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Abstract

We study symmetric random walks on the vertices of a wheel-and-spokes graph.
We consider the following questions. How long does it take for the walk to go from
one vertex to another? Starting from one vertex, how long does it take to visit
all vertices? Having visited all vertices, how much additional time does it take to
return to the starting vertex? The answers to these questions are random variables
for which we desire the exact probability distributions, if possible; otherwise, we
seek at least their means and standard deviations. We compare our results to those
of symmetric random walks on the vertices of polygons.
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1 Introduction

Many physical phenomena that evolve over time can be modeled by random walks on a
suitable graph G = (V,E) whose set of vertices V denotes the different states, and set of
edges E denotes all possible transitions from one state to another. By a random walk we
mean a discrete time stochastic process in which a particle starts from one vertex, called
the origin, and at each successive epoch it moves from its current position to an adjacent
vertex. Hence, the expressions ‘how much time’ and ‘how many steps’ mean the same
thing. The walk is called symmetric when starting from any vertex, the next transition
takes the particle to any one of the adjacent vertices with equal probability.

Maiti and Sarkar (2019) studied symmetric random walks (SRW) on the n vertices
of a linear path (with absorbing, sticky or reflecting end vertices(s)), and Sarkar (2006)
studied SRW on the n vertices of a polygon or on the n nodes on a circle Cn. Here
we study a SRW on the vertices of a Wheel-and-Spokes graph, which adds a central
vertex to Cn and connects it to each node on the circle. Thus, a Wheel-and-Spokes
graph Wn = (V,E) consist of (n+ 1) vertices of which n vertices are on a circle and one
vertex is at the center. There are 2n edges: The center (or hub) is connected to each
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vertex on the circle (or periphery) resulting in n spokes; each vertex on the circle is also
connected with its two neighbors in the clockwise and the counterclockwise directions,
thereby constituting a circle graph Cn, which forms the wheel.

Let us label the vertices along the circle (or wheel) as v1, v2, . . . , vn, and the center
(or hub) as v0 (sometimes also labeled as H for hub). Then, writing vn+i = vi, the wheel
graph is Cn = (VC = {vi : i = 1, 2, . . . , n}, EC = {(vi, vi+1) : i = 1, 2, . . . , n}) (with vertex
vn+1 being the same as vertex v1); the spokes graph is Sn = (VC ∪ {v0}, ES = {(v0, vi) :
i = 1, 2, . . . , n}) and the Wheel-and-Spokes graph is the union of the wheel graph and
the spokes graph Wn = Cn ∪ Sn = (VC ∪ {v0}, EC ∪ ES).
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Wheel graph Cn Spokes graph Sn Wheel-and-Spokes graph Wn

Figure 1: Wheel, Spokes, and Wheel-and-Spokes graphs for n = 6

Taking a cue from Maiti and Sarkar (2019) who studied a SRW on the vertices of a
circle (or a wheel without spokes) graph Cn, here we answer the following three questions
about the SRW on a Wheel-and-Spokes graph Wn:

Q1) How long (or how many steps) does it take for the walk to go from any one vertex
to another?

Q2) Starting from one vertex, how long does it take to visit all vertices (at least once)?
Which vertex is visited the last?

Q3) Having visited all vertices, how many additional steps does it take to return to the
starting vertex?

The answers to these questions are not numbers, but random variables for which we
desire to obtain the exact probability mass functions (PMF), if possible. However, if it
is too difficult to obtain the PMF, then we will settle for only their means and standard
deviations. We compare our results to those of a SRW on the vertices on a circle.

Let the random time (number of steps) to go from vertex vi to vertex vj be called the
transit time from i to j and be denoted by iTj for i 6= j = 0, 1, 2, . . . , n. Using the struc-
tural symmetry of the Wn graph, we establish the following equalities (in distribution):

1. (Hub to periphery): 0T1 = 0T2 = 0T3 = . . . = 0Tn

2. (Periphery to hub): 1T0 = 2T0 = 3T0 = . . . = nT0

605



3. (Periphery to periphery): iTj = jTi = j+kTi+k = i+kTj+k for all k ∈ Z and for
all i 6= j = 1, 2, . . . , n, where addition of node labels is interpreted as a modulo
n operation (however, vn is the counter-clockwise neighbor of v1 on the periphery,
and v0 = H is the hub).

To develop the notion of time taken to return to the starting vertex, by suitable
renumbering, we also define 0T0 = 1 + 1T0; and for i = 1, 2, . . . , n, we define

iTi = 1T1 =

{
1 + 2T1 with probability 2/3, and

1 + 0T1 with probability 1/3.

Along with the study of transit time from vertex vi to vertex vj, an associated question
is: How many other vertices does the walk pass through? Let V P

t
j denote a path going

through the set of points in V and ending in vertex vj in t steps. We shall start with a
singleton V = {vi}, and then go through all sets of two vertices, then three vertices, and
so on.

In Section 2, we study the mean and SD of transition time iTj using a probabilistic
method along with the expected number of vertices visited during the transition, while
we study its PMF of iTj in Section 3 using an enumeration method. In Section 4, we
study the cover time; alongside, we also find the probability of the last visited vertex,
and calculate the mean time to return to the starting vertex after visiting all vertices.

2 A Probabilistic Method for Mean and SD of iTj

In this section, we study the transition time iTj from vertex vi to vertex vj. Here, we will
focus on the mean and the SD of the random variable iTj, leaving the study of the PMF
of iTj for Section 3.

2.1 Time to Reach a Target Vertex

Let iµj = E[iTj] denote the expected time for a path to travel from vertex i to vertex j.

Let M denote the one-step Markov transition matrix for the walk on G, and let M̃j be

the adjusted Markov transition matrix for the graph G̃j, which is absorbing at vj. In the
latter situation, since the wheel-and-spoke graph exhibits rotational symmetry, it suffices
to consider only two cases — M̃n and M̃0 — corresponding to any vertex on the wheel
or the vertex at the hub.

First, if v0 at the hub is the absorbing vertex and the starting vertex is (without loss
of generality) v1 on the circle, then the walk reaches the hub in one step with probability
1/3, and with the remaining probability 2/3, the walk moves to an adjacent vertex v2 or
vn. In this latter case, by renumbering the vertices on the periphery we can consider the
current vertex is again v1; that is, the process renews itself. Hence, 1T0 is a geometric(1/3)
random variable: In particular, P{1T0 = k} = (2/3)k−1(1/3) for k = 1, 2, 3, . . .; and 1T0
has mean 3 and variance 6.

Next, if vn on the circle is the absorbing vertex, and the starting vertex is any other
vertex, then writing the rows and the columns in the order corresponding to vertices
v1, v2, v3, . . . , vn−1, H = v0, we write down the (i, j)-th element of M̃n as follows.
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m̃i,j =


1/3 if 1 ≤ i ≤ n− 1 and j = i− 1, i+ 1, n

1/n if i = n and 1 ≤ j ≤ n− 1

0 otherwise

Note that this matrix is obtained by simply deleting the row and column corresponding
to vn in the ordinary MC on vertices v1, v2, v3, . . . , vn−1, vn, v0. For instance, for graph
W5, the transition matrix for the ordinary MC on vertices v1, v2, v3, v4, v5, v0 is given by
M5, detailed below.

M5 =


0 1

3
0 0 1

3
1
3

1
3

0 1
3

0 0 1
3

0 1
3

0 1
3

0 1
3

0 0 1
3

0 1
3

1
3

1
3

0 0 1
3

0 1
3

1
5

1
5

1
5

1
5

1
5

0


If the stochastic process is absorbing at vertex v5, then the transition matrix for the

modified MC corresponds to vertices v1, v2, v3, v4, v0, becoming the below matrix M̃5.

M̃5 =


0 1

3
0 0 1

3
1
3

0 1
3

0 1
3

0 1
3

0 1
3

1
3

0 0 1
3

0 1
3

1
5

1
5

1
5

1
5

0


In order to find the properties of the random walk absorbing at vertex vn, having

transition matrix M̃n, following the method given in [2], we first find the inverse matrix

N = (I − M̃n)
−1

, known as the fundamental matrix of an absorbing Markov chain. This
we do using the Gauss-Jordan elimination process, which proceeds in four steps.

Step 0: We start with the initial matrix I − M̃n, denoted by Ñ (0).

Ñ (0) =



1 −1
3

0 · · · 0 −1
3

−1
3

1 −1
3

. . . 0 −1
3

0 −1
3

1
. . .

... −1
3

...
. . . . . . . . . −1

3

...
0 0 · · · −1

3
1 −1

3

− 1
n
− 1
n
− 1
n
· · · − 1

n
1


=

Ñ
(0)
1,∗
...

Ñ
(0)
n,∗



Step 1: Keeping the first row and the n-th row of Ñ (0) unscathed, and proceeding
from the second row to the (n− 1)-st row one-by-one, we eliminate the entry −1

3
to the

left of the main diagonal by adding to each row a suitable multiple of the previous row.
When completed, we obtain Ñ (1),

Ñ (1) =



d1 −1
3

0 · · · 0 p1

0 d2 −1
3

. . . 0 p2

0 0 d3
. . .

... p3
...

. . . . . . . . . −1
3

...
0 0 · · · 0 dn−1 pn−1
− 1
n
− 1
n
− 1
n
· · · − 1

n
1


=

Ñ
(1)
0,∗
...

Ñ
(1)
n,∗

 =


Ñ

(0)
1,∗

Ñ
(0)
2,∗ + 1

3d1
Ñ

(1)
1,∗

...

Ñ
(0)
n−1,∗ + 1

3dn−2
Ñ

(1)
n−2,∗

Ñ
(0)
n,∗


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where di and pi satisfy the recursive relations

d1 = 1, di+1 = 1− 1

9di
, and p1 = −1

3
, pi+1 = −1

3
+

1

3di
pi. (1)

Lemma 1. For all i ≥ 1, we have di = F2i+2

3F2i
and pi = 1−F2i+1

3F2i
, where Fi is the i-th

number of the Fibonacci sequence (1, 1, 2, 3, 5, 8, . . .).
Proof. The proof is by mathematical induction on i. Note that d1 = F4

3F2
. Assume

that di = F2i+2

3F2i
holds. Then by the recursive relation (1), we have

di+1 = 1− 1

9di
= 1− 1

9F2i+2

3F2i

=
3F2i+2 − F2i

3F2i+2

=
F2i+4

3F2i+2

.

Similarly, note that p1 = −1
3

= 1−F3

3F2
. Next, assume that pi = 1−F2i+1

3F2i
holds. Then by the

recursive relation (1), we have

pi+1 = −1

3
+

1

3di
pi = −1

3
+

1

3F2i+2

3F2i

1− F2i+1

3F2i

= −1

3
+

1− F2i+1

3F2i+2

=
1− F2i+1 − F2i+2

3F2i+2

=
1− F2i+3

3F2i+2

.

This completes the proof of the lemma.
Step 2: Keeping the last two rows of Ñ (1) unscathed, and proceeding backwards from

the (n− 2)-nd row to the first row one-by-one, we eliminate the entry −1
3

to the right of
the main diagonal by adding to each row a suitable multiple of the following row. When
completed, we obtain

Ñ (2) =



d1 0 0 · · · 0 q1

0 d2 0
. . . 0 q2

0 0 d3
. . .

... q3
...

. . . . . . . . . 0
...

0 0 · · · 0 dn−1 qn−1
− 1
n
− 1
n
− 1
n
· · · − 1

n
1


=

Ñ
(2)
1,∗
...

Ñ
(2)
n,∗

 =


Ñ

(1)
1,∗ + 1

3d2
Ñ

(2)
2,∗

...

Ñ
(1)
n−2,∗ + 1

3dn−1
Ñ

(2)
n−1,∗

Ñ
(1)
n−1,∗

Ñ
(0)
n,∗


where qi’s are obtained recursively,

qn−1 = pn−1 =
1− F2n−1

3F2n−2
, and qi = pi +

qi+1

3di+1

=
1− F2i+1

3F2i

+
F2i+2

F2i+4

qi+1.

Remark 1: By mathematical induction, one can obtain the following formula for qi.

qi =
F2n

F2n−2i+4

(
1 +

1

3F2n

(
F2n+3 − F2n−2i+3 +

i−1∑
m=0

1− F2n−2m+3

F2n−2m

))
Step 3: Keeping rows 1 through (n − 1) unscathed, we reduce to zero all but the

last entry in the last row by adding to the last row suitable multiples of rows 1 through
(n− 1). When done, we get,

Ñ (3) =



d1 0 0 · · · 0 q1

0 d2 0
. . . 0 q2

0 0 d3
. . .

... q3
...

. . . . . . . . . 0
...

0 0 · · · 0 dn−1 qn−1
0 0 0 · · · 0 D


=

Ñ
(3)
1,∗
...

Ñ
(3)
n,∗

 =


Ñ

(2)
1,∗
...

Ñ
(2)
n−1,∗

Ñ
(0)
n,∗ +

∑n−1
i=1

1
ndi
Ñ

(2)
i,∗


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where D is the final element of the diagonal expressed as follows.

D = 1 +
n−1∑
i=1

qi
ndi

= 1 +
n−1∑
i=1

3F2i

nF2i+2

qi

Step 4: We divide the last row by D. Thereafter, for each i < n, we subtract a
qi-multiple of the last row from row i to eliminate the i-th element of the n-th column,
and then divide row i by the i-th diagonal element to normalize each row, yielding the
identity matrix.

Ñ (4) = I =

Ñ
(4)
1,∗
...

Ñ
(4)
n,∗

 =


1
d1
Ñ

(2)
1,∗ −

q1
Dd1

Ñ
(3)
n,∗

...
1

dn−1
Ñ

(2)
n−1,∗ −

qn−1

Ddn−1
Ñ

(3)
n,∗

1
D
Ñ

(3)
n,∗


The above-mentioned four steps complete the Gauss-Jordan elimination process. When

these same four steps are applied to the identity matrix (in stead of the Ñ (0) matrix), we

obtain the desired fundamental matrix of the absorbing Markov chain N = [Ñ (0)]−1 =

(I − M̃n)
−1

.
Parallel Step 0: We will apply the Gauss-Jordan elimination process starting with

the initial matrix I, denoted by N (0), and given by

N (0) = I =

N
(0)
1,∗
...

N
(0)
n,∗


Parallel Step 1: We apply the same procedure as in Step 1, to obtain a lower

triangular matrix N (1) as follows.

N (1) =


u1,1 · · · 0 0

...
. . .

...
...

un−1,1 · · · un−1,n−1 0
0 · · · 0 1

 =

N
(1)
1,∗
...

N
(1)
n,∗

 =


N

(0)
1,∗

N
(0)
2,∗ + 1

3d1
N (1)1,∗

...

N
(0)
n−1,∗ + 1

3dn−2
N (1)n−2,∗

N
(0)
n,∗


Where ui,j is given recursively:

ui,j =

{
ui−1,j

3di−1
if j < i

1 if j = i

Lemma 2 For all 1 ≤ j ≤ i < n, we have ui,j =
F2j

F2i
.

Proof. Note that ui,i = 1 = F2i

F2i
. Assume that ui,j =

F2j

F2i
. Then by the recursive

definition, we obtain an explicit definition for ui,j.

ui+1,j =
ui,j
3di

=
1

3F2i+2

3F2i

F2j

F2i

=
F2j

F2i+2
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Parallel Step 2: Following the procedure in Step 2, we obtain N (2) as follows,

N (2) =


v1,1 · · · v1,n−1 0

...
. . .

...
...

vn−1,1 · · · vn−1,n−1 0
0 · · · 0 1

 =

N
(2)
1,∗
...

N
(2)
n,∗

 =


N

(1)
1,∗ + 1

3d2
N

(2)
2,∗

...

N
(1)
n−2,∗ + 1

3dn−1
N

(2)
n−1,∗

N
(1)
n−1,∗

N
(0)
n,∗


where vn−1,j = un−1,j =

F2j

F2n−2
, and, proceeding backwards, vi,j’s are given by the recursive

relations vi−1,j =
vi,j
3di

.
Lemma 3 For all 1 ≤ i, j < n, the entry vi,j is given by the following recursive

definition.

vi,j =


F2j

F2n−2
if i = n− 1 and j ≤ n− 1

F2jF2j+4

∑n−1
k=j

1
F2kF2k+2

if 1 ≤ i < n− 1 and 1 ≤ j ≤ i
F2j

F2i+4
vj,j if 1 ≤ i < n− 1 and i < j ≤ n− 1

Parallel Step 3: Following the procedure in Step 3, we obtain N (3) as follows,

N (3) =


v1,1 · · · v1,n−1 0

...
. . .

...
...

vn−1,1 · · · vn−1,n−1 0
w1 · · · wn−1 1

 =

N
(3)
1,∗
...

N
(3)
n,∗

 =


N

(2)
1,∗
...

N
(2)
n−1,∗

N
(0)
n,∗ +

∑n−1
i=1

1
ndi
N

(2)
i,∗


where wj =

∑n−1
i=1

vi,j
ndi

.
Parallel Step 4: Following the procedure in Step 4, we obtain the final matrix

N (4) = (I − M̃n)
−1

= N .

N (4) =


1
d1

(
v1,1 − q1

D
w1

)
· · · 1

d1

(
v1,n−1 − q1

D
wn−1

)
− q1
Dd1

...
. . .

...
...

1
dn−1

(
vn−1,1 − qn−1

D
w1

)
· · · 1

dn−1

(
vn−1,n−1 − qn−1

D
wn−1

)
− qn−1

Ddn−1

w1 · · · wn−1 1

 =


1
d1
N

(2)
1,∗ −

q1
Dd1

N
(3)
n,∗

...
1

dn−1
N

(2)
n−1,∗ −

qn−1

Ddn−1
N

(3)
n,∗

1
D
N

(3)
n,∗


Referring to Theorems 3.2.4, 3.3.3, and 3.5.7 in [2], using the matrix N = [I − M̃n]−1

we get the following results:

1. The (x, y)-th entry of matrix N gives the expected number of times the walk starting
at vx visits vy before being absorbed at vj.

2. The expected number of steps before being absorbed when starting from vertex vx
is the x-th entry of the vector t = N1, where 1 is a column vector whose entries
are all 1.

3. The variance of the number of steps before being absorbed when starting from vx
is the x-th entry of the vector (2N − I)t− tsq, where tsq is the Hadamard product
of t with itself.
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4. The (x, y)-th entry of matrix K = (N − I)(Ndg)
−1, where Ndg is the diagonal of

N , gives the probability that vertex vy will be visited on the walk starting at vx
before being absorbed at vj. The i-th row of (K−Kdg)1, gives E[iνj], the expected
number of new vertices visited along the walk from vi to vj.

We leave the expression for the standard deviation of iνj to the reader.

2.2 Mean and SD of Transition Times Illustrated

Using the method of the previous subsection, here we illustrate some exact computations.
For n = 5, we have the following results:

N = 1
11


18 12 9 6 15
12 24 15 9 20
9 15 24 12 20
6 9 12 18 15
9 12 12 9 25


tmean = 1

11

[
60 80 80 60 67

]
tvar = 1

121

[
3990 4160 4160 3990 4124

]
tsd ≈ 1

11

[
63.17 64.50 64.50 63.17 64.22

]
E[iνj] = 1

120

[
217 311 311 217 240

]
For n = 6, we have:

N = 1
40


66 45 36 30 21 66
45 90 60 45 30 90
36 60 96 60 36 96
30 45 60 90 45 90
21 30 36 45 66 66
33 45 48 45 33 108


tmean = 1

5

[
33 45 48 45 33 39

]
tvar = 1

25

[
1383 1485 1488 1485 1383 1470

]
tsd ≈ 1

5

[
37.19 38.54 38.57 38.54 37.19 38.34

]
E[iνj] = 1

792

[
1693 2451 2624 2451 1693 1980

]
For n = 7, we have:

N = 1
29



48 33 27 24 21 15 56
33 66 45 36 30 21 77
27 45 72 48 36 24 84
24 36 48 72 45 27 84
21 30 36 45 66 33 77
15 21 24 27 33 48 56
24 33 36 36 33 24 91


tmean = 1

29

[
224 308 336 336 308 224 277

]
tvar = 1

841

[
70112 76622 77280 77280 76622 70112 76196

]
tsd ≈ 1

29

[
264.79 276.81 277.99 277.99 276.81 264.79 276.04

]
E[iνj] = 1

6864

[
16847 24372 26629 26629 24372 16847 20592

]
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3 An Enumeration Method for the PMF of iTj

Although the probabilistic method of Section 2 suffices to give the mean and the variance
of the number of steps of a random walk on Wn from vertex vi to vj, it is not sufficient to
give the exact probability distribution of random walks onWn. In this section, we consider
an enumeration-based approach which is capable of determining the exact probability
distribution of the transition time iTj on Wn. In particular, using eigen decomposition
of the adjacency matrix of the graph, we calculate the total number of paths of length k
starting from vertex i which reach vertex j for the first time. We also calculate the total
number of paths of length k starting from vertex vi. The ratio of these two counts give
the probability P{iTj = k}.

3.1 Eigen Decomposition of the Adjacency Matrix

For a simple random walk on an arbitrary graph G, let U denote the adjacency matrix
of the graph G. Let P k = (pk1, . . . , p

k
n) be a column vector, where pkj denotes the number

of paths which end at vertex vj after k moves. Note that pkj is generic over the starting
vertex, allowing for a general solution. We may see that P k+1 = UP k. By repeated
application of this relation, we obtain,

P k = UkP 0, for all k ≥ 1 (2)

where P 0 is the starting position, given by a vector of all zeros with the exception of a 1
in the i-th row, corresponding to the starting vertex vi. Thus, the number of paths going
from vertex vi to vertex vj in k steps, iP

k
j , is given by the (j, i)-th element of Uk; that is,

iP
k
j = (Uk)ji.

Furthermore, U , being the adjacency matrix of an undirected graph, is real and sym-
metric. Hence, U is diagonalizable (that is, there exist a matrix A whose columns are the
eigenvectors e1, e2, . . . , en of U , and a diagonal matrix B whose diagonal elements are the
eigenvalues λ1, λ2, . . . , λn of U such that U = ABA−1). For any diagonalizable graph, by
repeated multiplication, we obtain an explicit formula for Uk in terms of its eigenvalues.

Uk = ABkA−1 = A

λ
k
1 · · · 0
...

. . .
...

0 · · · λkn

A−1
Moreover, for the random walk on the Wheel-and-Spokes graph, with no absorbing

state, the transition matrix U is real and symmetric. Consequently, the eigendecompo-
sition ABA−1 of U involves an orthogonal matrix A, whence U = ABAT . Thus, the set
of symmetric matrices is a subset of all diagonalizable matrices, with the property that
the A matrix is orthogonal only for a symmetric matrix. This simplifies the calculation
of Uk, as Uk = ABkAT . Consequently, Uk is a linear combination of n rank-one matrices
given by outer products of the eigenvectors e1, . . . , en, with coefficients given by the k-th
power of eigenvalues λ1, . . . , λn. That is,

Uk =
n∑
i=1

λki (eie
T
i ) (3)

The above relation is the foundation of the following derivations specialized to the
wheel-and-spokes graph Wn.
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3.2 Number of Paths after k steps

Let the total number of paths which start at vertex vi and end at some vertex on the
wheel after k steps be denoted by iP

k
W , and the total number of paths which start at

vertex vi and end at the hub after k steps be denoted iP
k
H . Since every vertex on the

wheel is connected to two neighboring vertices on the wheel and the hub, and since the
hub is connected to every vertex on the wheel, we obtain the recursive definitions for

iP
k+1
W and iP

k+1
H .

iP
k+1
W = 2 iP

k
W + n iP

k
H

iP
k+1
H = iP

k
W

Substituting the second equation into the first, we obtain a second order linear recur-
rence relation:

iP
k+2
W = 2 iP

k+1
W + n iP

k+1
H = 2 iP

k+1
W + n iP

k
W

Solving the second order linear recurrence relation (see [1] for methodology), and
writing α = 1 +

√
n+ 1, β = 1−

√
n+ 1, we obtain the following expressions:

iP
k
W =


n(αk−βk)

α−β if path starts at hub
√
n+1(αk+βk)+(αk−βk)

α−β if path starts on wheel

Thereafter, we also obtain expressions for the number of paths along the wheel.

iP
k
H =

{√
n+1(αk+βk)−(αk−βk)

α−β if path starts at hub
αk−βk

α−β if path starts on wheel

Thus, the total number of paths of length k starting from vertex vi (irrespective of
the ending vertex) is obtained by adding iP

k
W and iP

k
H , and is given by the proceeding

equation.

iP
k
∗ =


√
n+1(αk+βk)+(n−1)(αk−βk)

α−β if path starts at hub
√
n+1(αk+βk)+2(αk−βk)

α−β if path starts on wheel

3.3 Number of Paths Reaching a Vertex for the First Time

Let iF
k
j denote the number of paths starting at vi which visit vj for the first time after k

steps. Clearly, iF
k
j equals the number of paths from vi to vj minus the number of paths

which have already visited vj for the first time in h < k steps, and have returned to vj in
an additional k − h steps; that is,

iF
k
j = iP

k
j −

k−1∑
h=0

iF
h
j jP

k−h
j (4)

where each xP
z
y may be calculated using (2) and (3).
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Separating the last subtrahend in (4) and applying (4) on to iF
k−1
j , we obtain a

somewhat expanded equation.

iF
k
j = iP

k
j − jP

1
j

(
iP

k−1
j −

k−2∑
h=0

iF
h
j jP

k−h−1
j

)
−

k−2∑
h=0

iF
h
j jP

k−h
j

= iP
k
j − jP

1
j iP

k−1
j −

k−2∑
h=0

iF
h
j

(
jP

k−h
j − jP

1
j jP

k−h−1
j

)
We will repeat this process of substitution for k iterations to obtain an expression

for iF
k
j . In order to generalize this process, we introduce the variables ν, Sν , and the

triangular array of coefficients aν,0, . . . , aν,k−ν , with the initial values S1 = iP
k
j , a1,h =

jP
k−h
j . With these substitutions, we obtain a simple equation for iF

k
j .

iF
k
j = Sν −

k−ν∑
h=0

iF
h
j aν,h

Note that in the special case when ν = 1, the above expression reduces to Equation (4).
Performing the aforementioned procedure of expanding iF

k
j , we obtain the following.

iF
k
j = Sν −

k−ν∑
h=0

iF
k
j aν,h

= Sν − aν,k−ν iF
k−ν
j −

k−(ν+1)∑
h=0

iF
h
j aν,h

= Sν − aν,k−ν


iP

k−ν
j −

k−(ν+1)∑
h=0

iF
h
j jP

k−h−ν−1
j

− k−(ν+1)∑
h=0

iF
h
j aν,h

= Sν − iP
k−ν
j aν,k−ν −

k−(ν+1)∑
h=0

iF
h
j

(
aν,h − jP

k−h−ν−1
j aν,k−ν

)
From this, we derive the following recursive relations:

Sν+1 = Sν − iP
k−ν
j aν,k−ν

aν+1,h = aν,h − jP
k−h−ν−1
j aν,k−ν

Solving the above recursive relations, and noting that iF
k
j = Sk, we obtain iF

k
j .

iF
k
j = iP

k
j +

k∑
ν=1

(−1)νiP
k−ν
j aν,k−ν (5)

Using Equation (5), we obtain the PMF of iTj in terms of iF
k
j and iP

k
∗ .

iTj = k with probability
iF

k
j

iP k
∗

for k ≥ 1

Hence, the expected time the RW takes to go from vertex vi to vertex vj is as follows.

E[iTj] =
∞∑
k=0

k
iF

k
j

iP k
∗

Likewise, one can obtain the variance (or any other moment) of iTj. Illustrated
numerical values for these values are already given in Subsection 2.2.
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4 An Algorithmic Approach for the Cover Time

To calculate the expected cover time of the wheel-and-spokes graph, we use an algorithmic
approach by repeatedly solving absorbing Markov chains. This technique also allows us
to calculate the probability distribution of the last vertex visited.

Let a given walk P on the wheel-and-spokes graph be written as an ordered triplet
(V, vi, t), where V is the set of vertices that have been traveled through and vi is the
current vertex along the walk after t steps. Let us extend this notion of a walk to define
a statistical walk P = (V, vj, t, p, σ

2), which has an associated probability p, variance
σ2, and which allows non-integer time t. This extended notion of a statistical walk P
will arise throughout the following section, and become a useful tool for representing
statistical averages over all possible walks.

Let us define the neighborhood N(V ) of the vertex set V , which consists of all vertices
not in V that are connected by an edge to some vertex in V . For instance, in Figure 2,
with V = {1, 2, 3}, we have N(V ) = {0, 4, 6}.

6

5

4

3

2

1

0

Figure 2: Illustrating a set of visited nodes V (dark) and its neighborhood N(V )

Next, let us define L(P) as the function yielding all P′ = (V ′, v′j, t
′, p′, σ′2) such that

v′j ∈ N(V ), V ′ = V ∪ {v′j}, t′ = t+ µ, where µ is the expected absorption time, p′ = pπ,

where π is the probability of being absorbed in vertex v′j, and σ′2 = σ2 + θ, where θ is

the variance of the absorption time. That is, L(P) consists all continuations P′ of the
statistical walk P such that P′ ends at a vertex not yet visited.

This enables us to define the collection Sk of all statistical walks consisting of k
visited vertices; that is, Sk = {P = (V, vi, t, p, σ

2) : |V | = k}, where S1 = {P} is the
set containing only the starting point. We define Sk+1 = ∪L(P) ∀P ∈ Sk, as the set of
all paths reachable from Sk. Thus, to obtain the cover-time and statistical information
about it, we only need to obtain Sn+1, which will contain all n+ 1 vertices of the Wheel-
and-Spokes graph Wn.

4.1 Solving the Restricted Absorbing Markov Chain

To find Sn+1, we only need to obtain L(P). Thereafter, beginning with S1, which consists
of the singleton starting vertex at time 0 with degenerate probability one on the starting
vertex, we recursively obtain S2, S3, until we obtain Sn+1. Proceeding as in Section 2,
we construct an absorbing Markov chain to build the recursion.

Let P = (V, vi, t, p, σ
2) with V = {y1, . . . , yη} and vi = yh for some h. Also, let

N(V ) = {x1, . . . , xm}.
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We focus on the restricted Markov chain on vertices V,N(V ), and proceed along the
line in [2]. We write the one-step transition probabilities in a partitioned form as[

Qη×η Rη×n
0 I

]
where qu,w gives the one-step transition probability from a transient vertex yu to another
transient vertex yw and ru,w gives the one-step transition probability from a transient
vertex yu to an absorbing vertex xw. Let us write N = (I −Q)−1.

Starting from the current vertex yh, the probability of being absorbed at xw is given
by the row h and column w of the product matrix NR.

To obtain the expected number of steps before a path is absorbed at a particular
absorbing vertex xj, we consider a new absorbing Markov chain with transition matrix,
Qj, corresponding to the case where the transient states remain the same as V , but
there is only one absorbing state xj. In this case, the (u,w)’th element of Qj gives the
conditional one-step transition probability from transient vertex yu to transient vertex
yw, given that the path is eventually absorbed at absorbing vertex xj. This conditional
probability, using Bayes’ Theorem, is given as follows.

q(j)u,w =
qu,w(NR)w,j∑
z qu,z(NR)z,j

= qu,w
(NR)w,j
(NR)u,j

Recall that row/column h refers to vertex yu and row/column j refers to vertex xj.
After obtainingNj = (I−Qj)

−1, we calculate the expected time E[hTj] as the h’th element
of Nj1, where 1 is a column vector of all ones (See [2]). Additionally, the variance on
the number of steps V ar[hTj] may be calculated as h’th element of the column vector
tvar = (2Nj − I)t − tsq, where t = Nj1 for column vector 1 and tsq gives the Hadamard
product of t with itself. Having obtained both the expected time and the probability that
a given path will be absorbed at a given neighbor, we may write out the full expression
for L.

L((V, vi, t, p, σ
2)) = {(V ∪ xj, xj, t+ (Nj1)h,1, p× (NR)h,j, σ

2 + (tvar)h,1) : xj ∈ N(V )}

4.2 The PMF of the Last Visited Vertex

Having obtained all elements of Sn+1 using the technique mentioned in the previous
subsection, if we add up the probabilities associated with those elements of Sn+1 with the
same final vertex visited, we obtain the PMF of the last vertex visited. Evaluating such
quantities for the wheel-and-spoke graph for n = 3, 4, . . . , 11, we draw the graph of the
PMF of the last vertex visited in the next figure.

As n increases, P{L = 0} deceases; that is, the hub becomes less and less likely to be
the last vertex visited. This is quite natural since it is increasingly difficult to avoid the
hub when at every step there is a 1/3 chance of visiting the hub. Also, the last vertex is
equally likely to be as far on the wheel in the clockwise direction as in the counterclockwise
direction and the corresponding probabilities increase gently the farther we go from the
starting vertex in either direction. Hence, the last vertex is most likely to be the farthest
from the starting vertex v1. This result differs from that for the symmetric random walk
on a circle where all vertices are equally likely to be the last!
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Figure 3: Probability P1[L = i] that the last vertex is vi when starting at v1

4.3 Expected Cover Time

The conditional expected cover time (given the last vertex visited) are shown in the next
figure, and the overall expected cover time is listed in Table 1.

Obviously, as n increases, the conditional expected cover time (given the last vertex
visited) also increase. If the hub happens to be the last vertex visited (with a low
probability), then the conditional expected cover times are relatively smaller than if
the last vertex is on the wheel, and the discrepancies increase with n. The conditional
expected cover times are the same if the the last vertices are equally far from the starting
vertex v1 in the clockwise or the counterclockwise directions. The farther (in clockwise or
counterclockwise direction) the last vertex from the starting vertex v1, the longer (though
not by much) it takes to visit all vertices.

Table 1: Expected cover times E0[T ], E1[T ], if starting at hub or periphery, and for
comparison EC [T ], the expected cover time of the Cycle graph

n 3 4 5 6 7 8 9 10 11

E1[T ] 5.50 8.82 13.18 18.25 23.80 29.71 35.89 42.31 48.94
E0[T ] 5.50 9.39 14.01 19.18 24.78 30.70 36.89 43.31 49.94

EC [T ] 3 6 10 15 21 28 36 45 55

As n ≥ 7 increases, the expected cover time starting from the hub is about one
more than the expected cover time starting from the wheel. This is because starting
from the wheel the hub is visited earlier than all vertices on the wheel (there is only a
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Figure 4: Conditional expected cover-time E1[T |L = i] starting at v1 and ending at vi

negligible probability that the hub is the last vertex visited). Hence, starting from the
hub essentially means that the first step is an extra step wasted to go to the periphery;
thereafter, the walk is similar to the one that starts on the wheel.

Notably, compared to the expected cover time for the Cycle graph studied in [4], the
Wheel-and-Spokes graph takes longer up until n = 9 for E1[T ] and n = 10 for E0[T ]. After
this point the Wheel-and-Spokes graph begins to take less time than the Cycle graph,
because the Wheel-and-Spokes graph giving the random walks more opportunities to visit
yet-unvisited vertices by going through the hub. For small n these visits through the hub
tend to waste steps, causing the Wheel-and-Spokes graph to be less efficient.

4.4 Return Time

Here we evaluate E[LTi], the expected time to return to the starting vertex after visiting
all vertices.

As seen in Section 2, when the starting vertex is the hub; that is, i = 0, then irre-
spective of the final vertex L, the return time to the hub is a geometric random variable
with success probability 1

3
. Hence, the expected return time is 3 with a variance of 6.

On the other hand, if the starting vertex is i on the wheel, then we can find the
expected return time after visiting all vertices, by combining the results of the previous
subsection and Section 2. We simply take the weighted average of the conditional ex-
pected return time from each possible last vertex L to the starting vertex i with weights
given by the probability of each last vertex L. Thus E[LTi] is given by the following
equation.

E[LTi] =
∑
j 6=i

P [L = j] E[jTi]

This equation may also be expressed in a more succinct form using linear algebra. In
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fact, without loss of generality, we can assume that the starting vertex on the wheel is
i = n. Let P be the column vector of probabilities that the last vertex L equals vertices
v1, v2, v3, . . . , vn−1, v0, respectively. Using tmean from Section 2, which gives the mean
time to travel from vj to vn (for j = 1, 2, . . . , n− 1, 0), we obtain the following equation
for E[LTn].

E[LTn] = PT tmean

The proceeding table gives the expected return time to the starting vertex on the
wheel after visiting all vertices for 3 ≤ n ≤ 11.

Table 2: Expected return time E[LTn]

n 3 4 5 6 7 8 9 10 11

E[LTn] 3.00 4.62 6.40 8.25 10.11 11.98 13.84 15.68 17.52

Clearly, for n = 3, the return time is a geometric random variable with success
probability 1/3. Hence, E[LTn] = 3. Thereafter, as n increases, the expected return time
to the starting vertex increases.

5 Conclusion

In this paper, we have obtained several results pertaining to random walks on the Wheel-
and-Spokes graph — the expectation and distribution of the time to proceed from one
vertex to another, of the time to visit all vertices, and of the number of steps taken to
return to the starting vertex.

To obtain these question we relied on three distinct methods — probabilistic, enumer-
ation and algorithmic — each relying on linear algebraic interpretations of the problem.

This research may allow for the modeling of certain real-world events. The study
of random walks on the Wheel-and-Spokes graph is useful, for example, to model the
spread of information with a centralized source, such as a public forum. Information
might be posted to the forum, where it can be seen by any user, or might spread by word
of mouth between neighbors, mirroring the path of information to/from the hub or along
the wheel respectively. Future research might consider an asymmetry in the probability
of traveling to the hub compared to traveling along the wheel or in the probability of
traveling back on an edge just used and other adjacent edges. Another direction of future
research is to change the graph. For instance, the hub may be replaced or augmented
by a separate inner circle, to represent different channels of communication, or multiple
connected wheels could be overlaid to form a spiderweb-like graph.

References

[1] Daniel H Greene and Donald E Knuth. Mathematics for the Analysis of Algorithms.
Springer Science & Business Media, 2007.

619



[2] John G Kemeny. Finite Markov chains, eng. University series in undergraduate math-
ematics. Princeton, N.J.: Van Nostrand, 1960.

[3] L. Lovász. “Random Walks on Graphs: A Survey”. In: Combinatorics, Paul Erdős is
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