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Abstract

Solutions to systems of differential equations which model disease
transmission are of particular use and importance to epidemiologists
who wish to study effective means to slow and prevent the spread of
disease. In this paper, we examine a system that models two related
diseases within a population, which is of particular importance to
those studying co-infection and partial cross-immunity phenomena.
Criteria for stability of equilibria are improved upon from previous
research by Long, Vaidya, and Brandeau (2008).

1 Introduction

Since the emergence of AIDS, HIV and tuberculosis have been closely linked.
Experiments have indicated that the presence of both HIV and tuberculosis in
a population causes increased infectiousness of co-infected persons, and hence
there is great interest in studying the epidemiology of such a co-epidemic
[3]. In general, a co-epidemic is defined as the related spread of two or more
diseases. In a contrasting case, related strains of the influenza virus have been
shown to impart some level of cross-immunity, providing further impetus for
the study of such epidemics [1]. Despite the importance of such research,
little has been done by way of mathematical modeling of such epidemics.

Long, Vaidya, and Brandeau proposed a co-epidemic model in 2008, which
modeled the behavior of the coepidemic as a system of nonlinear differential
equations [5]. The model is
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S ′ = Λ− β1
S
N

(I1 + I3)− τ1
S
N

(I2 + I3)− µS

I ′1 = β1
S
N

(I1 + I3)− τ2
I1
N

(I2 + I3)− (µ+ µ1)I1

I ′2 = τ1
S
N

(I2 + I3)− β2
I2
N

(I1 + I3)− (µ+ µ2)I2

I ′3 = β2
I2
N

(I1 + I3) + τ2
I1
N

(I2 + I3)− (µ+ µ1 + µ2)I3

N ′ = Λ− µN − µ1I1 − µ2I2 − (µ1 + µ2)I3,

(1)

where S represents the number of susceptible people in the population, I1

and I2 represent the number of people infected with disease 1 and disease 2,
respectively, I3 represents the number of people infected with diseases 1 and
2, and N = S+I1 +I2 +I3 is the total population. The recruitment function,
Λ, will be assumed to be a positive constant which represents entrance into
the susceptible population, S, either through birth, as would be the case
with influenza, or through entrance into the sexually-active population as
with sexually transmitted diseases.

The parameters βi and τi, with i = 1, 2, represent the contact rates for
disease 1 and disease 2, respectively. The model does not, however, allow for
a susceptible individual to catch both disease 1 and disease 2 simultaneously,
and hence there is no term to represent transfer from S to I3 directly. It is
also possible that from each class, an individual may die of natural causes
(those not related to any disease), and this happens at a rate µ. Furthermore,
those infected with disease 1 or disease 2 may die from the disease at a rate
of µ1 or µ2, respectively. This assumption, the fact that we do not allow
for recovery and reentry into the susceptible population, and the fact that
member of the I3 class are able to spread diseases 1 and 2 at the same rate are
fairly strong assumptions that the model makes about disease transmission,
which simplify the dynamics quite a bit.

All the given constants have epidemiological significance, and perhaps the
most epidemiologically significant term is the basic reproductive number of
disease i, Ri

0, which for our diseases is defined as R1
0 = β1

µ+µ1
and R2

0 = τ1
µ+µ2

.
This ratio, of the contact rate to the total death rate from the infected class,
is used to determine whether the disease will persist in the long run. If the
disease is much more contagious than it is deadly, then a large percentage
of the population will become infected. If, on the other hand, the disease is
much more deadly than it is contagious, then people who catch the disease
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will die before being able to infect anyone else. In general, if Ri
0 < 1, then

the disease will die out, while if Ri
0 > 1, the disease will persist. Given the

idea of basic reproductive number, we wish to define similar quantities for
the co-epidemic model, and find similar persistence criteria. In this paper,
we establish more precise and, in some cases, new criteria for existence and
stability of system equilibria.

2 Stability of the Disease-Free Equilibrium

The disease-free equilibrium is defined as the point at which no disease is
present in the population, which is represented in the model as I1 = I2 =
I3 = 0. The system of equations simplifies to

S ′ = Λ− µS
I ′1 = 0
I ′2 = 0
I ′3 = 0.

(2)

Thus, the disease-free equilibrium lies at the point (Λ
µ
, 0, 0, 0).

Using a Lyapunov function, Long, Vaidya, and Brandeau showed that the
disease-free equilibrium is globally asymptotically stable if

max{R1
0, R

2
0,

β1 + τ1

µ+ µ1 + µ2

} < 1

2
.

However, many other standard models of disease transmission have a globally
asymptotically stable equilibrium if max{R1

0, R
2
0} < 1 (cf. SIS and SEIR

models in [2]). We therefore strive to find a stronger result.

Theorem 2.1 The disease-free equilibrium is globally asymptotically stable
if max{R1

0, R
2
0,

β1+τ1
µ+µ1+µ2

} < 1.

In order to prove this theorem, we first establish a number of claims:

1. Solution curves with all nonnegative initial conditions never have a
term which becomes negative, i.e., the “positive cone” is invariant.

2. (I1 + I2 + I3)′ < 0.

3. (I1 + I2 + I3)→ 0 as t→∞.

4. S → Λ
µ

as t→∞.
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2.1 Claim 1: The Positive Cone is Invariant

In order to show that solution curves with nonnegative initial conditions
remain in the positive cone (the region of the solution space with S, I1, I2, I3 ≥
0), we wish to examine behavior of solution curves with initial conditions on
the boundary of the positive cone. If we can show that these solution curves
either stay on the boundary or bounce into the interior of the positive cone,
then we have shown that the positive cone is invariant.

Let us begin with the simplest boundary case with initial condition
(S0, 0, 0, 0). The system of equations simplifies to (2). In this case, the
explicit solution is S = ceµt − Λ

µ
with all other terms identically zero. It

follows that any solution curve with a point on the S-axis must lie entirely
on the S-axis. Moreover, if S0 > 0, then S stays positive.

Now, let us consider a more complex set of initial conditions. Let
(S0, I0

1 , 0, 0) be an initial condition for the system with I0
1 > 0 and S0 ≥ 0.

Note that by substituting this initial condition into (1), the system reduces
to

S ′ = Λ− β1
S
N
I1 − µS

I ′1 = β1
S
N
I1 − (µ+ µ1)I1

I ′2 = 0
I ′3 = 0.

The first two equations do not depend on I2 or I3, so it follows from the
existence and uniqueness theorem that the solutions are contained entirely
within the S-I1 plane. We wish to show that solutions remain within the first
quadrant of the S-I1 plane. By the previous argument, the solution cannot
contain a point where I1 = 0, so I1(t) > 0 for all t. Any solution curve which
touches the S = 0 boundary must be immediately bounced back into the
first quadrant, as S ′ = Λ along the S = 0 boundary. Hence, all solutions
with initial conditions of this form remain in the positive cone. An analogous
argument can be made for initial conditions of the form (S0, 0, I0

2 , 0).
For initial conditions of the form (S0, 0, 0, I0

3 ) with S0, I0
3 > 0 , the system

simplifies to

S ′ = Λ− β1
S
N

(I3)− τ1
S
N

(I3)− µS
I ′1 = β1

S
N

(I3)
I ′2 = τ1

S
N

(I3)
I ′3 = β2

I2
N

(I1 + I3) + τ2
I1
N

(I2 + I3)− (µ+ µ1 + µ2)I3.

(3)
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Though S and I3 may be decreasing, we can choose a sufficiently small time
step, δ, such that S(t), I3(t) > 0 for 0 < t < δ. Since I ′1(0), I ′2(0) > 0, we
can also choose δ such that I1(t), I2(t) ≥ 0 for 0 < t < δ. The solution curve
therefore remains in the positive cone. If S0 = 0 and I0

3 > 0, then a similar
argument follows for showing that the solution curve is entirely within the
positive cone.

For initial conditions of the form (0, I0
1 , I

0
2 , 0), (0, I0

1 , 0, I
0
3 ),

(0, 0, I0
2 , I

0
3 ), and (S0, I0

1 , I
0
2 , 0), a similar argument can be made, showing

that for these initial conditions, solutions begin on the boundary, but are
forced off into the positive cone.

Therefore, for any set of initial conditions (S0, I0
1 , I

0
2 , I

0
3 ) such that S0, I0

1 , I
0
2 , I

0
3 ≥

0, the solution curve (S(t), I1(t), I2(t), I3(t)) ≥ 0. Hence, all solution curves
with non-negative initial conditions, which are the only ones of epidemio-
logical significance, remain in the positive cone. Thus, we have shown the
following lemma:

Lemma 2.2 Given a set of initial conditions (S0, I0
1 , I

0
2 , I

0
3 ) in the positive

cone, the solution curve through the point remains in the positive cone.

2.2 Claim 2: (I1 + I2 + I3)
′ < 0

Consider the quantity (I1 + I2 + I3)′.

(I1 + I2 + I3)′ = I ′1 + I ′2 + I ′3
= β1

S
N

(I1 + I3) + τ1
S
N

(I2 + I3)
− (µ+ µ1)I1 − (µ+ µ2)I2 − (µ+ µ1 + µ2)I3

= (β1
S
N
− (µ+ µ1))I1 + (τ1

S
N
− (µ+ µ2))I2

+ ((β1 + τ1) S
N
− (µ+ µ1 + µ2))I3

≤ (β1 − (µ+ µ1))I1 + (τ1 − (µ+ µ2))I2

+ ((β1 + τ1)− (µ+ µ1 + µ2))I3

≤ −ε(I1 + I2 + I3)

where ε = max{β1 − (µ+ µ1), τ1 − (µ+ µ2), (β1 + τ1)− (µ+ µ1 + µ2)} > 0 if
max{R1

0, R
2
0,

β1+τ1
µ+µ1+µ2

} < 1. This implies that the solution curve is bounded
above by a solution that decays exponentially to zero. Thus we have shown
the following lemma:

Lemma 2.3 If max{R1
0, R

2
0,

β1+τ1
µ+µ1+µ2

} < 1 and if (I1, I2, I3) 6= (0, 0, 0) then
the number of infected persons is everywhere decreasing.
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2.3 Claim 3: (I1 + I2 + I3)→ 0 as t→∞
A simple extension of the proof above will prove this lemma. Since I1 + I2 +
I3 ≤ −ε(I1 + I2 + I3)′, then the sum must be decreasing until such a time as
I1 + I2 + I3 = 0. Since 0 ≤ I1, I2, I3, each must be approaching zero in the
limit. Hence, as t approaches infinity, the number of infective people in each
class must approach 0. Thus we have shown the following lemma:

Lemma 2.4 As t→∞, I1, I2, I3 → 0.

2.4 Claim 4: S → Λ
µ as t→∞

Given Lemma 2.4, we know that for any δ > 0, there exists T > 0 such that
|β1

S
N

(I1 + I3) + τ1
S
N

(I2 + I3)| < δ
2

for all t ≥ T . If we choose S ≥ Λ+δ
µ

, then

Λ− µS ≤ −δ. Hence, S ′ = (β1
S
N

(I1 + I3) + τ1
S
N

(I2 + I3)) + (Λ− µS) ≤ − δ
2
.

It follows that for any solution, there exists T > 0 such that S ≤ Λ+δ
µ

for all

t > T . A similar argument follows for S ≥ Λ−δ
µ

. It follows that S → Λ
µ

.

Lemma 2.5 The number of susceptibles approaches the equilibrium value
S = Λ

µ
as t → ∞, i.e., the disease free equilibrium is globally asymptotically

stable.

3 Stability of the Quasi-Disease-Free Equilib-

ria

Expanding our view outside the realm of the disease-free equilibrium, we now
turn our interest to the quasi-disease-free equilibria, where one, but not both,
disease is allowed to persist. Arguments for the first and second quasi-disease-
free equilibria are almost identical, so here we only concern ourselves with
analysis of the first quasi-disease-free equilibrium. In general, it is difficult
to construct a local or global stability argument for the quasi-disease-free
equilibria. Where possible, the system will be left as in (1), however at
times, certain assumptions must be made in order to simplify the analysis.

3.1 Long-term Behavior of Solutions

Similar to the disease-free-equilibrium, we can expect that the sum of the
disease classes for which R0 < 1 will tend to zero. In the case of the first

126Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



quasi-disease-free equilibrium, this means that we expect I2 + I3 → 0 as
t→∞. We first show that (I2 + I3)′ < 0 if τi ≤ µ+ µ2 for i = 1, 2.

(I2 + I3)′ = τ1
S
N

(I2 + I3)− (µ+ µ2)I2 + τ2
I1
N

(I2 + I3)− (µ+ µ1 + µ2)I3

=
[
(τ1

S
N

+ τ2
I1
N

)− (µ+ µ2)
]

(I2 + I3)− µ1I3

< −ε(I2 + I3)
< 0

where ε ≤ (µ+ µ2)− τi for i = 1, 2.
As in Section 2, we can now use this fact to show that for any value of

I2 + I3 greater than zero, the sum approaches 0.
Using this information, we now know that the long-term behavior of the

system will be the same as the behavior on the S-I1 plane [8]. Having re-
duced the problem to a two-dimensional problem, we can apply the Poincaré-
Bendixson Theorem.

3.2 Global Stability in the S-I1 plane and the Poincaré-
Bendixson Theorem

For this section, let the system be described as follows in the S-I1 plane.

S ′ = f(S, I1) = Λ− β1
S
N
I1 − µS

I ′1 = g(S, I1) = β1
S
N
I1 − (µ+ µ1)I1

By setting both equations equal to zero and solving them simultaneously,

we find that the quasi-disease-free equilibrium is (S∗, I∗1 ) =
(

Λ
β1−µ1 ,

Λ(R1
0−1)

β1−µ1

)
,

where R1
0 = β1

µ+µ1
. Note that this equilibrium exists in the positive cone for

R1
0 > 1. Now, we look at the Jacobian of the system at the equilibrium in

order to determine stability.

D~x
~F (S, I1) =

 −β1I21
N2 − µ −β1S2

N2

β1I21
N2

β1S2

N2 − (µ+ µ1)

 .
Computing the trace of this matrix evaluated at the equilibrium (S∗, I∗1 ), we
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see that

tr(D~x
~F (S∗, I∗1 )) = −β1(I∗1 )2

(N∗)2
− µ+ β1(S∗)2

(N∗)2
− (µ+ µ1)

= β1
(R1

0)2
(1− (R1

0 − 1)2)− 2µ− µ1

= β1
(R1

0)2
(2R1

0 − (R1
0)2)− 2µ− µ1

= (µ+ µ1)(2−R1
0)− 2µ− µ1

= (µ+ µ1)(1−R1
0)− µ

< 0

,

since R1
0 > 1.

By replacing the second row with the sum of the two rows and computing
the determinant of this matrix evaluated at the equilibrium (S∗, I∗1 ), we find

det(D~x
~F (S∗, I∗1 )) = (

β1(R1
0−1)2

(R1
0)2

+ µ)( β1
R1

0
)− µβ1

(R1
0)2

= (R1
0 − 1) β1

R1
0
(
β1(R1

0+1)+µR1
0

(R1
0)2

)

> 0,

for R1
0 > 1.

Given that det(D~x
~F (S∗, I∗1 )) > 0 and tr(D~x

~F (S∗, I∗1 )) < 0, we conclude

that the eigenvalues, λ1, λ2, of D~x
~F (S∗, I∗1 ) both have negative real part, and

hence the equilibrium is locally stable for R1
0 > 1 and R2

0 < 1.
It is worth noting here that this condition for local stability is an improve-

ment upon that of Long, Vaidya, and Brandeau, who showed in 2008 that
the first quasi-disease-free equilibrium is locally stable for R1

0 > 1, R2
0 < 1,

and µ + µ1 + µ2 > τ [1 + µ1
R1

0(β−µ1+µ2)
] where it is assumed that β = β1 = β2

and τ = τ1 = τ2.
Given the the local stability of the equilibrium and the boundedness of

trajectories of the system, we can apply the Poincaré-Bendixson theorem.
To show that the equilibrium is stable, we must rule out the possibility of a
periodic trajectory or a trajectory whose ω-limit set contains the disease-free
equilibrium. Using the Bendixson-Dulac criterion, we can rule out a periodic
orbit if we can find a function, α(S, I1), such that ∂

∂S
(αf) + ∂

∂I1
(αg) does not

change sign and is not identically zero on any open set in the S-I plane [7].
If we choose α(S, I1) = 1

SI1
, then ∂

∂S
(αf) + ∂

∂I1
(αg) = −Λ

(S+I1)2
, which does not

change sign on any interval since Λ is constant. Therefore, we have ruled out
the possibility of a periodic trajectory. We can rule out the possibility that
the ω-limit contains the disease-free equilibrium by application of Lemma 2.2
in [8], since the disease-free equilibrium is a saddle. Hence, the quasi-disease-
free equilibrium is globally asymptotically stable for the given conditions.
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4 Existence of a Co-infection Equilibrium

In this section, we rely on bifurcation results from [6] to determine the ex-
istence of a co-infection equilibrium. While previous arguments have re-
lied almost solely on using algebra and calculus to simplify things to two-
dimensional problems, in this section, we will explicitly compute a number
of quantities related to the system. For ease of notation, let f1, f2, f3,
and f4 represent the right-hand sides of S ′, I ′1, I ′2, and I ′3, respectively, let

~F =


f1

f2

f3

f4

 and let ~x =


S
I1

I2

I3

.

We wish to show that a bifurcation to a co-infection equilibrium exists
with bifurcation parameter τ2, where F (τ2, ~x

∗) = 0 for all τ2 and

~x∗ =


S∗

I∗1
0
0

 .

There are two conditions that must be shown.

1. D~x
~F has a one-dimensional null space.

2. D~xτ2
~F · ~u0, is not in the range of D~x

~F , where ~u0 is the left null vector
of D~x

~F .

4.1 Dimension of the null space of D~x
~F

In order to show the first condition, we first compute the matrix D~x
~F .

D~x
~F =

(
A1,1 A1,2

A2,1 A2,2

)
,

where

A1,1 =

 − β1I1
S+I1

+ β1SI1
(S+I1)2

− µ − β1S
S+I1

+ β1SI1
(S+I1)2

β1I1
S+I1
− β1SI1

(S+I1)2
β1S
S+I1
− β1SI1

(S+I1)2
− µ− µ1

 ,

129Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



A1,2 =

 β1SI1
(S+I1)2

− τ1S
S+I1

− β1S
S+I1

+ β1SI1
(S+I1)2

− τ1S
S+I1

− β1SI1
(S+I1)2

− τ2I1
S+I1

β1S
S+I1
− β1SI1

(S+I1)2
− τ2I1

S+I1

 ,

A2,1 =

(
0 0
0 0

)
,

A2,2 =

(
τ1S
S+I1
− β2I1

S+I1
− µ− µ2

τ1S
S+I1

β2I1
S+I1

+ τ2I1
S+I1

τ2I1
S+I1
− µ− µ1 − µ2

)
.

Since D~x
~F has a block structure that is upper-triangular, we focus our

analysis on the submatrices A1,1 and A2,2. For submatrix A1,1, we wish to
show that it has a non-zero, positive determinant. We notice here that A1,1

is exactly the same matrix from section 3.2, so det(A1,1) > 0 We then wish
to show that for some specific value of τ2 = τ ∗2 , det(A2,2) = 0. Calculating
det(A2,2), we see that it is linear in τ2.

det(A2,2) = ( τ1S
S+I1
− β2I1

S+I1
− µ− µ2) ( τ2I1

S+I1
− µ− µ1 − µ2)

−( τ1S
S+I1

)( β2I1
S+I1

+ τ2I1
S+I1

).

Hence, for some value of τ2 = τ ∗2 , A2,2 is a nontrivial matrix with

det(A2,2) = 0 and D~x
~F has a one-dimensional null space. Note that as

τ2 transitions from smaller to larger, det(A2,2) transitions from positive to
negative. At τ2 = τ ∗2 , we have one negative eigenvalue and a maximum eigen-
value of zero. It follows by continuity that for τ2 near τ ∗2 the eigenvalues are
real and distinct with at least one of them being negative. Since det(A2,2)
transitions from positive to negative, it must be the case that the maximum
eigenvalue changes from negative to positive as τ2 increases through τ ∗2 . The
maximum eigenvalue of this matrix will now be referred to as γ(τ2), and we
have thus far established that γ′(τ ∗2 ) > 0.

4.2 The range of D~x
~F

We now wish to show that the null vector of D~xτ2
~F · u0 is not in the range

of D~x
~F . First, we calculate D~xτ2

~F .
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D~xτ2
~F =


0 0 0 0
0 0 − I1

S+I1
− I1
S+I1

0 0 0 0
0 0 I1

S+I1
I1

S+I1

 .

Hence, any vector in the range of D~xτ2
~F , in particular D~xτ2

~F ·u0, must be of
the form

c


0
−1
0
1

 ,
where c is a constant.

We represent the range of D~xτ2
~F with the vector above, and show that

the matrix D~x
~F has no vector in its range of the above form.

Since D~x
~F has block structure, we need only show that the equation

below has no solution.

A2,2

(
x1

x2

)
=

(
0
1

)
.

Since we chose τ2 = τ ∗2 , then det(A2,2) = 0, and it follows that there
is no vector which satisfies the above equation because the rows of A2,2 are

linearly dependent and the first row is not identically zero. Hence, D~xτ2
~F ·~u0,

is not in the range of D~x
~F .

We therefore conclude that there exists some range of τ2 on which there
exists a non-trivial bifurcation curve, which can be described as (τ2, ~x) =
(τ ∗2 +sτ ′2(0)+o(s), ~x∗+s~u0 +o(s), where s is the variable of parameterization
and

~u0 =


·
·
+
+

 .
For specific parameters (β1 = β2 = τ1 = 1

2
and µ = µ1 = µ2 = 1

10
), it can be

shown numerically that the bifurcation is to a stable co-infection equilibrium,
but a proof that the bifurcation is to a stable co-infection equilibrium for a
certain set of parameters has not yet been found.
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5 Further Research

Though significant inroads have been made toward finding sharp conditions
for stability, there are many opportunities for further research into the pre-
cision of stability criteria for quasi-disease-free and co-infection equilibria.
The question as to the stability of the coinfection equilibria remains open.
In addition to general calculation, numerical simulation of several cases would
provide insight for further research.

The question that nearly every model presents is how it might be made
more realistic while remaining sufficiently manageable to compute. The
model used here may be altered to include recovery, with full, partial, or
no immunity, or to include a recruitment function, Λ(I1), Λ(I2), or Λ(I3)
rather than a recruitment constant. Such alterations would make the model
more realistic for certain diseases, in particularly sexually transmitted dis-
eases, where the number of people entering the sexually active population
may vary depending on the current rate of STD infection [4].
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