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Abstract. Standard classification theory assumes that the distribution of images in the test and training sets
are identical. Unfortunately, real-life scenarios typically feature unseen data (“out-of-distribution
data”) which is different from data in the training distribution (“in-distribution”). This issue is
most prevalent in social justice problems where data from under-represented groups may appear in
the test data without representing an equal proportion of the training data. This may result in
a model returning confidently wrong decisions and predictions. We are interested in the following
question: Can the performance of a neural network improve on facial images of out-of-distribution
data when it is trained simultaneously on multiple datasets of in-distribution data? We approach this
problem by incorporating the Outlier Exposure model and investigate how the model’s performance
changes when other datasets of facial images were implemented. We observe that the accuracy and
other metrics of the model can be increased by applying Outlier Exposure, incorporating a trainable
weight parameter to increase the machine’s emphasis on outlier images, and by re-weighting the
importance of different class labels. We also experimented with whether sorting the images and
determining outliers via image features would have more of an effect on the metrics than sorting by
average pixel value, and found no conclusive results. Our goal was to make models not only more
accurate but also more fair by scanning a more expanded range of images. Utilizing Python and the
Pytorch package, we found models utilizing outlier exposure could result in more fair classification.
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1. Introduction. Facial recognition is being used increasingly in the medical, security, and
criminal investigation fields, along with many more as time passes. In an attempt to create
machine learning models for classifying faces through facial recognition, many large data sets
have been collected. However, in many of these data sets, there is a heavy representation of
Caucasian faces, while other races are underrepresented. As a result, studies show that the
skew in data sets can be around 80% in favor of lighter skin tones [21]. This leads to situations
where models fail to detect darker skin tones. One such example is when Microsoft, IBM, and
Face++ classifiers were tested against data sets where it was shown they all perform best on
lighter faces, and perform the worst on darker female faces [2]. To combat this issue, some
data sets have been curated to provide a more balanced division of groups. One such example
is FairFace [19], which was developed specifically to provide an equal division of race defined
by 7 categories. Additionally, many problems that apply to race classification extend to
gender classification, with some frequently used datasets containing a heavily unequal gender
distribution [21].

The topic of reducing bias to create a more fair classification model has been widely
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studied in recent years, beyond just creating balanced data sets. Particularly, a model can
struggle when encountering data with different distributions than the one present in the
training data. In real-world applications, these distributional differences often create issues
with the model’s ability to detect minority groups due to the overpowering amount of majority
group data. One approach to this problem is to instead expose the model to out-of-distribution
(OOD) data during the training process through the use of Outlier Exposure [10]. One
potential shortcoming of this method is that in real life, information about the OOD data is
not guaranteed.

The contribution of our paper is
• We compare the advantages between loss re-weighting and Outlier Exposure motivated
by their different restrictions on the support of input and output data, and find that
each increase different metrics of fairness.

• We modify the Outlier Exposure accordingly in terms of the loss computation and the
exposure parameter using the distance between the training and outlier distributions
and observe that we can achieve better results through this method.

• We observe the effects of editing the weighting parameter on accuracy and observe
that our changes result in fewer data points being falsely identified.

2. Distribution Shifts in Classification. Our focus is on the classification problem in fa-
cial recognition. Consider a large-scale facial image dataset containing N images, {xi, yi}Ni=1,
where xi ∈ X denotes the i-th facial image and yi ∈ {1, . . . ,K} denotes the corresponding
label, for example, the identity of the person in the image. The goal of a model is to ap-
proximate a function, f(x), to relate the images to their labels based on the training samples
{xtrain

i , ytraini }ni=1. If this relationship is successfully established, then the labels ytest can be
found by f(xtest). In training, the input images xtrain

1 , . . . ,xtrain
n are independent and identi-

cally distributed random variables following the image distribution P (x). The output labels
of training data follow a conditional distribution given xtrain,

ytraini ∼ P (y|x = xtrain
i ).

In standard classification problems, x train and x test are from identical d istributions. However, 
in our application the two distributions are not the same. Instead, we have the training 
distribution P (xtrain) and testing distribution Q(xtest).

2.1. Major issues. There are two major issues we encounter when working with this 
classification p roblem. The first one is  data im balance. The di stributions of  different classes 
in the two datasets are different. For e xample, FairFace, t he t raining d ataset, h as a  near 
50/50 split between male and female faces while UTKFace, one of the testing datasets, is 
heavily slanted in favor of male faces. The other major issue we face is the two datasets being 
out-of-distribution. As we will show, the two datasets had non-overlapping parts which makes 
it difficult to  classify images using typical classification strategies.

To correct the imbalances found within the training and test sets, we attempt to weight 
the sampling as well as weight the importance of each sample. Due to the fact that datasets 
always have an uneven amount of samples between classes, we strengthen the importance of 
the minority classes to help offset i mbalances. A s h as b een s hown [ 3], g iven s amples from 
a distribution P (x), a target distribution Q(x), and the function f(x) approximating the
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samples under Q(x), importance sampling would produce an unbiased estimate given by the

likelihood ratio Q(x)
P (x) :

(2.1) EP

[
Q(x)

P (x)
f(x)

]
= EQ[f(x)]

For that reason, we focus on weighting the importance according to the likelihood ratio.
We do this by manually tuning the re-scaling weight for each class based on the distribution
of training data. The goal of class re-weighting is to show how the model’s performance is
affected by out-of distribution data instead of imbalanced distributions.

One of our main approaches is to implement Outlier Exposure using multiple datasets to
accurately update parameters based on distributions. To do this, we generate an auxiliary
dataset consisting of the outliers of a given dataset. We quantify the largest outliers through
the use of the Kullback–Leibler (KL) divergence.

For each dataset, the images are sorted based on their KL distance from the distribution.
We collect 20% of the data with the greatest KL distance from each dataset to create an
outlier dataset containing the most significant outliers. We then use this new dataset for
Outlier Exposure to expose the model to the most significant outliers.

We find that re-weighting and Outlier Exposure both benefit performance, however in some
cases one is superior to the other. We find that re-weighting balances the model’s predictions
for each class, whereas outlier exposure has a greater effect on improving accuracy and other
metrics such as precision and recall. However, both techniques can be used simultaneously to
complement each other, but it is important to consider how the weighted classes will affect
the predictions made on the Outlier Exposure group. These weights were specified and the
formula provided in Section 3.3.

3. Methods.

3.1. Explaining Outlier Exposure. One common way to alleviate out-of-distribution data
(OOD) missing their true labels is by using auxiliary out-of-distribution data. This auxiliary
data can be incorporated into the model through an OOD-detection score that can then be
used to generalize unseen data through the model [10]. The loss function for this model is:

(3.1) min
θ

EPin(x,y)[L(fθ(x), y)] + λEPout(xOE)[L(fθ(x
OE), yOE)],

where x is an 1×n pixel-intensity vector of the in-distribution data, y is the 1×n true-labeling 
of the images contained in the in-distribution set, xOE is the 1 × n pixel-intensity vector of 
the auxiliary data-set, and yOE is a 1 × n vector of the true-labeling of the auxiliary dataset. 
The pixels are capped at 255 due to the standard RGB scale. Every image in the dataset is a 
random variable x ∈ [0, 1]n2 

, where n is the resolution value. The pixel average for the current 
image examined is defined a s x 1 a nd t he overall d istribution o f p ixel averages f or a ll pixels 
is defined a s x 2, with t he r ange f or e ach o f t hese averages b etween 0  t o 2 55. The fi rst term 
is a loss function designed to minimize the loss of the in-distribution data to increase model 
accuracy. The second term is a loss function, with separate predictions, designed to minimize
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the loss of out-of-distribution data in the model’s decision making process. The parameter λ
is then trained to find the optimal ratio between the weights of the in-distribution and out-of
distribution data during each epoch.

To clarify further,

(3.2) EPin(x,y)[L(fθ(x), y)]

is the loss for in-distribution data. It is a product between the expected value of a function
of pixel-intensity and true-labeling and the cross-entropy loss function of the pixel-intensity
and true-labeling.

L(·, ·) is the cross-entropy loss function, which measures the distance between the target
probability distribution and the learned probability distribution. That is,

(3.3) EPin(x,y)L(fθ(x), y) = EPin(x,y)[− logPθ(x, y)].

Since images can only belong to one class, the probability of the image belonging to the
true label is 1 and so, the probability of the image belong to the other labels are 0. Therefore
with n samples, the expectation can be approximated by 1

n

∑n
i=1 L(fθ(xi), yi). Therefore our

equation changes to

EPin(x,y)L(fθ(x), y) = EPin(x,y)[− logPθ(x, y)],

≈ − 1

n

n∑
j=1

K∑
i=1

1[yj = i] log pθ(yj = i|xj),
(3.4)

where the distribution pθ(yj = i|xj) is learned from a neural network by using the typical
softmax function. The loss for Outlier Exposure data is

(3.5) EPout(xOE)[L(fθ(x
OE), yOE ].

The Outlier Exposure we implement in our model is approximated by:

OE = − 1

n

n∑
j=1

K∑
i=1

1[yj = i] log pθ(yj = i|xj)−
1

n

n∑
j=1

K∑
i=1

1[yj = i] log pθ(yj = i|xj)],
(3.6)

where xj is the in-distribution data set, UTKFace, yj are the true labeling, xOE is the out-
of-distribution, and yOE is the true labeling of the out-of-distribution data where the out-
of-distribution varies between different d atasets. E ssentially, x OE i s t he d istribution o f the 
model’s class prediction for the test set and yOE is the true labeling of classes for the test set.

3.2. Toy Example. Let’s consider two toy examples to visualize the difficulties a model 
encounters when dealing with OOD data. Let’s make the classification o f the model binary. 
We have the problem shown as below:
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Example 3.1. Take input data x = (x1, x2), label y = {0, 1}. We first set up an explicit
mapping f : x → y, where

(3.7) f(x1, x2) =

{
1 if x21 + x22 ≤ 4

0 otherwise.

The training data (xtrain, y) has inputs from the smaller square xtrain ∈ [−1.5, 1.5]2, and
y = f(xtrain). The test data is a uniform mesh grid on [−6, 6]2. If the mapping and classifica-
tion is correct all the area outside the circle should be red. We see that Fig. 1 shows that the
classification result is accurate for data points close to the given training data. However, the
learned function fails to classify the cross-shaped area outside the circle correctly but is confi-
dent in making that incorrect prediction. This shows the learning algorithm over-confidently
gives wrong classification results on the test data it has not seen before. In this example, we
used a simple fully-connected neural network with 2 hidden layers and 100 neurons per layer
and apply Adam optimizer to optimize the cross-entropy loss.

Figure 1: Any point inside the dashed circle gives f(x) = 1 and its true label is class 1, while 
the true label of points in the rest of the whole space [−6, 6]2 is class 0. The training data 
(xtrain, y) has inputs from the smaller square xtrain ∈ [−1.5, 1.5]2, and y = f(xtrain). This can
be seen in the middle small square with blue (class 1) in the overlapping part with x21 +x22 ≤ 4; 
and red corners (class 0). The color bar on the side gives the predicted probability of the test 
data (a uniform mesh grid on [−6, 6]2) in class 1.

When the data provided is reliable (truly sampled from Pin(x, y)) the classifier g ives a 
good result. However, when encountering a different d istribution, t he model c annot classify 
accurately. We attempt to resolve this by introducing a form of adjustment for the model 
known as Outlier Exposure as described in Section 3.3, seen in the example below:

Example 3.2. The model has not seen data from Pout during training and consequently that 
data may be incorrectly identified. As can be seen in Figure 2, Outlier Exposure does 
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allow for classification to be more accurate for different classes. The classifier is a simple 
case and can be defined explicitly as the donut shaped region. We use the same neural 
network setup as seen in the initial example.

(a) Training and testing on in-distribution data.

(b) Training on in-distribution data, and testing on out-of-distribution data.

(c) Training on in-distribution data, and testing on out-of-distribution data
with outlier exposure

Figure 2: A simple math example to illustrate outlier exposure. Three pairs of 
classification results in the toy e xample. From top to b ottom: (a) is the result when training 
and testing data set is using the same normal distribution (in-distribution data). (b) is training 
on in-distribution data, and testing on out-of-distribution data. (c) Training on in-distribution 
data, and testing on out-of-distribution data with Outlier Exposure

In the real world, this relationship is not as trivial. This disparity of difficulty will cause the 
issue of out-of-distribution data to be more severe in real-world facial recognition applications. 

In facial analysis applications, the out-of-distribution data could appear because of a 
different e nvironment, s uch a s l ighting, o r a  d ifferent de mographic or  ge nder distribution 
during data collection. A face recognition algorithm transforms an image x into an output 
class y indicating the identity of the person in that image. To train a face recognition model, a
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dataset needs to have many different images of faces. However, if the dataset uses photos taken
indoors Pin(x) to train the model, then images from outdoor lighting conditions Pout(x) might
cause the model to perform poorly. In another scenario, we want to train an algorithm to
recognize personal attributes, such as emotion, from images of faces. People create a dataset
of facial images with labels about emotion level sad to happy Pin(y|x). However, cultural
difference could result in different labels when a different group of people look at the same set
of images Pout(y|x). This might also result in wrong decisions from the model.

3.3. Outlier Exposure with An Importance Re-weighting scheme. One approach we use
to account for the out-of distribution data is by weighting the loss function in Equation (3.1).
This is done by weighting the first term, the loss for in-distribution data. That is,

EPin(x,y)L(fθ(x), y) ≈ − 1

n

n∑
j=1

K∑
i=1

wi1[yj = i] log pθ(yj = i|xj),(3.8)

where the weights for each of the I classes can be found by

wi =
n

Iytraini

(3.9)

where wi is the weight used for the ith class, n is the total number of images in a dataset,
and ytraini is the number of images in the ith class, for i ∈ [1, 2, . . . , I]. Notice that since we
consider binary classification, I = 2, so we get:

w1 =
n

2ytrain1

,(3.10)

w2 =
n

2ytrain2

.(3.11)

Additionally, we primarily use the rescaled weights, where w1 = 1, and w2 is scaled accordingly.
This re-weighting scheme is chosen as it increases the importance of classifying the minority
class.

This improves classification as more weight is placed on the positive class, which we
consider to be the minority class of females for gender classification. Thus, when the loss
function is being optimized, it will be penalized more heavily for errors made when training
on the minority class.

In order to find the appropriate images for the outlier exposure data, we first need to
quantify which images are outliers. We start by using the KL divergence to measure the
difference between two probability distributions over a variable x. The two distributions
we use are the pixel value distributions obtained from each dataset. The x-axis (pixels) are
capped at 255 due to the standard RGB scale. Every image in the dataset is a random variable
x ∈ [0, 1]n

2
, where n is the resolution value. The pixel average for the current image examined

is defined as x1 and the overall distribution of pixel averages for all pixels is defined as x2,
with the range for each of these averages between 0 to 255. The distance is defined as the
distance between x1, x2 in the defined space. In this case we used the KL divergence which
uses probability distributions. In probability distributions P and Q are defined by

(3.12) DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
325



G. BARONE, A. CUNCHALA, AND R. NUNEZ

This divergence allows us to identify the 20% of images from the UTKFace and FairFace
dataset that represent the most significant outliers when compared to the distribution of the
UTKFace dataset. These images are then compiled into separate folders to be used in Outlier
Exposure testing where we analyze the distribution of each dataset based on the frequency of
the pixel values. The pixel frequency distribution, which we used the KL divergence to find,
represents the percentage of pixels with a given intensity featured in all images in a given
dataset.
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Figure 3: Distribution of Pixel Frequency in UTKFace & FairFace

As can be seen in Figure 3, the mean RGB value of the UTKFace dataset is close to 120, 
while the mean of the FairFace dataset is closer to 70. Higher mean RBG values suggest that 
the dataset has brighter or more intense colors relative to lower mean RGB values [32]. From 
this, we deduce that the UTKFace dataset contains brighter images than the FairFace dataset, 
which might be due to image quality. That is an avenue for future research for classification 
models.

We also find t hat t he KL d ivergence b etween t he two datasets t o b e 0 .088. Smaller KL 
divergences imply that two datasets are similar [6]. This similarity is supported by Fig. 3, 
and may lead to issues when using this data in Outlier Exposure models because the two 
distributions are not at a level of distinction necessary for Outlier Exposure to be impactful 
[10].

However, there are major issues with comparing datasets using simple pixel values. Pixel 
values are incredibly sensitive to variation in lighting and are drastically affected by image 
transformations [13], computationally expensive [30], and do not consider important semantic
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Figure 4: Frequency histogram of activation features in UTKFace and FairFace

content such as shapes and textures in an image [4]. In addition, by using pixels we are 
considering every pixel value in an image, which includes background details that can lead to 
noisy and/or irrelevant features hindering accurate dataset comparisons [18].

Another method of comparing distributions can be done through activation features. Ac-
tivation features, also known as feature maps, are the output maps of intermediate layers of 
a Convolutional Neural Network when the network performs forward propagation [22]. They 
have several benefits when c ompared t o d irect p ixel v alues. N amely, t hey e ncode semantic 
information, reduce dimensionality to make computation more efficient, an d ar e unaffected 
by image transformations [1]. We found the histogram plots of the activation features for the 
UTKFace and FairFace datasets, shown in Fig. 4.

The range of the features in the UTKFace dataset is limited as seen by the constraints 
of the x-axis. This range suggests that there is relatively minimal diversity in the contents 
of the UTKFace dataset. In addition, low activation values suggest that the feature is not 
abundantly apparent in the input data [12]. The dataset as a whole does not have an activation 
feature above 0.2, suggesting that none of the features appear in a large number of the input 
images.

Comparatively, the FairFace dataset histogram in Fig. 4 has a remarkably different dis-
tribution. A large number of the features are in a similar range as the UTKFace dataset, but 
unlike UTKFace, some remain outside that range. This suggests that the distribution of the 
FairFace dataset may have a bigger spread than that of the UTKFace dataset.

Additionally, this also confirms our belief that the two datasets are not nearly as similar as 
they appear when compared using pixel value frequencies. In order to quantify the difference 
between the two datasets we decided to use the KL divergece. This is important because 
the Outlier Exposure method of classification i s o nly e ffective if  tw o da tasets ha ve varied 
distributions.

The KL divergence for the two datasets when comparing activation features, instead of 
pixels, was over 2800. A higher KL divergence values suggest that the two datasets are more 
dissimilar [6].

3.4. Identifying and Quantifying Outlier Images and Datasets. After confirming that 
the two datasets have significantly different distributions, we use this to modify the training
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of the neural network to classify out-of distribution data. One way of tackling the issue of
classification of out-of distribution data is by attempting to shift the distribution of the two
datasets together [29]. The hope is that by shifting the distributions closer, the model will
better predict the test data as it is closer to the data seen before. To do this we first needed
to identify the largest 20% of outliers in both the UTKFace and FairFace dataset; that is, we
needed to find the images in each dataset that are farthest from the mean of the dataset. This
would also allow us to quantify how far apart the datasets are from each other. This is relevant
because if the two distributions are relatively similar, Outlier Exposure may not work [10].
Furthermore, we can use the difference in distributions to modify the λ in (3.1). Although λ
was initially fixed to 0.5, we modified it to be a function of the distribution differences of the
training datasets. The equation for lambda was written as:

(3.13) λ(DKL) := tanh(DKL),

where D represents the KL pixel distance between the two distributions. We further modify
this to change with respect to the number of epochs that have elapsed since training began
in order to have the weight adjusted as the model sees more images.

(3.14) λ(DKL, i) := tanh(DKL)(1− cos(
iπ

20
))

where i represents the current epoch from 1 to 20. This iteration causes λ to increase with
time, which places greater value on the second loss term during the last epochs of the model.
In addition to changing λ, we also alter when we calculate the KL distance so as to yield
different values. Initially, the KL distance of the two full distributions was implemented, then
the KL distance of in-distribution and out-of-distribution in batch sizes of 16 images. This
was done to see if smaller distributions might reveal intricacies within the dataset that were
obscured at a more macroscopic level.

3.5. Definition of Relevant Evaluation Metrics. Here we define the metrics we used
to evaluate our model. Due to the emphasis on the fairness of the model, we evaluated
performance based on the confusion matrix and AUROC score. Through the use of the
confusion matrix we find precision, recall, accuracy, and F1, with our goal being to maximize
each metric, along with the AUROC score. Precision and recall can be calculated using the
true positive, TP , false positive, FP , and false negative, FN , where

Precision =
TP

TP + FP
(3.15)

Recall =
TP

TP + FN
(3.16)

Additionally, the F1 score is the harmonic mean between precision and recall. That is:

F1 =
2(Precision)(Recall)

Precision + Recall
(3.17)

The area under the ROC curve (AUROC) is a measure of performance, where a model with 
perfect predictions would have a score of 1, and a model that was always incorrect would have
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a score of 0. The ROC curves we obtain for each experiment can be found in Appendix A, 
along with the resulting confusion matrices for each experiment that we use to calculate the 
performance metrics in Appendix B.

4. Experiments.

4.1. Datasets. One dataset that we primarily use to train our model is the UTKFace 
dataset [34]. The dataset consists of over 20, 000 images labeled by age, gender, and race. 
Age is labeled numerically from 0 − 116. For gender, 0 is male, and 1 is female. For race, 0 is 
White, 1 is Black, 2 is Asian, 3 is Indian, and 4 is for any other races.

We use the FairFace dataset [19] for training and testing, depending on the experiment. 
This dataset consists of around 100, 000 images, with labeling in a csv file consisting of labels 
for age range, gender, and race. To make our image names in the same format, we use a 
program to rename all the images in the FairFace folder to match the naming scheme of 
UTKFace. In addition, race is divided into seven categories, contrasting with UTKFace which 
has five. To account for this, we assigned White for Middle Eastern, and combined East Asian 
and Southeast Asian into Asian to mimic how UTKFace labels their images.

CIFAR-10 [17] is also used for the out-of-distribution dataset for Outlier Exposure. This 
dataset consists of 10 classes of objects consisting of airplane, automobile, bird, cat, deer, dog, 
frog, horse, ship, and truck. This is chosen as an OOD set since we believe the pictures should 
appear different when compared to faces.

Labeled Faces in the Wild (LFW) [14] is used to test our model on a different dataset. 
LFW is used for gender classification. When l ooking a t t he g ender d istribution o f t his set, 
there are around 10, 000 male images, and around 3, 000 female images. It consists of 13, 000 
images of different f amous f aces. This dataset i s chosen a s i t i s a  widely u sed, l arge dataset 
consisting of faces.

CelebA [20] is used similarly to the LFW dataset. The dataset consists of 202, 599 images 
of celebrities. Although they contain labels for many different traits, only the gender label is 
used. Unlike LFW, the number of male and female faces in the dataset is more balanced.

FairFace and UTKFace are also used experimentally as the OOD dataset. For each dataset, 
one approach is to use the entire dataset as the OOD set. Another approach is through using 
the outliers to create a smaller dataset consisting of the outliers of either FairFace of UTKFace.

4.2. Dataset Processing. In the pre-processing class, we make sure the labels between 
datasets are consistent, and we convert the image file path to an RGB array as an input for the 
neural network. Other research has previously shown that [26] convolutional neural networks 
(CNN) perform better on RGB images relative to other forms of deep learning. As previous 
work showed [8] neural networks take inputs of the same size and such that the images needed 
to have a fixed s ize b efore b eing u sed a s i nputs t o t he CNN. The image s ize we d ecided on 
was 32 pixels by 32 pixels, requiring resizing in order to avoid issues with computation time. 
Images that are modified in size struggle when processed by a neural network [ 7]. To mitigate 
this problem we attempt to avoid minimizing images by a significant a mount. The FairFace 
images are resized to 32 by 32 and all images are transformed into tensors necessary for CNN 
image processing. The tensors are also normalized before going through the network in order 
to make sure all the images are comparable.
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4.3. Network Infrastructure. In our model the network is a convolutional neural network
(CNN) - a deep learning model for processing data that uses grid patterns [15] designed to
learn the spatial hierarchies of different features in the image, making it optimal for facial
recognition [5]. The standard CNN contains three types of layers: convolution, pooling, and
fully connected. The convolutional and pooling layers extract and process features through
applying kernel matrices to preform convolutional and pooling operations. The fully connected
layer maps it into an output that can be used for classification [31]. For example, Fig 5 shows
how a convolutional network processes an inputted image.

Figure 5: How a CNN Processes an Image.

Our first convolutional layer has an input channel of 3 RGB colors, 32 output channels and 
a kernel size of 5x5 - a common industry standard [11]. Our second layer is a 2x2 kernel size 
pooling layer used to downsize the sample’s spatial dimensions [23] to make the CNN more 
effective. Average pooling i s used (as opposed to max pooling) due to a  more representative 
sample of the pixels in a region. Max pooling becomes skewed towards the dominant pixel 
features in an image region [33]. We perform a second convolutional layer to extract features 
from the pooled matrix before being concatenated to an 1xn vector and used as an input 
in the fully connected layers. The fully connected layers use randomly initialized weights 
to generate probabilistic interpretations of the random variable x, since pictures are loaded 
into the data loader at random [27]. To extract information from each layer through weight 
functions the softmax activation function normalizes the output of the loss function so that 
back propagation can occur to update the randomly initialized weights. As the loss gets 
minimized the weights should converge to the desired function for how to interpret the input. 
This is done for any given number of epochs, where then the final softmax interpretation will 
be directly used to produce a label. The number of outputs matches the size of true-labels 
in classification. There is also a  forward pass function in the class of our neural network that 
serves to push the image through the different l ayers o f t he n etwork mentioned a bove. We 
use the tanh activation function over the ReLU activation function due to the non-linearity 
of tanh and its symmetry around zero [24]. The function then returns the image after all the
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processing is complete.
We pretrain a reasonable convolutional neural network model by testing on in-distribution

data. This is to make sure that we can explicitly address our proposed methods on improving
the classification of out-of-distribution data.

When testing on in-distribution data, a model generally is able to have the highest accu-
racy. This is because when the two distributions of training and testing match, the model is
well prepared for classifying those images.

4.4. Training. For training, every model is run with 20 epochs to compensate for large
computation times. The optimizer we use was the ADAM optimizer [16]. This optimizer was
chosen over stochastic gradient descent because we found that it often converged more quickly
while having the same loss values.

4.5. Testing on Out of Distribution Data. To implement Outlier Exposure, it requires an
in distribution and out-of-distribution dataset. We often use UTKFace as our in distribution
dataset, which gets used as it would in a standard machine learning model. As seen in (3.3),
the in distribution data passes through a standard loss function, which is typically cross
entropy. The outlier exposure group is varied between different tests. As seen in (3.5), the
outlier group does not pass through a typical loss function as the data for that group does
not contain labels but only pictures. To account for this, we included a second loss function
in the code (3.6) which computes the cross entropy from a softmax distribution to a uniform
distribution. This serves to minimize the program’s confidence when predicting the out-of-
distribution data, which should help prevent it from being overconfident when encountering
other out-of-distribution data when testing. Potential future testing could involve a way for
us to improve the weighting schemes by trying to mitigate the weight degeneracy in other
ways. We are able to identify the weights of the two classes used in outlier exposure by using
(2.1) in order to make sure that our training set was not unduly biased towards male figures.

In general, even if a model had been shown to be adept at recognizing images in the
training distribution and accurately classifying them during testing, these results often do
not generalize to out-of-distribution data. This means that we would train the model on one
dataset, UTKFace for example, before testing on a different dataset - the goal being able
to accurately detect out of distribution. It has been shown that this outcome is incredibly
difficult for models since, although they may have a high confidence, their accuracy drops
when tested on a different dataset’s distribution [9].

Train Dataset Test Dataset Precision Recall Accuracy F1 AUROC

UTKFace FairFace 0.65 0.68 0.69 0.66 0.77

FairFace UTKFace 0.87 0.86 0.87 0.86 0.95

Table 1: Results from training and testing on OOD data based on gender. The model being 
used is tuned for in-distribution data, where all metrics are above 0.97 for UTKFace and 0.91 
for FairFace.

As can be seen in Table 1, the AUROC value of a model trained on UTKFace and tested 
on FairFace is substantially lower than when it is trained on Fairface and tested on UTKFace.
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This disparity is due to two major reasons. First, the FairFace dataset has more images which
gives the model more data points to learn, which increases the accuracy of the model[11].
Second, the FairFace dataset is also more balanced than the UTKFace data [28] which leads
to better accuracy. Those two changes make the FairFace dataset a better training dataset
than the UTKFace dataset.

Outlier Group Precision Recall Accuracy F1 AUROC

None 0.65 0.68 0.69 0.66 0.77

FairFace 0.53 0.52 0.55 0.52 0.60

UTKFace Outliers 0.61 0.71 0.70 0.66 0.75

FairFace Outliers 0.58 0.66 0.66 0.62 0.70

CIFAR-10 0.58 0.71 0.69 0.64 0.75

Table 2: Results from Outlier Exposure when classifying based on gender, training on UTK-
Face and testing on Fairface

4.6. Improving Out-of-Distribution Classification. We found that the significance of the
outlier group had a strong impact on the performance of the model. We believe UTKFace
and UTKFace outliers did well due to the change in the distribution of UTKFace becoming
more balanced, and potentially bring the distribution between the train and test set closer.
However, as seen in Table 2, the original model without Outlier Exposure performs better.
As seen in Figure 3, the distributions are already similar, providing an explanation to why
Outlier Exposure did not work as well as we expected.

In attempt to take into account the differences in distributions between datasets, the
samplings we use can be weighted. One approach we use is by taking the Outlier Exposure
groups we created earlier from the 20% with the greatest KL divergence, and adding that to
the training data. This results in the model being exposed to a larger quantity of outliers to
hopefully allow it to classify the images better during testing.

Outlier Sample Precision Recall Accuracy F1 AUROC

None 0.65 0.68 0.69 0.66 0.77

UTKFace Outliers 0.70 0.68 0.70 0.69 0.77

FairFace Outliers 0.75 0.81 0.80 0.78 0.85

Table 3: Results of increasing the samples for training while training on UTKFace and testing 
on FairFace

As seen in Table 3, when the model is exposed to an increased sample size it performs 
much better than without.

Another approach to account for these differences can be by weighing the loss function to 
pay more attention to one class over another. This is useful in preventing a majority class from 
overwhelming the minority class. In particular, for gender we weight the female class higher 
than the male class. In order to observe this effect we did not implement outlier exposure.
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Our model is trained on UTKFace and tested on FairFace in order to observe the effect that
the weighted sampling had independently on the model.

Male Weight Female Weight Precision Recall F1 AUROC

1.0 1.0 0.57 0.65 0.61 0.70

1.0 1.5 0.62 0.64 0.63 0.70

Table 4: Results of modifying the weights of loss for male and female classes

As seen in Table 4, we see that increasing the weights of the female class to 1.5 increases the
precision while barely decreasing the recall. This means that overall, the model is classifying
males and females with around the same accuracy as can be found in the corresponding
confusion matrix.

5. Main results. We test our model on separate datasets, which simulates a scenario
similar to a realistic application. We observe that by adding an outlier group, as outlined in
Section 3.3, and weighting the sampling, as described in Section 3.9, that the model performs
better than without. We see that even when the extra outlier group is from a different sample
entirely, the model is better at adapting to new situations.

Training Group Precision Recall Accuracy F1 AUROC

FairFace 0.46 ± 0.04 0.26 ± 0.01 0.60 ± 0.02 0.33 ± 0.01 0.57 ± 0.01

FairFace w/ OE 0.54 ± 0.01 0.30 ± 0.01 0.61 ± 0.02 0.38 ± 0.01 0.60 ± 0.02

Table 5: Averaged results from testing on LFW when classifying based on gender, in the form 
of mean ± standard error

Since there is a strong imbalance between the male and female class in LFW, the loss is 
shown by Equation (3.9), using a male class weight of 1 and female class weight of 1.3.

When finding the metrics, the f emale c lass was t reated as the positive c lass, which in all 
prior datasets meant that measuring our accuracy metrics on the male or female class would 
yield similar values due to the balance between men and women in each set. However, in 
LFW there are around 10,000 males and 3,000 females, and as such, the metrics seem much 
lower as there is much less data for women. Regardless, as can be seen in Table 5, our new 
model performs significantly b etter t han t he model t hat e xclusively t rains on F airFace. We 
take the average over five trials to observe any variance in both m odel. From these averages, 
it can be seen that there are improvements specifically i n p recision and r ecall, which shows 
that a greater percentage of women were accurately predicted.

When comparing the ROC curves for the two experiments, without outlier exposure the 
AUC is 0.58. This is barely better than randomly guessing, as that would correspond to an 
AUC of 0.5. Comparatively, with our model the AUC is 0.67, which is a significant jump 
above the initial model.

An advantage of measuring the average over multiple trials is that the standard error can 
be found, which shows how much each model varied between tests. When comparing the
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values seen in Table 5, the smallest standard error in each metric is split between the two
models. However, the standard error for precision is much smaller in the model with outlier
exposure when compared to the model without.

Training Group Precision Recall Accuracy F1 AUROC

FairFace 0.59 ± 0.020 0.61 ± 0.007 0.55 ± 0.007 0.60 ± 0.009 0.57± 0.008

FairFace w/ OE 0.62 ± 0.007 0.64±0.007 0.58±0.008 0.63±0.005 0.59±0.008

Table 6: Averaged Results from testing on CelebA when classifying based on gender

Similarly to the LFW dataset, we set the weights for the male and female class to 1 and 
1.15 respectively.

The model is also tested on the CelebA dataset to classify gender. The results shown in 
Table 6 are consistent with the ones seen in Table 5, where our improved model performs 
better in both fairness metrics and accuracy.

Due to averaging multiple trials, we also observe the standard error between both models. 
When comparing the values seen in Table 6, it can be seen that on average, the standard error 
of the precision of the model with outlier exposure is smaller than that of the model without. 
A lower standard error means that the results are less varied and more consistent.

Over the course of all experiments, we find that in general, our approach helps to reduce 
false negatives and false positives. This can be seen by observing the recall and precision 
in Table 5 and Table 6, in which both fairness metrics increase with our model. As such, 
this correlates to a lower false negative and false positive rate, which is very important as 
different applications s uffer more fr om di fferent fal se flag ging. In c ont rast to t he healthcare 
application mentioned prior, false positives can be particularly problematic in law enforcement 
applications, where a subject could be mislabeled as the culprit for a crime they did not 
commit. As such, being able to reduce both false positive and negative rates are important.

6. Conclusions. In this paper, we explore the concept of facial recognition classification. 
Specifically, we focus on how models struggle when confronted with data from different distri-
butions during training and testing. Out-of-distribution data has been shown to significantly 
reduce the accuracy of facial recognition models. Throughout this paper, we document the 
results of a CNN model on different training and testing d atasets. We also use KL distribution 
to identify outlier images from each dataset and incorporate Outlier Exposure into our model 
to see how it affected t he model’s a ccuracy a nd o ther m etrics. We a lso a ttempt t o weight 
the sampling of the different c lasses (male and f emale) and observe how t he model’s results 
change. Overall, we evaluate how facial recognition performs on out-of distribution data and 
conclude that outlier exposure can increase accuracy and other metrics of the model. We also 
conclude that utilizing weight sampling and outlier exposure can improve both the accuracy 
and the fairness of the model on out-of-distribution facial image sets. With the use of artifi-
cial intelligence and facial recognition in sectors such as law enforcement and healthcare, the 
lack of fairness and accurate classification of out-of-distribution data (often data &  images of 
minority groups) has become an increasingly pressing issue. The methodologies we explore 
here can improve the metrics of these models, and we find t hat m any t echniques r ely on 
having some knowledge about the dataset distributions, which requires a carefully considered
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implementation of these different methods to maximize the metrics of concern.
For this paper, all experiments are performed in Python using the Pytorch package, with

data analysis performed using Scikit-learn package. The hardware we use is a 16 GB RAM
and a 6 core, 2.6 GHz CPU. Additionally, our code will be made available upon request.

6.1. Related & Future Work. While this paper is a good overview of current methods,
there are alternate avenues that future researchers may want to explore to increase accuracy.
One method is Geometric Sensitivity Decomposition, which works with feature norms of
images after they have run through a neural network. Besides the importance weighting and
outlier exposure perspectives we looked into, another region of focus is through bringing the
distributions of the train and test datasets closer through the modification of the distributions.
Working with this and incorporating geometric sensitivity decomposition would represent our
next avenue to improve out-of-distribution images.

Along the same lines of fairness transfer, [25] develops a causal approach using conditional
independence tests to characterize distribution shifts in healthcare machine learning, revealing
that understanding such shifts can diagnose fairness discrepancies and suggesting potential
mitigation strategies throughout the ML pipeline. Additional modifications to our CNN
network could represent an area to improve the facial recognition of out-of-distribution images.

Acknowledgments. We would like to thank our mentor, Dr. Nicole Yang. This work was
supported in part by the US NSF award DMS-2051019.
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Appendix A. ROC Curves for Experiments.
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Figure 6: ROC Curve from all experiments used, labelled in the order of “train set-test set-
outlier set”. Orange is the classifier performance and the dashed line is for 50% accuracy.
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Appendix B. Confusion Matrix for Experiments.

Train-Test-Outlier Male-Male Male-Female Female-Male Female-Female

UTKFace-FairFace 33711 14274 12274 26484

FairFace-UTKFace 10818 1477 1573 9837

UTKFace-UTKFace 12079 226 312 11088

FairFace-FairFace 42657 3754 3328 37004

UTKFace-FairFace-UTKFace 36306 15304 9679 25454

UTKFace-FairFace-FairFace 26010 19041 19975 21717

UTKFace-FairFace-UTKFace Outliers 35693 16079 10292 24679

UTKFace-FairFace-FairFace Outliers 33636 16952 12349 23806

UTKFace-FairFace-CIFAR-10 36486 17144 9499 23614

UTKFace-FairFace (weights 1-1.5) 32003 15503 13982 25255

Table 7: Confusion Matrices from all experiments used. Columns labeled by “Predicted Label-
Actual Label”
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