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Abstract. This paper is a generalization of the work of J.J. Green in Calculating the maximum
modulus of a polynomial using Stečkin’s Lemma. This lemma is generalized to higher dimensions
and is used in an algorithm to locate the absolute global max of a polynomial on the polydisk. How
to apply this algorithm to the real sphere and the complex ball is also explained.

1. Introduction. The main goal of this paper is to show that the work of J.J.
Green in [1] can be generalized to higher dimensions. Green developped an algorithm
to locate the maximum modulus of a polynomial on the unit disk using a bound
obtained with Stečkin’s Lemma. Given an analytic polynomial p, we can define its
maximum modulus on the unit disk

‖p‖∞ := sup{|p(z)| : z ∈ C, |z| ≤ 1}

The maximum modulus principle[2] tells us that the maximum modulus is attained
on the boundary of the domain of definition, thus in order to locate it, we can restrict
ourselves at finding

sup{|p(eit)| : t ∈ [0, 2π]}

The way Green finds this supremum is by subdividing [0, 2π] into many small inter-
vals, evaluating p at their middle point, and then looking if some bound is respected.
If the bound is not respected for an interval, then this interval is discarded and the
remaining intervals are subdivided into smaller ones, and so on. The bound he uses
is a bound obtained by the following lemma[3]:

Lemma 1.1 (Stečkin’s Lemma). Let p(t) =
∑d
n=−d cne

int be real trigonometric
polynomial of degree d such that ‖p‖∞ = p(0) = 1, then for |t| ≤ π

d we have

p(t) ≥ cos (dt)

In order to apply this lemma to his problem, Green defined a new polynomial

q(t) = |p(eit)|2 = p(eit)p(eit)

and thus could derive a bound by substituting p for q in the lemma. What we will
do in this paper is to generalize this process to higher dimensions, i.e. finding the
maximum modulus of a multivariate polynomial on the polydisk, the real sphere and
the complex ball, but first we need to explicit some definitions.

2. Definitions. Since we are working with multivariate polynomials in this pa-
per, we will be using the multi-index notation. If p(z) =

∑
|n|≤d cnz

n is a multivariate
polynomial, then

• z = (z1, . . . , zk)
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• n = (n1, . . . , nk)
• zn = z1

n1 · · · zknk

• 0 = (0, . . . , 0) and 1 = (1, . . . , 1)
• eit = (eit1 , . . . , eitk)
• eint = ei(n1t1+···inktk)

The homogeneous degree of p is denoted

d = max
n

(|n|) where |n| = |n1|+ . . .+ |nk|

The polydisk is the k-dimensional generalization of the unit disk

Dk = {z ∈ Ck : |zj | ≤ 1 for j = 1 . . . k}

and its boundary, usually called the distinguished boundary, is

Tk = {z ∈ Ck : |zj | = 1 for j = 1 . . . k}
= {(eit1 , . . . , eitk) ∈ Ck : (t1, . . . , tk) ∈ [0, 2π]k}

We will use the term maximum modulus of the polydisk for

‖p‖∞ = sup{p(z) : z ∈ Ck, |zj | = 1 for j = 1 . . . k}

3. Stečkin’s Lemma generalization. This theorem is a very good estimate of
the value of a trigonometric polynomial around a global maximum. Unfortunatly it
has been proven only in the one-variable case. In order to find the maximum modulus
of an analytic polynomial in k variables, we need to generalize this estimate. This
requires a little bit of proof, so we start by proving a lemma that will be used in the
proof.

Lemma 3.1. Let t ∈ [−πd ,
π
d ]k, then there is s ∈ R,m ∈ Zk such that |s| ≤

π
dmax1≤j≤k |mj | and mjs = t̃j for j = 1 . . . k, where t̃j is arbitrary close to tj.

Proof. Let n ∈ N be as big as wanted. Define t̃j
n to be tj but with its decimal

expansion truncated after the nth decimal. Choose s = 10−n and mj = 10nt̃j
n then

mjs = t̃j
n for j = 1, . . . , k. We have

|s| ≤ π

dmax1≤j≤k |mj |
⇐⇒ |mj ||s| ≤

π

d
for j = 1, . . . , k.

But |mj ||s| = |t̃j
n| ≤ |tj | ≤ π

d so it is true. Now, as n grows t̃j
n gets arbitrary close

to tj .

Using this lemma we can now prove our generalized version of Stečkin’s Lemma.

Theorem 3.2 (Multivariate Stečkin’s Lemma). Let p(t) =
∑
|n|≤d cne

int be a
real multivariate trigonometric polynomial of homogeneous degree d such that p(0) =
||p||∞ = 1. Then for t ∈ [−πd ,

π
d ]k, we have

p(t) ≥ cos(d max
1≤j≤k

|tj |)
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Proof. Let t ∈ [−πd ,
π
d ]k, then we have m ∈ Zk and s0 ∈ R such that

t = ms0 and |s0| ≤
π

dmax1≤j≤k |mj |

Define q(s) = p(ms) = p(m1s, . . . ,mks) =
∑
|n|≤d cne

i(n1m1+...+nkmk)s which is a
single variable real trigonometric polynomial of degree

d̃ = max
n
|n1m1 + ...+ nkmk| ≤ d max

1≤j≤k
|mj |

Since ||q||∞ ≤ ||p||∞ and q(0) = p(0) = 1 we conclude that ||q||∞ = q(0) = 1. Hence,
by Stechkin’s lemma we have

q(s) ≥ cos(d̃s) for |s| ≤ π

d̃

But since |s0| ≤ π
dmax1≤j≤k |mj | ≤

π
d̃

we get

p(t) = p(ms0) = q(s0) ≥ cos(d̃s0)
= cos(max

n
|n1m1 + ...+ nkmk|s0)

= cos(max
n
|n1m1s0 + ...+ nkmks0|)

= cos(max
n
|n1t1 + ...+ nktk|)

≥ cos(d max
1≤j≤k

|tj |)

The last line is justified by the fact that

π ≥ d max
1≤j≤k

|tj | ≥ max
n
|n1t1 + ...+ nktk|

and cos(x) decreases on [0, π].

If we were using a different metric for the degree of the polynomial, we could de-
rive an alternate version of the theorem as follows. Since the proof is almost identical,
we will omit it.

Theorem 3.3 (Multivariate Stečkin’s Lemma 2). Let p(t) =
∑
|n|≤d cne

int be
a real multivariate trigonometric polynomial such that |nj | ≤ dj for j = 1, ..., k. If
p(0) = ‖p‖∞ = 1, then for t ∈ [−πd ,

π
d ]k such that d1|t1|+ ...+ dk|tk| ≤ π we have

p(t) ≥ cos(d1|t1|+ ...+ dk|tk|)

4. Obtaining an optimal bound. Now that we have a generalized version of
Stečkin’s Lemma, we can derive a bound for analytic polynomials, so that we can
apply it in our algorithm.

Suppose that we have p(z) =
∑
|n|≤d cnz

n an analytic polynomial of homogeneous
degree d such that p(ξ) = ‖p‖∞, then we know by the maximum modulus principle
that ξ = eit0 ∈ Tk. We define a new trigonometric polynomial

q(t) = 2
|p(ei(t0+t)|2

‖p‖∞2 − 1
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It is important to note that the homegenous degree of q is d, because

|p(eit)|2 = p(eit) ∗ p(eit) =
∑
|n|≤d

cne
int ∗

∑
|n|≤d

cne
−int

=
∑

|n1|+...+|nk|≤d
|m1|+...+|mk|≤d

cncme
i(n1t1+...+nktk)ei(−m1t1−...−mktk)

=
∑

|n1|+...+|nk|≤d
|m1|+...+|mk|≤d

cncme
i((n1−m1)t1+...+(nk−mk)tk)

and so the homogeneous degree of |p(eit|2 is maxn,m(|n1−m1|+ . . .+ |nk −mk|) But
since ni and mi are the power of zi in the analytic polynomial p(z), we conclude that
ni ≥ 0 and mi ≥ 0 for i = 1, 2, . . . , k so really

max
n,m

(|n1 −m1|+ . . .+ |nk −mk|) ≤ max
n

(|n1|+ . . .+ |nk|) = d

Now we have |q(t)| ≤ 1 and q(0) = p(ξ) = 1, hence q is a trigonometric polynomial of
homegenous degree d such that q(0) = ||q||∞ = 1 and we can apply the generalized
version of Stečkin’s Lemma to get for t ∈ [−πd ,

π
d ]k

q(t) ≥ cos(d max
1≤j≤k

|tj |)

⇐⇒ 2
|p(ei(t0+t)|2

‖p‖∞2 − 1 ≥ cos(d max
1≤j≤k

|tj |)

⇐⇒ |p(ei(t0+t)|
‖p‖∞

≥
√

cos(dmax1≤j≤k |tj |) + 1
2

)

⇐⇒ |p(ei(t0+t)| ≥ ‖p‖∞ cos
(
dmax1≤j≤k |tj |

2

)
In the one-dimensional case, we get |p(ei(t0+t)| ≥ ‖p‖∞ cos

(
dt
2

)
which is better than

the bound |p(ei(t0+t)| ≥ ‖p‖∞
√

cos(dt) obtained by J.J. Green by defining q(t) =
|p(eit|2.

5. The algorithm. Our algorithm works in the same spirit as Green’s method.
The idea is to split [0, 2π]k into many small cubes and evaluate p at their center.
Then, using the bound we just found, we look if each of the small cube should be
kept or rejected, and we subdivide further until enough precison is attained. Suppose
that p̃ is the greatest measured absolute value of p on the polydisk. Let H ∈ [−πd ,

π
d ]k

such that |hj | ≤ h for j = 1 . . . k. Let t be the center of the cube C = [t−H, t+H].
If the maximum modulus of p was to occur at eit0 for t0 ∈ C then we would have
t− t0 ∈ [−πd ,

π
d ]k and hence

|p(eit)| = |p(ei(t0+(t−t0))| ≥ ‖p‖∞ cos
(
dmax1≤j≤k |tj − t0j |

2

)
≥ ‖p‖∞ cos

(
dmax1≤j≤k |hj |

2

)
≥ p̃ cos

(
dh

2

)
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Now if for some center t, we have |p(eit)| < p̃ cos
(
dh
2

)
then we know for sure that the

maximum modulus cannot occur in that cube, so we can reject it. We also obtain the
bounds p̃ ≤ ‖p‖∞ ≤ p̃ sec

(
dh
2

)
for the maximum modulus of p.

Using that rejection criteria, we can construct an algorithm to calculate the max-
imum modulus of a multivariate polynomial p on the polydisk that is described here.

Input: A multivariate polynomial p in k variables of homogeneous degree d, a desired
precision of ε > 0
Output: A close approximation of the maximum modulus of p on the polydisk.

h← π/d
split [0, 2π]k equally into dk small cubes of width 2h
evaluate |p(eiti)| for each cube where ti is the center of the cube
build a queue with all the cubes
p̃← max{|p(eiti)| : i = 1, 2, . . . , dk}
repeat

dequeue the cube in front of the queue
hj ← width of the cube / 2
tj ← center of the cube
if |p(eitj )| ≥ p̃ cos(dhj

2 ) then
split this cube in 2k smaller cubes and enqueue them
if |p(eitj )| > p̃ then
p̃← |p(eitj )|

end if
else

reject this cube
end if

until |p̃ sec(dhj

2 )− p̃| ≤ ε

return p̃+p̃ sec(
dhj
2 )

2

6. Finding the maximum modulus on the real sphere. One could ask if it
is possible to calculate the maximum modulus of a polynomial p on the k-dimensional
real sphere like we have done for the polydisk, this is indeed possible using almost the
same algorithm as for the polydisk. The k-dimensional real sphere is defined as

Sk = {z ∈ Rk :
k∑
j=1

|zj |2 = 1}

One should note that we are not assuming that the maximum modulus of a real ball
is taken on its boundary i.e. the sphere. Because of the fact that the real ball is a
non-complex domain of definition, we can’t apply the maximum modulus to it and so
we only solve a simpler problem. We define the maximum modulus of a real sphere
as

p̂ = sup{|p(z)| : z ∈ Sk}
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The next step is to define a mapping from the (k−1)-dimensional torus to the sphere
which in our case will be defined as :

M : t ∈ [−π
2
,
π

2
]k−2 × [−π, π] 7−→ z ∈ Sk

(t1, ..., tk−1) 7−→ (w1, . . . , wk)

where each of the wj are defined by

w1 = sin(t1)

wj = sin(tj) ∗
j−1∏
i=1

cos(ti) for j = 2 . . . k − 1

wk =
k−1∏
i=1

cos(ti)

It can be shown by an easy but tedious induction that this mapping is one-to-one
except at the poles of the sphere, where it is not injective. Using this map, we define
a new trigonometric polynomial that we will use in order to apply Stečkin’s Lemma.
If we have an analytic polynomial p such that p̂ = p(z0) = p(M(t0)) then we define :

q(t) = 2
|p(M(t0 + t))|2

p̂
− 1

which is a real trigonometric polynomial of a new degree d̃ such that q̂ = q(0) = 1.
Now we apply exactly the same calculations as in section 4 to obtain for t ∈ [−πd ,

π
d ]k

the bound

|p(M(t0 + t))| ≥ ‖p‖∞ cos

(
d̃max1≤j≤k |tj |

2

)

Once we find what d̃ is, we can useexactly the same subdivision algorithm as in section
5 to locate and approximate the maximum modulus of p on the real sphere. We need
a little bit of proof to show what the degree of q becomes.

Lemma 6.1. Let p(z) =
∑
|n|≤d cnz

n be a multivariate polynomial of homogeneous
degree d, then the polynomial p(M(t)) has an homogeneous degree

d̃ = max
n

(|nk + nk−1|+
k−1∑
i=1

|
k∑
j=i

nj |)

Proof. We have

p(M(t)) =
∑
|n|≤d

cnM(t)n

=
∑
|n|≤d

cn{w1}n1{w2}n2 · · · {wk}nk

=
∑
|n|≤d

cn{sin(t1)}n1{cos(t1) sin(t2)}n2 · · · {cos(t1)
k−1∏
i=2

cos(ti)}nk
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We look at the power of each tj individually. For the variable t1, it appears in each
of the parenthesis, so we conclude that the power of t1 in p(M(t)) is (n1 + . . .+ nk).
The variable t2 appears in every parenthesis but the first one so the power of t2 is
(n2 + . . .+ nk).

And so on... except for the variables tk−1 and tk which have the same power (nk−1 +
nk). Now, by the definition of the homogeneous power, it is the sum of the individual
absolute powers of tj for each j = 1 . . . k − 1.

|nk + . . .+ n3 + n2 + n1|+
|nk + . . .+ n3 + n2|+
|nk + . . .+ n3|+
. . .+
|nk + nk−1|+
|nk + nk−1|

= |nk + nk−1|+
k−1∑
i=1

|
k∑
j=i

nj |

The result follows from the definition of the homogenous degree.

It is fairly clear that the homogenous degree of q is the same as p(M(t)). The value of
d̃ could be found by a simple algorithm that looks at each of the homogeneous powers
of the terms of p and then take the maximum.

For t1, t2 ∈ [−π2 ,
π
2 ]k−2 × [−π, π], the set M([t1, t2]) corresponds to an area on the

surface of the sphere. The algorithm divides the sphere into many of these patches,
evaluates p at their center and rejects or keep the patches depending on the estimate
obtained by our bound. The problem with our mapping is that as we are getting
closer to the poles of the sphere, the patches shrink dramatically, resulting in a much
reduced efficiency at the poles. In the extreme case where

p̂ = p(±1, 0, . . . , 0) = p(M(±π
2
, 0, . . . , 0))

the algorithm has to keep a lot of regions around the pole where the maximum and
that makes the algorithm become really slow. A solution that one could use to avoid
this problem would be to make sure that p̂ is not attained at a pole. One could start
the algorithm and if for many iterations the only regions that are not excluded are
mostly situated around the poles, then one could restart the algorithm with inducing
a rotation to the sphere so that p̂ is not situated at a pole anymore. This can be done
by defining a new polynomial q as:

q(t) = 2
|p(M(t0 + t+R))|2

p̂
− 1

where R = (π4 ,
π
2 , ...,

π
2 ) is the rotation applied to the sphere.

7. Applying the algorithm to the complex ball. We have done it for the
polydisk and the real sphere, why not also do it for the complex ball. We have the
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k-dimensional ball

Bk = {z ∈ Ck :
k∑
j=1

|zj |2 ≤ 1}

but with the maximum modulus principle, we can restrict ourselves at looking at its
boundary, the complex sphere

∂Bk = {z ∈ Ck :
k∑
j=1

|zj |2 = 1}

and we define the maximum modulus of a polynomial p on the complex ball as

p̂ = sup{|p(z)| : z ∈ ∂Bk}

Here again, we will map a torus to the complex sphere. The mapping we use is very
similar to the real sphere, since a k-dimensional complex sphere can naturally be seen
a 2k-dimensional real sphere :

Mc : t ∈ [−π
2
,
π

2
]2k−2 × [−π, π] 7−→ z ∈ ∂Bk

(t1, ..., t2k−1) 7−→ (w1 + w2i, . . . , w2k−1 + w2ki)

where each of the wj are defined by

w1 = sin(t1)

wj = sin(tj) ∗
j−1∏
i=1

cos(ti) for j = 2 . . . 2k − 1

w2k =
2k−1∏
i=1

cos(ti)

In the same vein as for the real sphere, if we have a polynomial p such that p̂ =
p(z0) = p(Mc(t0)) then we define a new polynomial

q(t) = 2
|p(Mc(t0 + t+R))|2

p̂
− 1

where R = 0 , or R = (π4 ,
π
2 , ...,

π
2 ) if it seems like p̂ is taken at a pole. After finding

the degree of q, we use again the calculations of section 4 and the algorithm of section
5 to locate the maximum modulus of p on the complex ball.

Lemma 7.1. Let p(z) =
∑
|n|≤d cnz

n be a multivariate polynomial of homogeneous
degree d, then the polynomial p(Mc(t)) has an homogeneous degree

d̃ = max
n

(|nk|+ 2
k−1∑
i=1

|
k∑
j=i

ni|)
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Proof. We have

p(Mc(t)) =
∑
|n|≤d

cnMc(t)n

=
∑
|n|≤d

cn{w1 + iw2}n1 · · · {w2k−1 + iw2k}nk

=
∑
|n|≤d

cn{sin(t1) + i cos(t1) sin(t2)}n1 · · · {sin(t2k−1)
2k−2∏
i=1

cos(ti) + i
2k−1∏
i=1

cos(ti)}nk

We first look at the variable t1. In each of the parenthesis, it appears in 2 terms of
the same degree, so we need only consider one of them to find the degree of q in term
of the variable t1. By considering only one term in the last equation we obtain

p(Mc(t)) =
∑
|n|≤d

cn{sin(t1) + . . .}n1 · · · {cos(t1)(· · · ) + . . .}nk

=
∑
|n|≤d

cn{sin(t1)n1 · · · cos(t1)nk(· · · ) + (· · · )}

Hence we conclude that the power of t1 in q is (n1 + . . .+ nk). Similarly for t2 since
it appears in every parenthesis. For t3 and t4, they appear in each of the parenthesis
but the first one, so each of their power is (n2 + . . .+ nk).

And so on... except for t2k−1 which appears only in the last parenthesis. So the
power of t2k−1 is nk. We now add the individual absolute powers of tj for each
j = 1 . . . k − 1 :

2|nk + . . .+ n3 + n2 + n1|+
2|nk + . . .+ n3 + n2|+
2|nk + . . .+ n3|+
. . .+
2|nk + nk−1|+ |nk|

= |nk|+ 2
k−1∑
i=1

|
k∑
j=i

ni|

and the result follows from the definition of the homogenous degree.

8. Notes on the complex ball. The complex sphere has a very specific struc-
ture that the real sphere doesn’t have which induces on it different directions that
one could exploit. There are 2 types of directions : the i×normal direction and the
complex direction. We will note that going into the different directions may give dif-
ferent results.

Suppose that we have an analytic polynomial p such that ‖p‖∞ = p(1, 0, . . . , 0) = 1
then we define the i×normal direction as:

(eit, 0, . . . , 0) : t ∈ [−π, π]

and the complex direction as :

(cos(t), sin(t), 0, . . . , 0) : t ∈ [−π, π]
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For the first one, we can use the original Stečkin’s estimate to get for t ∈ [−πd ,
π
d ]

|p(eit, 0, . . . , 0)| ≥ cos
(
dt

2

)
Along with this bound, we have the extremal polynomial p(z) = 1

2 (1 + z1
d). This

polynomial is extremal in the i×normal direction because

∣∣p(eit, 0, . . . , 0)
∣∣ =

∣∣∣∣12(1 + eidt)
∣∣∣∣

=
∣∣∣∣12(1 + cos(dt) + i sin(dt))

∣∣∣∣
=

√
1
2

(1 + cos(dt)) =
∣∣∣∣cos

(
dt

2

)∣∣∣∣ = cos
(
dt

2

)
for t ∈ [−πd ,

π
d ], which is exactly the bound obtained by Stečkin’s. By taking its power

series, we can evaluate the decay of p as a function of d

cos
(
dt

2

)
= 1− d2t2

8
+ . . .

and hence the decay of p in the direction of i×normal is in the order of d2.

Now if we look at the complex direction, then we suspect that the polynomial p(z) =
(z12 − z22)

d
2 is extremal, however, we can’t show this fact here. If we work out the

power series of p in the complex direction we find out that

|p(cos(t), sin(t), 0, . . . , 0) = |(cos(t)2 − sin(t)2)
d
2 |

=
∣∣∣(cos(t)2 − (1− cos(t))2)

d
2

∣∣∣
=
∣∣∣(2cos(t)2 − 1)

d
2

∣∣∣
=
∣∣∣cos(2t)

d
2

∣∣∣
= |1− dt2 + . . . |

and we conclude that the decay of p in the complex direction is of the order of d.
There is a difference in the order of the decays in the two directions, so there may be
a better bound that one could obtain for the complex direction. However, we couldn’t
exploit this fact in our algorithm since we don’t respect any of these directions while
parametrizing the surface.
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