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1 Abstract

Whooping cranes (Grus americana) became endangered in the late 1800s when population
numbers dwindled to as low as only 15 wild birds. Today, the wild population has significantly
rebounded, but remains threatened. The last surviving migratory flock of whooping cranes
travels to Texas every year for the winter. When the cranes arrive they primarily forage
for wolfberries, but as the berry population decreases eventually the cranes’ diet switches to
one of mainly blue crabs. Understanding how abiotic conditions such as drought and water
level fluctuations affect these food resources is important to wildlife managers who are tasked
with the protection of the cranes. In this paper, we formulate a dynamic model that predicts
the net energy intake of the whooping crane with parameters that may be used to control
both the abiotic and biotic characteristics of the ecosystem inhabited during winter. We
optimize the model to establish the maximum net energy intake of the crane over one season
in ANWR and determine the point at which a crane will switch from foraging for berries to
foraging for blue crab. This switching point gives insight to the cranes’ foraging behavior,
allowing us to have a better idea of what steps will be most effective moving forward if human
action is needed for conservation of the species. Furthermore, the complete development and
analysis within this paper will aid in determining whether or not sufficient resources exist
in a crane’s territory for it to sustain the winter and prepare for a successful flight back to
breeding grounds.

2 Introduction

The Aransas-Wood Buffalo whooping crane population is the last surviving migratory
flock of Whooping Cranes (Grus americana). They migrate from Wood Buffalo National
Park (WBNP) in Alberta, Canada to the Aransas National Wildlife Refuge (ANWR) in
Texas every autumn [3]. Whooping cranes became endangered during the late 1800s and
the early 1900s due to overhunting and habitat loss, of which the latter remains a concern
to this day [6]. Once the whooping cranes arrive in ANWR, generally in mid-October, they
become fiercely territorial and thus each crane primarily hunts and forages within its own
territory. Until their final departure in mid-March, the cranes will spend the majority of
their time in the salt marshes of ANWR. In these marshes, they primarily forage for Carolina
Wolfberries (Lycium carolinianum) in the vegetation and for blue crab (Callinectes sapidus)
in the ponds [3].

The net energy accumulated while wintering in Texas plays a crucial role in the life history
of the whooping cranes [8]. Recent droughts have caused drastic changes in the habitat of
ANWR. Low water levels along with high salinity levels have affected the availability of both
wolfberries and crabs, two primary food sources within the cranes’ territories. In this paper,
we formulate a mathematical model for predicting the net energy intake of the whooping
crane. Our model is based on optimal foraging theory [12]. Analysis of this model yields
the point in time at which the cranes change their primary prey preference from wolfberries
to crabs. Knowledge of this switching point aids in our understanding of the cranes’ prey
dependency. Such an understanding is crucial not only to determining if human intervention
is warranted, but also what that intervention should entail if deemed necessary. For example,
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considering the switching point with respect to the total time spent in ANWR, the remaining
time in this territory after the switching point serves as an estimate of the time that cranes
will be most reliant on blue crabs as a source of energy. This information could be used to
help biologists better predict whether or not there is adequate crab availability to sustain
the crane for the remaining period, thus determining whether human action is needed.

3 Materials and Methods

We used foraging theory [12] to develop a mathematical model that describes the net
energy intake of the crane over one season in ANWR. Our model includes energy gain
from the two primary food resources consumed by the crane in ANWR, wolfberries and blue
crabs, and the energy loss due to hunting, foraging, traveling, and preening/resting. We then
computed and verified a global maximum for net energy intake using the second derivative
test. We compared this predicted maximum energy to that which is required for successful
migration and an increased likelihood of reproductive success. To check for biological validity
within our model we estimated all parameters, and finally completed a sensitivity analysis
to identify which parameters are the most influential.

4 Results

4.1 Formulation of the Mathematical Model

We assume that specific prey is found within distinct “patches” of suitable habitat. In
general, we let Tij denote the time spent in a patch j which contains prey type i. Let there
be k many patches of prey type i; then we denote the total time spent in all patches of type
i as Ti =

∑k
j=1 Tij . Let the average encounter rate, λi, be expressed as λi = s · di where s

is the area surveyed by the crane per unit time and di is the population of prey type per
unit area of patch type [9]. In general, we will assume λi is time dependent since we expect
that di will itself depend on time. We can represent the total number of prey organisms
consumed by a given crane as

J =
N∑
i=1

Tiλipi,

where each i = 1, . . . , N corresponds to one of N total prey types that make up the crane’s
diet and pi denotes the crane’s probability of successful capture upon encountering the prey.
For simplicity, we assume pi constant.

When residing in ANWR, 94-97% of the whooping cranes’ diet consists of wolfberries
and blue crabs [3]. Thus we will approximate total prey consumption using only two terms
(where we index by letters b and c in place of 1 and 2) to get that

J = Tcλcpc + Tbλbpb, (1)

where prey type c refers to crabs and b refers to berries, respectively. Let α and β denote
the energy gain per crab and berry, respectively. Then equation (1) gives a formula for net
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energy, ∆A:

∆A = α(Tcλcpc) + β(Tbλbpb)− φ. (2)

Here, φ is used to denote the total energy loss of the crane (e.g. due to travel between
patches as well as expenditures associated with hunting, foraging, and preening/resting). It
is important to note that we assume the behaviors of hunting and foraging only occur within
patches, and that when in a patch the only behavior modeled is hunting or foraging.

Since the encounter rates of the crane with its prey will change over time in response to
prey availability, we developed a time-dependent function to describe λi yielding a time-dependent
model. Since the time scale of interest is only that which pertains to the time whooping
cranes spend wintering in ANWR, we make the simplifying assumption that both the berry
and crab availability, denoted nb and nc respectively, are affected mainly by crane foraging
and flooding events. These quantities obey the following simple dynamics:

dnb
dt

= −fnb,

dnc
dt

= −cnc + a,

Here f and c are positive constants describing the crane’s rate of foraging for berries and
hunting for crabs. The parameter a is a constant rate describing an influx of crabs due to
changing water inundation levels. Initially, we will assume that a = 0. This assumption
is biologically supported since whooping cranes have been observed hunting both on land
and in water [3]. We therefore do not anticipate water level fluctuations to drastically alter
prey availability or foraging behavior. The equations above are easily solved by separation
of variables method to get

nb = nb0e
−ft, and

nc = nc0e
−ct,

where nb0 and nc0 are the initial availabilities of berries and crabs, respectively, corresponding
to the crane’s arrival at ANWR. Using the relation λi = s · di and expressing di in terms of
nb and nc results in the following instantaneous encounter rates

λb(t) = s · nb0e
−ft

hb
, (3)

λc(t) = s · nc0e
−ct

hc
, (4)

where hb and hc are the total areas of all berry and crab patches, respectively. These
encounter rates only pertain to time spent within a patch. Thus each λi has a domain of
[0, Ti] and is maximized when t = 0.

Equations (3) and (4) were substituted into equation (2) to get a time dependent expression
for ∆A. To determine the total energy accumulated during one season in ANWR, we
integrated each term of ∆A over the time spent in each patch type, Tb and Tc. The energy
loss term, denoted φ in equation (2), was separated into loss pertaining to the time spent in
patches of berries and crabs, mb and mc, as well as an energy loss associated with the time

398



spent between patches, `. This resulted in the following model for net energy intake of the
whooping crane:

A =

∫ Tb

0

(βλb(t)pb −mb) dt+

∫ Tc

0

(αλc(t)pc −mc) dt−
∫ T−Tb−Tc

0

` dt, (5)

where T is the total time in ANWR. After integration, we therefore have that

A =
ϕb
f

(1− e−fTb)−mbTb +
ϕc
c

(1− e−cTc)−mcTc − `(T − Tb − Tc), (6)

where

ϕb =
βsnb0pb
hb

and ϕc =
αsnc0pc
hc

.

This mathematical description assumes that the cranes expend more energy while hunting
crabs than they do foraging for berries. Furthermore, we would expect all foraging behavior
to be associated with a higher energy expenditure than that of time spent resting, preening,
or traveling, `. Definitions of all parameters in our net energy intake model, A, can be found
in Table 1. It is important to note that all parameters have been assumed positive.

4.2 Parameter Estimates

Table 1: This table contains the definitions, units, and estimates of all parameters used in
the net energy model equation (6).

Parameter Definition and Estimated Values
Parameter Description Units Estimate

α energy gain per Blue Crab kJ/crab 139.4
β energy gain per wolfberry kJ/berry 1.3
γ total foraging time for berries and crabs days -
c rate of crane predation of crabs 1

day
0.065

f rate of crane foraging of berries 1
day

0.87

hb area of berry patches m2 878,800
hc area of crab patches m2 310,900

` energy loss outside of foraging in patches kJ
day

2,016

mb energy loss while foraging for berries kJ
day

3,001.6

mc energy loss while foraging for crabs kJ
day

3,225.6

nb0 number of initial berries berries 6, 837, 064
nc0 number of initial crabs crabs 739,182
pb probability of successful foraging of berries - 0.36
pc probability of successful capture of crabs - 0.01

s rate of area surveyed by crane while foraging m2

day
9,197.928

kb proportional change in Ib - 0.2
kc proportional change in Ic - 20
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The parameters in Table 1 were estimated to reflect the Boat Ramp territory of ANWR.
First, our values for hb and hc both came directly from Slack’s description of the Boat Ramp
territory [10]. Parameters nb0 and nb0 also came from Slack and his recorded berry and
crab densities in the same territory. The probabilities of successful capture were estimated
utilizing data from Chavez-Ramirez [3]. The rates of foraging and successful capture of crabs
and wolfberries, calculated using probes per minute and successful probes upon capturing
prey, were compared to extrapolate pb and pc [3]. The parameter s, which is the rate of area
surveyed by the crane while foraging, was calculated by utilizing the average foraging speed
of a whooping crane [5] and multiplying it by the area of a half-circle with the radius equal
to the neck length of the crane, where we are assuming the neck is approximately 40% of the
total crane height, approximately 1.5 meters [14]. Energy loss parameters, mb, mc, and `,
were determined utilizing the basal metabolic rate (BMR) and energy expenditure coefficients
(EEC) [3]. Finally, our energy conversion rates, α and β, as well as our rates of hunting and
foraging, c and f , were estimated based upon the work of Krapu and Chavez-Ramirez. We
discuss the possible values for the parameter in the next section.

4.3 Computing Maximum Net Energy Intake

We now use the net energy equation (6) to determine Tb and Tc that maximize A and
derive bounds for the total hunting/foraging time γ = Tb+Tc. For this analysis, we consider
all parameters to be constants and A to be a function of both Tb and Tc. Thus we will
write A as A(Tb, Tc) and use standard analysis from multivariable calculus to determine the
maximum of A. In order to find a possible maximum, we calculate the gradient of A as

∇A(Tb, Tc) =
(
ϕbe

−fTb −mb + `, ϕce
−cTc −mc + `

)
.

The components of the gradient vector have units of kJ/day and indicate the (average) daily
rate at which energy is acquired by the crane due to consumption of berries and crabs.
Thus, for example, if the initial number of berries per unit area (nb0

hb
) increases, the crane

will necessarily be able to increase its daily energy intake from berry consumption.
Setting ∇A = 0, we solved for Tb and Tc. As a result, we have a possible extremum of

(T ∗
b , T

∗
c ) =

(
− 1

f
· ln
(
mb − `
ϕb

)
,−1

c
· ln
(
mc − `
ϕc

))
. (7)

We assume that the cranes expend more energy while hunting crabs than they do foraging
for berries and that foraging behavior is associated with a higher energy expenditure than
that of time spent resting, preening, or traveling between patches. It is important to note
that this final assumption’s validity depends upon the dispersion of patches within a given
territory. Together, these assumptions imply that the parameters `, mb and mc are ordered
as ` < mb < mc and each of the logarithms in the expression for (T ∗

b , T
∗
c ) is defined. We also

assume
ϕb ≥ mb − ` and ϕc ≥ mc − `,

which then implies that T ∗
b ≥ 0 and T ∗

c ≥ 0. Thus, here we have that the (average) daily
rate at which energy is acquired by the crane due to consumption of berries and crabs is
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greater than the energy lost while foraging for berries and crabs (respectively) minus energy
expenditure due to time spent resting, preening, or traveling between patches.

After computing second derivatives, it can be verified using equation (6) that the following
inequalities hold:

∂2A

∂T 2
b

< 0 and
∂2A

∂T 2
b

· ∂
2A

∂T 2
c

−
(

∂2A

∂Tb∂Tc

)2

> 0,

where each second derivative is evaluated at (T ∗
b , T

∗
c ) given in (7). Thus, by use of the Second

Derivative Test, A has a local maximum at (T ∗
b , T

∗
c ). To determine if A(T ∗

b , T
∗
c ) is a global

maximum, we must evaluate A(T ∗
b , T

∗
c ) on the boundaries of the domain of A given by

(i) Tc = 0

(ii) Tb = 0 and

(iii) Tb + Tc = γ,

where γ is the total time spent foraging for prey so that 0 ≤ Tc ≤ γ and 0 ≤ Tb ≤ γ. We
denote the net energy evaluated on the kth boundary as A(k) = Ak and derive conditions for
which A(T ∗

b , T
∗
c ) > Ak, k = i, ii, iii which guarantees A(T ∗

b , T
∗
c ) is a global maximum for A.

On boundary (i), Tc = 0 and

Ai =
ϕb
f

(1− e−fTb)−mbTb − `(T − Tb).

Therefore
dAi
dTb

= ϕbe
−fTb −mb + `,

so that Ai is maximized when

Tb = T ∗
b = − 1

f
· ln
(
mb − `
ϕb

)
and

max{Ai} =
ϕb
f

(
1− mb − `

ϕb

)
+
mb − `
f

ln

(
mb − `
ϕb

)
− `T.

On boundary (ii), Tb = 0 and

Aii =
ϕc
c

(1− e−cTc)−mcTc − `(T − Tc).

Therefore,
dAii
dTc

= ϕce
−cTc −mc + `,

so that Aii is maximized when

Tc = T ∗
c = −1

c
· ln
(
mc − `
ϕc

)
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and

max{Aii} =
ϕc
c

(
1− mc − `

ϕc

)
+
mc − `
c

ln

(
mc − `
ϕc

)
− `T.

After substituting (7) into the expression for A in (6) we get that

A(T ∗
b , T

∗
c ) =

ϕb
f

(
1− mb − `

ϕb

)
+
ϕc
c

(
1− mc − `

ϕc

)
+
mc − `
c

ln

(
mc − `
ϕc

)
+
mb − `
f

ln

(
mb − `
ϕb

)
−`T.

Note that A(T ∗
b , T

∗
c ) = max{Ai}+ max{Aii}+ `T and A(T ∗

b , T
∗
c ) > max{Ai} precisely when

ϕc

(
1− mc − `

ϕc

)
+ (mc − `) ln

(
mc − `
ϕc

)
> 0

which can be rewritten as
ϕc

mc − `
− ln

(
ϕc

mc − `

)
> 1, (8)

and similarly, A(T ∗
b , T

∗
c ) > max{Aii} precisely when

ϕb
mb − `

− ln

(
ϕb

mb − `

)
> 1, (9)

Note that based upon our prior assumptions regarding parameter values seen on page 5
(ϕb ≥ mb − ` and ϕc ≥ mc − `) inequalities (8) and (9) always hold.

We next derive an upper bound on γ so that A(T ∗
b , T

∗
c ) > max{Aiii}. Equivalently, since

on boundary (iii) we have Tc = −Tb + γ, we show that A(T ∗
b , T

∗
c ) > Aiii(Tb) for 0 ≤ Tb ≤ γ

where

Aiii(Tb) =
ϕb
f

(
1− e−fTb

)
+
ϕc
c

(1− e−c(−Tb+γ)) + Tb(mc −mb)− γmc − `(T − γ).

Note that since 0 ≤ Tb , it then follows that Aiii(Tb) < B(Tb) where

B(Tb) =
ϕb
f

+
ϕc
c

(1− e−c(−Tb+γ)) + Tb(mc −mb)− γmc − `(T − γ).

The function B is easily differentiated to get dB
dt

= −ϕce−c(−Tb+γ) + mc −mb which will be
negative when −ϕce−cγ +mc −mb < 0 or

γ < −1

c
· ln
(
mc −mb

ϕb

)
(10)

If this inequality holds then B is decreasing everywhere and B(Tb) ≤ B(0). This implies
that Aiii(Tb) < B(0) where

B(0) =
ϕb
f

+
ϕc
c

(1− e−cγ)− γmc − `(T − γ). (11)

Therefore, a sufficient condition so that A(T ∗
b , T

∗
c ) > Aiii(Tb) is that A(T ∗

b , T
∗
c ) > B(0).

Utilizing the parameters in Table 1 we find that ϕb ≈ 33490 kJ and ϕc ≈ 30485 kJ and, after
substituting these values in (7), we get T ∗

b ≈ 4.1 days and T ∗
c ≈ 49.7 days. Then the net

energy from equation (6) is A(T ∗
b , T

∗
c ) ≈ 119, 288 kJ. The left side of (8) is 22 and the left

side of (9) is 30 so that both of the inequalities (8) and (9) are satisfied which guarantees that
A(T ∗

b , T
∗
c ) is greater than both max{Ai} and max{Aii}. The inequality (10) is approximately

γ < 77.04 days. If γ = 77 days, we get from (11) that B(0) ≈ 106, 795 kJ and it follows that
A(T ∗

b , T
∗
c ) > B(0) and A(T ∗

b , T
∗
c ) is greater than max{Aiii}.

402



4.4 Maximal Net Energy Sensitivity Analysis

To determine which parameters most heavily affect net energy intake, we completed a
relative sensitivity analysis [7]. This was accomplished in the following manner: let δ be a
parameter and let F be an equation whose sensitivity to we want to check. Then the relative
sensitivity of F to δ is

∂F

∂δ
· δ
F
.

The resulting sensitivities for our net energy model allowed us to rank our parameters
from highest to lowest in regard to how heavily they impact net energy intake at our global
maximum A(T ∗

b , T
∗
c ). The results are displayed in Table 2 where we use M to denote (T ∗

b , T
∗
c ).

For example, the first row of Table 2 is obtained by evaluating

∂A(T ∗
b , T

∗
c )

∂hc
· hc
A(T ∗

b , T
∗
c )
.

Negative outputs reflect an inverse relationship whereas positive outputs show a direct
relationship between the parameter and A(T ∗

b , T
∗
c ). We did not test the sensitivities of

the parameters α, β, and s as these parameters are assumed to be constants.
Inspection of Table 2 shows that the parameters that impact the maximum energy intake

the most are hc, nc, pc, and c. For example, we see from the value displayed in row 1 that if we
increase the area of the crab patches (hc) by a certain amount, there will be a corresponding
378% decrease (as this value is negative) in A(T ∗

b , T
∗
c ). This means that changes in the crab

population would have the most drastic impact regarding the survivability of the whooping
cranes as a species.

Table 2: Contains the units, sensitivity and ranking of all parameters used in the sensitivity
analysis of the global maximum of A.

Parameter Sensitivity
Parameter Tested Sensitivity Value Rank

hc −αsncpc
h2c

( e
−cTc

−c + 1
c
) · hc

A(M)
−3.7756 1

nc
αspc
hc

( e
−cTc

−c + 1
c
) · nc

A(M)
3.7756 1

pc
αsnc

hc
( e

−cTc

−c + 1
c
) · pc

A(M)
3.7756 1

c αsncpc
hc

( e
−cTc

c2
+ Tce−cTc

c
− 1

c2
) · c

A(M)
−3.2722 2

` (−151 + Tb + T − c) · `
A(M)

−1.6444 3

mc (−Tc) · mc

A(M)
−1.3424 4

hb −βsnbpb
h2b

( e
−fTb

−f + 1
f
) · hb

A(M)
−0.3132 5

nb
βspb
hb

( e
−fTb

−f + 1
f
) · nb

A(M)
0.3132 5

pb
βsnb

hb
( e

−fTb

−f + 1
f
) · pb

A(M)
0.3132 5

f βsnbpb
hb

( e
−fTb

f2
+ Tbe

−fTb

f
− 1

f2
) · f

A(M)
−0.2797 6

mb (−Tb) · mb

A(M)
−0.1020 7
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4.5 Finding a Switching Point

Our model predicts the times that should be spent in each patch type, that is (T ∗
b , T

∗
c )

from (7), in order to maximize net energy. It does not, however, explain how these times
are allocated throughout the entire wintering period in ANWR. To gain insight on these
allotments, we turn to the switching point analysis.

To identify a switching point after the initial arrival of the cranes based purely upon prey
preference, we must compare the two preys’ energy efficiency ratios [9]. The point in time
that satisfies equality of these ratios is our switching point, following the methods of H.R.
Pulliam. The energy efficiency ratios for crabs and berries are defined as follows:

β

Ib
and

α

Ic
.

Each numerator is defined to be the energy intake per prey, and each denominator is defined
as the time involved with the prey [9]. We define involvement times, Ii, to be inversely
proportional to the encounter rates:

Ib =
kb
λb

and Ic =
kc
λc
,

where kb and kc are positive constants of proportionality. Substituting the involvement times
into the energy efficiency ratios, using the expressions in (3) and (4) for λb and λc, and setting
these equal yields

βnb0e
−ft

kbhb
=
αnc0e

−ct

kchc
.

Solving for t gives us a switching point at

ts =
1

f − c
· ln kchcβsnb0

kbhbαsnc0
.

The switching point, ts, must be defined and non-negative, and so our parameters must
satisfy the following conditions: if 0 < kbhbαsnc0 < kchcβsnb0, then we must have

f − c > 0, (12)

and if kbhbαsnc0 > kchcβsnb0, then we must have

f − c < 0. (13)

Based upon our estimated parameters from Table 1, condition (12) is met. However, we
do not assume that this will be the case across all territories within ANWR. Thus we note
both conditions here, (12) and (13), so as to consider various biological possibilities, and
also to mathematically ensure we are not left with a negative ts. Utilizing our estimates,
we then have an initial switch in prey preference from berries to crabs after approximately
96 hours of accumulated foraging. Hence, after about 10.66 days in ANWR, the optimal
strategy is predicted to switch from foraging for berries to hunting for blue crab. This was
calculated considering the total number of hours a day we would anticipate a whooping crane
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would spend foraging/hunting throughout the winter. We believe this calculation to be fairly
reasonable, albeit slightly under the anticipated amount of time indicated by observational
data: about 2–3 weeks. However, since this is considered to be our initial switch in prey
preference, the time discrepancy between our calculations and field data may be attributed
to the existence of a later, more final switch of preference.

4.6 Switching Point Sensitivity Analysis

In order to determine which parameters have the greatest effect on our switching point,
ts, we again completed a relative sensitivity analysis. Similar to the sensitivity analysis
pertaining to net energy, parameters that were not tested include α, β, and s. Also, mb,
mc, and ` were disregarded in our analysis since ts does not depend on these parameters.
The ranking of parameter sensitivity for ts was found to be essentially identical across all
parameters except that of f , -0.395, and c, 0.0295. The other relevant parameters had a value
of 0.328 with sign mirroring that of Table 2. Interpreting what this means, if we consider
the area of berry patches for example, this suggests that if we increase hb by a given amount,
there will be a corresponding 32.8% increase in ts. An overall analysis of these sensitivity
values indicates that the switching point is minimally affected by the rate of hunting for
crabs, and is most sensitive to the rate of foraging for berries. Biologically, this makes sense
since the wolfberries are observed to be the primary food source upon the cranes’ arrival.
Thus the point in time at which a switch in this initial preference is made would be heavily
influenced by the rate at which the available berries are consumed.

5 Discussion

In this paper we have formulated a mathematical model for the net energy intake, given
by A in equation (6), of the whooping crane population which overwinters in the Aransas
National Wildlife Refuge (ANWR). Our model was created by considering and analyzing the
primary sources of energy intake, blue crabs and wolfberries, as well as energy expenditure
for various activities of the crane. In order to consider both biotic and abiotic factors within
this model, we included not only the availability, but also the dispersion of the energy
sources throughout the crane’s territory. To estimate the resulting parameters from such
considerations, we primarily referred to the field observations of Chavez-Ramirez, Cronin,
Hartup, and Krapu for parameters related to crane behavior and energy intake, and Slack
and Butzler for estimates related to the prey [8],[3],[5],[6].

The net energy intake, A (from equation 6), is important to wildlife managers in ANWR.
This quantity plays a primary role in the crane’s ability to survive and reproduce after winter
has concluded. When male and female cranes are able to gain approximately 20% and 16%
of their body weight in fat during the winter, respectively, it is expected that sufficient
conditions have been met not only to successfully migrate to their breeding grounds, but also
to increase the probability of successful reproduction [8]. Thus, averaging these respective
percentages gives us an idea of how much any randomly selected crane should gain, regardless
of its sex, in order for us to anticipate survival, 18%. If W represents a crane’s weight in
grams [8], then the net energy required for a crane to survive and reproduce after winter has
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concluded, denoted E relates to the crane’s weight in the following way:

E = 0.18W (39) = 7.02W,

since 0.18W represents the average weight that must be gained by a crane, and 39 is the
conversion of a gram of fat to energy, kJ [3]. Therefore, when using our model for analysis,
a higher probability of reproductive success will be anticipated when A ≥ 7.02W .

Friends of the Wild Whoopers state the average hatching rate of a whooping crane egg
to be 48% [11]. Analyzing data for the hatching rate of eggs after winters where there was
a surplus of available food resources (based upon the above inequality), we were able to
conclude that the probability of successful hatching given that the net energy intake is at
least 7.02W (as noted before, W represents the weight of the crane in grams):

P (Successful Hatching|A ≥ 7.02W ) = 0.823,

or 82.3%, which shows a substantial growth in successful hatching in years following food
and energy surplus in ANWR [8].

Our mathematical analysis showed that the net energy intake A is maximized when the
total time spent hunting for berries (Tb) and crabs (Tc) is given by (T ∗

b , T
∗
c ) from (7). In our

analysis, we assumed that there is an upper bound on γ = Tc + Tb from (10) and, using our
parameters from Table 1, this bound becomes γ < 77.04 days. This is consistent with the
findings of Chavez-Ramirez [3]. It suggests that no more than 76.975% of daylight hours
are spent hunting or foraging, coinciding with his estimated time allotment of 60-80% [3].
At maximum energy, when T ∗

b ≈ 4.1 days and T ∗
c ≈ 49.7, we computed that a whooping

crane spends approximately 8.5347 hours a day hunting and foraging. This was calculated
by summing together T ∗

b and T ∗
c to find a total time hunting and foraging. This time was

then multiplied by 24 to convert to hours and divided by 151 days, the total number of days
that a crane typically spends in ANWR. Based upon the behavioral time allotments in [3],
we believe this to be a reasonable prediction. Assuming that the average weight of a crane
is 7 kg, we have that the anticipated energy requirement, E, is approximately 49,140 kJ [3].
Finally, our calculation of a maximum net energy of A(T ∗

b , T
∗
c ) ≈ 119, 288 kJ is large relative

to E, and so we expect a high probability of successful reproduction for a crane within this
territory.

Our sensitivity analysis allowed us to make conclusions with both a mathematical and
biological significance. It revealed that the parameters with the largest impact on maximum
energy intake are hc, nc, pc, and c, all of which pertain to crabs and the crane’s interactions
with them. This suggests that crabs are a more vital part of the cranes’ diet; thus their
availability and dispersion should be looked to as a key indicator of habitat quality and
should be heavily considered in conservation efforts.

Some of the parameters that impact the maximum energy the least are those parameters
that pertain to berries and the crane’s interactions with them: hb, nb, pb, and f . Biologically,
this makes sense since the cranes spend most of their time hunting for and gain most of their
energy from, the blue crabs. Knowing which parameters impact energy intake the most is
crucial in determining what steps should be taken to guarantee a higher net energy intake
of the whooping crane.
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In addition to developing a model for net energy intake, we also utilized optimal foraging
theory to explain the observed behavior of the cranes initially foraging for berries and then
switching their primary focus to hunting crabs [13]. When the cranes first arrive, the time
spent in either patch is zero and thus both encounter rates are maximal. Convenience in
terms of location is therefore initially of larger importance regarding prey preference [12].
This accounts for the cranes’ choice to first forage for wolfberries. If the wolfberries’ energy
efficiency ratio is greater than that of the blue crabs, we would anticipate that the cranes
would forage for berries. Similarly, if the crabs’ energy efficiency ratio is greater than that
of the wolfberries, we would expect the cranes to show a preference towards hunting crabs.
Therefore, the time that satisfies equality of these ratios is anticipated to be the point in
time at which the crane’s prey preference would initially switch from one to the other, and
more specifically in this case, from berries to crabs.

As the encounter rate with prey changes over time, we would expect that the crane’s
time involved with the prey, regarding search and handling, would change as well. In our
energy efficiency ratios, we determined that this time involved with prey should therefore
be inversely related to the encounter rates. This inverse relationship accounts for changes
in the search and handling time per prey in response to changes in prey availability. It also
accounts for a learning curve as a result of gained experience with the prey. Since the only
time dependent component of our energy efficiency ratios is the encounter rates, we have
that the cranes will have a switch in prey preference when their encounter rate with berries
has decreased to the appropriate proportion of the crab encounter rate.

After finding our switching point, ts, we determined several mathematical conditions that
must be met. These conditions are also of biological importance. Requirements (12) and
(13) essentially mean that if the rate of energy intake per day for berries is greater than that
of crabs, then the foraging rate for berries should be greater than the hunting rate for crabs
and vice versa. Since whooping cranes are optimal foragers, this is assumed to be satisfied.

Using our parameter estimates, we found a switching point after approximately 90.96
hours of accumulated foraging. This coincides with our maximal value for Tb since based
on the recorded behavior, we would expect most of the foraging for berries to occur when
the cranes first arrive, followed by a switch in behavior towards primarily hunting for crabs.
After the initial switch in prey preference, data reflects that some occasional foraging for
berries does occur, but it pales in comparison to that of the crabs [3]. This is represented
by the value of Tb − ts. Based purely upon foraging theory, however, Tb − ts > 0 suggests
that other minor switches in prey preference may occur later on.

To improve the predictive capabilities of our modeling efforts, several changes could be
made to allow for better connections with data that is collected in the field. For example,
we would like to initially expand upon the probabilities of successful capture. Here, we
have assumed them to be constant; however, a more accurate depiction of these probabilities
would include a distribution. Furthermore, to consider and analyze the impact of water
inundation levels on prey availability we would like to consider the possibility of a being
nonzero. In doing so, a would become time dependent and periodic reflecting water level
fluctuations associated with tidal changes. By combining field data for water levels, foraging
success rates, and other observations at ANWR with components of our model, predictions
for food resource availability for the cranes may be assisted by application of our energy
analysis and verified through examination of hatching rates. Furthermore, in addition to the
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whooping cranes, we anticipate that through minimal alterations, this model could serve as a
resource availability predictor for other threatened or endangered species as well. As a result,
this model could be the foundation for future species conservation research: a vital topic to
consider with the rapidly changing climate conditions being experienced worldwide. In fact,
incorporating more environmental factors such as changing water inundation levels would
extend our model to not only be a predictor of resource availability, but also a predictor of
impacts from climate and environmental changes.
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