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3.2 The Convection Term

discontinuities of u and v. Additionally, ε is a stabilizing parameter; for ε = −1,
a(s;u, v) is symmetric and for ε ∈ {0, 1}, a(s;u, v) in non-symmetric. Note that for
the simplicity of notation, we denote the spatial derivative of v by v′.

For the discretization of the three-phase formulation, we use the non-symmetric
interior penalty Galerkin (NIPG) method with ε = 1 and σ = 1 first introduced by
Girault, Rivière and Wheeler in [7].

3.2 The Convection Term

The DG formulation of the convection term is obtained in the usual way by multi-
plying by a test function v ∈ VDG and integrating over each interval. We introduce
an upwinding scheme for the interior points of the mesh [1]:

N−1∑
n=0

∫ xn+1

xn

(γ(r, r′)s(x))′v(x)dx =−
N−1∑
n=0

∫ xn+1

xn

γ(r, r′)s(x)v′(x)dx

+
N∑
n=0

sup(xn){γ(rn, r
′
n)}[v(xn)]

sup(xn) =

 lim
δ→0

s(xn − δ), {γ(rn, r
′
n)} > 0

lim
δ→0

s(xn + δ), {γ(rn, r
′
n)} < 0

The system is updated using information from the direction of the flow. For “upwind”
(positive) convection, we update from the left. For “downwind” (negative) convection,
we update from the right. Thus, the bilinear operator is:

b(r; s, v) = −
N−1∑
n=0

∫ xn+1

xn

γ(r, r′)s(x)v′(x)dx+
N∑
n=0

sup(xn){γ(rn, r
′
n)}[v(xn)] (3.4)

3.3 The Right-Hand Side

Following [13], the right-hand side corresponding to the diffusion term is:

`(v) =

∫ xN

x0

f(x, t)v(x)dx+ εα(s(x0))v′(x0)g0(t)− σ

h
v(x0)g0(t)

− εα(s(xN ))v′(xN )gN (t) +
σ0

h
v(xN )gN (t)

(3.5)

Again, we add the stabilizing terms and the penalty terms in order to balance the
corresponding terms in a(r; s, v).

3.4 Discretization in Time

We implement a backward Euler method for the time discretization. Namely,

(
skh − s

k−1
h

∆t
, vh) + b(skh; skh, vh) + a(skh; skh, vh) = `(vh) (3.6)
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4 A Decoupling Algorithm for Three-Phase Flow

4 A Decoupling Algorithm for Three-Phase Flow

We take the following steps to decouple the phase pressure-saturation equations. In
equation (2.6a), let the source term in the right-hand side be denoted by f(sw, sg).
In order to solve for the oil pressure at the kth time step, pko , we use information from
the k − 1 time step:

− ∂2pko
∂x2

= f(sk−1w , sk−1g ) (4.1)

Thus, the oil pressure equation is now a linear elliptic problem. The gas and water
saturation equations are each non-linear. Let bg and bw denote the bilinear forms of
the convection term for the gas and water saturation equations, respectively. Simi-
larly, let ag and aw denote the bilinear forms of the diffusion term for the gas and
water saturation equations, respectively.

We first solve for pko using sk−1w and sk−1g . Then, we use Newton’s method to solve

for skw and skg . The water saturation equation is:

Fw(skw) = (
skw − sk−1w

∆t
, vh) + bw(skw; skw, vh)− aw(skw; skw, vh)− `(vh) (4.2)

Since pko is known, the water saturation equation is non-linear in skw and
∂skw
∂x . Denote

the ith Newton iteration by (skw)i. Then (skw)i+1 is written formally as:

(skw)i+1 = (skw)i −
(
∂Fw
∂skw

)−1
Fw
(
(skw)i

)
The initial guess, (skw)0, is chosen to be the solution from the previous time step,
sk−1w . Now let ei+1

skw
denote the error in the (i + 1)th Newton iterate at the kth time

step, i.e. the difference between the ith and (i+ 1)th iterations:

ei+1
skw

= |(skw)i+1 − (skw)i|

The stopping criterion for the Newton loop is chosen to be when the error between
successive iterates is less than a chosen tolerance value (10−10 in our numerical tests).

A similar case follows for the gas saturation equation:

Fg(skg) = (
skg − sk−1g

∆t
, vh) + bg(s

k
g ; skg , vh) + ag(s

k
g ; skg , vh)− `(vh) (4.3)

After solving for skw and skg , we compute f(skw, s
k
g) and use this quantity to compute

pk+1
o . A template of the scheme is given in Algorithm 1.

Lastly, we need to consider the magnitude of the time step. One issue with using
a backward Euler method in combination with a decoupling scheme is that the time
step must be chosen wisely since using saturations from the previous time step to
solve for the pressure is inherently less implicit. Choosing a time step that is too
small is computationally inefficient while choosing a timestep that is too large may
result in instability [4].
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5 Numerical Results

Algorithm 1: Decoupling Scheme

1 compute s0w and s0g using L2 projection;

2 compute f(s0w, s
0
g), the source term for p1o,DG using s0w,DG and s0g,DG;

3 /* k = T corresponds to the stopping time */
4 for k = 1, 2, . . . , T do

5 set tol and maxiter, the tolerance and maximum iterations for Newton’s
method;

6 initialize error iterates eskw and eskg ;

7 initialize iter1, iter2 = 0;

8 compute f(sk−1w , sk−1g );

9 compute pko using f(sk−1w , sk−1g ) and solving equation (4.1);

10 /* Newton loop */
11 while (iter1 < maxiter and eskw > tol) do

12 compute skw using pko and sk−1w and solving equation (4.2);
13 compute error iterate eskw for the current Newton iteration;

14 iter1 = iter1 + 1;

15 end

16 /* Newton loop */
17 while (iter2 < maxiter and eskg > tol) do

18 compute skg using pko and sk−1g and solving (4.3);

19 compute error iterate eskg for the current Newton iteration;

20 iter2 = iter2 + 1;

21 end

22 end

5 Numerical Results

We present several numerical simulations. First, we have implemented a discontinuous
Galerkin method in space and backward Euler method in time for a single non-linear
convection-diffusion equation modeled by equation (3.1). We compute errors and
convergence rates for a known solution.

Next, we solve a system of three equations strongly resembling equations (2.6a)-
(2.6c) with a known smooth solution. This is done by implementing a discontinuous
Galerkin method in space, a backward Euler method in time and the decoupling
scheme given in Algorithm 1. Errors and convergence rates are computed for known
solutions.

Lastly, we simulate the three-phase flow equations from equations (2.6a)-(2.6c)
for which there is no known analytical solution.
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5.1 Example 1: A Non-linear Convection-Diffusion Problem

5.1 Example 1: A Non-linear Convection-Diffusion Problem

Consider the initial boundary value problem modeled by (3.1) on the domain [0, 1].
We take the following convection and diffusion coefficients:

γ(s,
∂s

∂x
) = −2s2

∂s

∂x
, α(s) = s+ 2

We consider the case with the exact solution s(x, t) = t sinx. We take the errors in
the L2 and H1 norms defined as follows [13]:

‖s− sh‖L2(0,1) =

(∫ 1

0

(s− sh)2dx

) 1
2

‖s− sh‖H1(0,1) =

(
N−1∑
n=0

∫ xn+1

xn

(s′ − s′h)2dx

) 1
2

(5.1)

We perform a mesh refinement study with h ∈ { 12 ,
1
4 ,

1
8 ,

1
16 ,

1
32} and compute the

convergence rates for bases of degrees p ∈ {2, 3, 4}.

p N ‖s− sh‖L2(0,1) L2 Rate ‖s− sh‖H1(0,1) H1 Rate
2 1.7540× 10−4 ——— 1.8439× 10−3 ———
4 2.8128× 10−5 2.6406 4.5583× 10−4 2.0162

2 8 5.8992× 10−6 2.2534 1.1270× 10−4 2.0160
16 1.4000× 10−6 2.0751 2.7988× 10−5 2.0096
32 3.4437× 10−7 2.0233 6.9725× 10−6 2.0051
2 2.9321× 10−6 ——— 1.5577× 10−5 ———
4 1.5995× 10−7 4.1962 1.8763× 10−6 3.0535

3 8 9.0028× 10−9 4.1511 2.2115× 10−7 3.0848
16 5.1702× 10−10 4.1221 2.6478× 10−8 3.0621
32 3.0558× 10−11 4.0806 3.2267× 10−9 3.0367
2 4.9240× 10−8 ——— 4.7538× 10−7 ———
4 1.6023× 10−9 4.9416 3.0821× 10−8 3.9471

4 8 5.2191× 10−11 4.9402 1.9443× 10−9 3.9866
16 1.8389× 10−12 4.8268 1.2173× 10−10 3.9975
32 4.4163× 10−13 4.8646 1.2325× 10−11 3.9665

Table 1: Convergence rates in the L2 and H1 norms for example 1. We take the time
step ∆t proportional to hp+1, i.e. ∆t = hp+1.

For the NIPG method, we expect the convergence rates in the L2 and H1 norms
to be p and p, respectively if p is even. If p is odd, then the convergence rates are
p + 1 and p, respectively [13]. As shown in Table 1, the convergence rates for the
test problem conform to these expected rates for p = 2 and p = 3. For p = 4, the
convergence rate is actually super-optimal. Thus, the DG formulation for the non-
linear convection-diffusion problem with the convection coefficient dependent on u
and ∂u

∂x exhibits convergence.

5.2 Example 2: A Non-linear, Coupled System

We now test the decoupling scheme on a system resembling the three-phase flow equa-
tions for linear capillary pressures. Our goal is to determine whether the decoupling

81



5.2 Example 2: A Non-linear, Coupled System

scheme still results in a convergent system, and if these convergence rates match what
is expected by the NIPG method. Consider the system given by equations (2.6a)-
(2.6c) on the domain [0, 1]. We modify the diffusion and convection coefficients for
the purposes of this example. We modify the right-hand side of equations (2.6b) and
(2.6c) to include non-zero source terms f1(x, t) and f2(x, t):

− ∂2po
∂x2

=
∂

∂x

(
sw
∂sw
∂x

)
+

∂

∂x

(
sg
∂sg
∂x

)
(5.2a)

∂sw
∂t

+
∂

∂x

((
−∂po
∂x
− sw

∂sw
∂x

)
sw

)
− ∂

∂x

(
sw(1− sw)

∂sw
∂x

)
= f1(x, t) (5.2b)

∂sg
∂t

+
∂

∂x

((
−∂po
∂x
− sg

∂sg
∂x

)
sg

)
− ∂

∂x

(
sg(1− sg)

∂sg
∂x

)
= f2(x, t) (5.2c)

We choose the boundary conditions and initial condition to satisfy the exact solutions
given by po(x, t) = 1

4 cos(2xt) − 1
2 t

2e2x, sw(x, t) = tex and sg(x, t) = sin(xt). We
obtain a numerical solution to the system by following the method in Algorithm 1.

The errors and convergence rates in the L2 and H1 norms are computed and given
in Tables 2-4. We see that using the decoupled scheme still gives convergence. In
fact, the convergence rates are actually super-optimal when p = 3: we expect the
rates to be approximately 4.00 and 3.00 in the L2 and H1 norms, respectively, but
the rates are actually about 4.00 and 4.00, respectively.

p N ‖po − po,h‖L2(0,1) L2 Rate ‖po−po,h‖H1(0,1) H1 Rate
3 2 2.4993× 10−3 ——— 8.0765× 10−3 ———

4 3.0377× 10−4 3.0405 9.8261× 10−4 3.0390
8 1.9783× 10−5 3.9407 6.4012× 10−5 3.9402
16 1.2907× 10−6 3.9380 4.1784× 10−6 3.9373

4 2 6.2500× 10−4 ——— 2.0196× 10−3 ———
4 3.8458× 10−5 4.0225 1.2430× 10−4 4.0222
8 1.2201× 10−6 4.9782 3.9439× 10−6 4.9781
16 3.8134× 10−8 4.9998 1.2328× 10−7 4.9996

Table 2: Convergence rates in the L2 and H1 norms for po in example 2. We take
the time step ∆t proportional to hp+1, i.e. ∆t = hp+1.

p N ‖sw−sw,h‖L2(0,1) L2 Rate ‖sw −
sw,h‖H1(0,1)

H1 Rate

3 2 1.1206× 10−4 ——— 4.5640× 10−4 ———
4 7.4396× 10−6 3.9129 3.6657× 10−5 3.6382
8 4.6405× 10−7 4.0029 2.3991× 10−6 3.9335
16 3.0048× 10−8 3.9489 1.7381× 10−7 3.7869

4 2 9.5746× 10−6 ——— 4.3683× 10−5 ———
4 2.8184× 10−7 5.0863 1.6502× 10−6 4.7264
8 8.6946× 10−9 5.0186 5.1764× 10−8 4.9945
16 2.7074× 10−10 5.0051 1.6348× 10−9 4.9848

Table 3: Convergence rates in the L2 and H1 norms for sw in example 2. We take
the time step ∆t proportional to hp+1, i.e. ∆t = hp+1.
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5.3 Example 3: Three-Phase Flow Simulation for Quadratic Capillary Pressures

p N ‖sg − sg,h‖L2(0,1) L2 Rate ‖sg−sg,h‖H1(0,1) H1 Rate
3 2 2.9475× 10−5 ——— 1.3376× 10−4 ———

4 2.0186× 10−6 3.8681 1.1479× 10−5 3.5426
8 1.2527× 10−7 4.0102 7.2632× 10−7 3.9822
16 8.1848× 10−9 3.9306 4.7633× 10−8 3.9306

4 2 1.5888× 10−6 ——— 8.5694× 10−6 ———
4 4.8969× 10−8 5.0200 3.4245× 10−7 4.6452
8 1.5012× 10−9 5.0276 1.0634× 10−8 5.0092
16 4.6902× 10−11 5.0004 3.3199× 10−10 5.0014

Table 4: Convergence rates in the L2 and H1 norms for sg in example 2. We take
the time step ∆t proportional to hp+1, i.e. ∆t = hp+1.

5.3 Example 3: Three-Phase Flow Simulation for Quadratic Capillary
Pressures

We now solve the system given by equations (2.6a)-(2.6c). The initial conditions are
visualized in Figure 1 given by the following distributions:

po(x, 0) = 200− 199x (5.3)

sw(x, 0) =

0.8 +
0.5

0.1
x, x < 0.1

0.3, x > 0.1
(5.4)

sg(x, 0) =

0.1 +
0.4

0.1
x, x < 0.1

0.5, x > 0.1
(5.5)

The boundary conditions of the pressure and saturations are

po(0, t) = 200, sw(0, t) = 0.8, sg(0, t) = 0.1

po(1, t) = 1, sw(1, t) = 0.3, sg(1, t) = 0.5
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Figure 1: Initial conditions for the system of equations given by (2.6a)-(2.6c).

For this test, we take h = 1/5 and p = 10 with a time step of ∆t = 0.00001 s.
Pressure and saturation surves are plotted at increments of every 30 time steps with
a stopping time of 0.0036 s. The numerical results are given in Figures 2-4.
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Next, we consider the global dimension of the system. For the discontinuous
Galerkin method, the dimension is given by N(p + 1) where p is the degree of the
polynomial basis and N is the number of mesh elements. Considering the case with
p = 10 and h = 1/5, the global dimension is 55. Fixing the time step at ∆t =
0.00001 s, we vary p and N while keeping the global dimension roughly constant. In
this way, we might expect the computation times to be similar. However, as Figure
5 demonstrates, this is not the case.

As p increases and N(p + 1) stays constant, we see that the CPU time initially
decreases drastically then begins to level off around p = 5. This seems to suggest
that it is actually advantageous to use a higher degree basis with less mesh elements.
However, for p larger than 10, poor conditioning of the local matrices increases the
CPU time and causes instabilities in the solutions.

Next, we consider the accuracy of the solution on the coarse mesh, h = 1/5 and
p = 10. We take the solution on a much finer mesh, h = 1/40 and p = 3, which has
high accuracy, and compare it to the solution on the coarse mesh. In Figures 6-8,
we superimpose the solutions at time t = 0.0012. As indicated by the results, the
solution on the coarse mesh is just as accurate as the solution on a much finer mesh.
Thus, our choice of h = 1/5 and p = 10 is not only computationally efficient but also
stable and accurate.
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Figure 2: Numerical result for gas saturation with quadratic capillary pressures, ∆t =
0.00001, p = 10 and h = 1/5. Plotted at every 30th time step.

6 Conclusions

In this paper, we have presented a discontinuous Galerkin discretization in space
for simulating the phase pressure-saturation formulation of three-phase flow in one-
dimension. Using a backward Euler method in time, we decouple the system and
solve the equations sequentially. We show that the solution is convergent using this
scheme as long as the time step is chosen carefully.
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Figure 3: Numerical result for water saturation with quadratic capillary pressures, ∆t =
0.00001, p = 10 and h = 1/5. Plotted at every 30th time step.
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Figure 4: Numerical result for oil pressure with quadratic capillary pressures, ∆t = 0.00001,
p = 10 and h = 1/5. Plotted at every 30th time step.
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Figure 5: CPU times for quadratic capillary pressures.
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Figure 6: A comparison of numerical results on the coarse mesh and fine mesh for gas
saturation at t = 0.0012 with quadratic capillary pressures.

Our simulations of the three-phase flow demonstrate that solutions on coarser
meshes with higher polynomial degrees are actually more computationally efficient
than solutions on finer meshes with the same global dimension. Furthermore, we
compute the solution on a fine mesh and show that solution on the coarser mesh has
a similar degree of accuracy.

Future work on this subject includes an adaptation to two-dimensions. Addi-
tionally, high-order discontinuous Galerkin methods are well-suited to GPU high-
performance computing. Thus, we could develop an algorithm that is more compu-
tationally efficient in terms of CPU time.

86



6 Conclusions

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

s w
(x

,t
)

Water Saturation at t=0.0012 s

 

 

p=3, h=1/40

p=10, h=1/5

Figure 7: A comparison of numerical results on the coarse mesh and fine mesh for water
saturation at t = 0.0012 with quadratic capillary pressures.
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Figure 8: A comparison of numerical results on the coarse mesh and fine mesh for oil pressure
at t = 0.0012 with quadratic capillary pressures.
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