Approximately Counting Perfect Matchings in General Graphs

Martin Furer *

Shiva Prasad Kasiviswanathan

Computer Science and Engineering Pennsylvania State University
University Park, PA 16802. {furer, kasivisw}@cse.psu.edu

Abstract

So far only one approximation algorithm for the number
This
algorithm of Chien [2] is based on determinants. We present

of perfect matchings in general graphs is known.

a much simpler algorithm together with some of its variants.
One of them has an excellent performance for random
graphs, another one might be a candidate for a good worst
case performance. We also present an experimental analysis
of one of our algorithms.

1 Introduction

In this paper we describe a new method for counting the
number of perfect matchings M (G) for any graph G =
(V,E) with |V| = even. Counting perfect matchings
for the bipartite graph with bipartite adjacency matrix
A, is equivalent to computing the permanent of that
matrix. Computing permanents was shown by Valiant
[16] to be #P-complete. Counting the number of
perfect matchings for general graphs is #P-complete
as it is already #P-complete for the bipartite case.
Therefore, one can only hope for efficient approximation
algorithms.

A number of approaches have been designed to ap-
proximately count the number of perfect matchings for
bipartite graphs. Recently, an fpras for computing the
permanent of an arbitrary matrix with non-negative en-
tries was proposed by Jerrum, Sinclair, Vigoda [8]. It
is based on the Markov chain Monte-Carlo approach.
However, their proof relies crucially on the bipartiteness
of the underlying graph and their algorithm doesn’t gen-
eralize to arbitrary graphs. Only one approximation al-
gorithm (Chien [2]) is known for counting the number of
perfect matchings in non-bipartite graphs. We propose
a very simple randomized algorithm and present several
potentially more efficient versions. They are reminis-
cent of similar algorithms pioneered by Knuth [10] for
estimating the size of trees, and later extended by Pur-
dom [12]. Some of the same ideas have been used by
Rasmussen [13] for approximating permanents of (0-1)
matrices.

Research supported in part by NSF Grant CCR-0209099

2 Definitions

Let F' be some function from ¥* to the natural numbers.
A fully polynomial randomized approximation scheme
(a.k.a. fpras) for F' is a randomized algorithm that
accepts an input x € . together with an accuracy
parameter € € (0,1], outputs a number X (a random
variable depending on the coin tosses of the algorithm)
such that,

Pr(1 - F(x) < X < (1+ OF(2)] >

] w

and runs in time polynomial in |z| and e~!. The prob-
ability of % can be boosted to 1 —¢ for any 0 < 6 < 1/4
by outputting the median of O(logd~!) independent
trials [9]. Suppose we would like to estimate F' and
have a randomized algorithm running in time polyno-
mial in |z| whose output is a random variable X such
that E[X] = F(x) and E[X?] is finite. Then we can
repeat this experiment as many times as we wish, and
the outcomes of the successive trials are independent
and identically distributed. Let X; be the outcome of
the *" trial. A straightforward application of Cheby-
Ex? 2

E[X]Q6)
trials and take the median, we have a randomized ap-
proximation scheme for F. Together, the complexity
of performing the stochastic experiment, and the ratio
of E[X?]/E[X]? (ak.a. critical ratio) determine the ef-

ficiency of the algorithm.

chev’s inequality shows that, if we conduct O(

3 Estimators

We start this section with a simple estimator and
build on it as we go to get better but more complex
estimators. We also show how all these estimators fit
into a generalized scheme for approximating M (G) and
show how this scheme leads to unbiased estimations of
M(G). We round off by suggesting a good estimator for
M (G) when the graph G is random.

The idea behind SIMPLE (Figure 1) is to repeatedly
pick one vertex deterministically and match it uniformly
at random with one of its neighbors. Remove both the
vertex and the matched vertex and all edges incident
on them to get Gy, recurse on the remaining Gyi. This

SIMPLE (Random Approximator for Counting Perfect Matchings)

Input: Graph G = (V, E) with some fixed vertex ordering
Output: Estimate X¢ for the number of Perfect Matchings

if n =0 then Xg =1
else

W={j:((j) €L}
if W =0then Xg =0
else
choose k u.a.r. from W

choose vertex ¢ (lowest numbered vertex remaining)

compute X¢,, and use it to compute X¢ = |[W|X¢,,

Figure 1: SIMPLE Estimator

approach may stop early, because at some point the
current vertex might have no neighbors.

An obvious modification to this estimator, which
could lead to an improved performance, is to introduce
a systematic bias so that the choice of a neighbor is
not uniform at random. Omne could assign different
probabilities to the neighbors of £ and pick a neighbor
k with its probability. Knuth [10] analyzed a variant
of such an estimator under some tight conditions on
probabilities.

We use Knuth’s notation for trees.
are finite sequences (z1,...,xx) satisfying property
Py(z1,...,2k). The root is the empty sequence. If
Pit1(z1, ..., xk, 2x+1) holds, then also Py(zq,...,xk)
holds and (x1,...,%k,Zk+1) is a child of & =
(1,...,2). Nodes have arbitrary given costs. We
want to estimate the cost of a tree defined as the sum
of the costs of its vertices. Knuth’s recursive procedure

Nodes

starts at the root. When it is in a leaf (xq,...,z)
then it returns with C' = c¢(x1,...,25). When it is
in another node ¥ = (x1,...,2%), it selects a child

(1, ..., Tk, Try1(j)) with probability Pr[Z, j] and makes
a recursive call to it. When it returns with a cost es-
timate C' it divides it by Pr[Z, j], adds ¢(Z) to it and
returns.

THEOREM 3.1. Knuth [10] Let tree T =
{(x1,22,...,2n)|n > 0 and Pp(x1,x2,...,2,) holds}
and cost(T) be the function to be estimated. Let
T(z1,22,...,25) be the subtree rooted at (x1,...,x)
and let (z1,...,75,2141(j)) be the 7" child of
(x1,...,2K). If the probabilities Pr[Z, j| (probability of
going from k to its j*" successor) satisfy

cost(T((z1, ..., 7k, Tr11(5)))
Pr[Z, j]
cost(T((x1, ..., Tk, Try1(7)))

=« Pr[Z, 1]

for all i, j, % and some constant a > 1, then the variance
of the output C computed by Knuth’s algorithm is at

most
24 2a+1\"
((%) —1) cost(T)?

The above theorem is applicable only under very
restrictive conditions. We note that we needn’t always
require that the probabilities be good approximations
to the relative subtree costs. The major harm to
the variance is done by choosing probabilities too low,
higher probabilities tend to have lesser influence on the
variance. To illustrate this fact let us consider a variant
of the graph example introduced by Jerrum, Sinclair
& Vigoda [8] (Figure 2) which has exponentially many
perfect matchings. If we use a procedure to eliminate
useless edges at every step (can be done in polynomial
time with Edmond’s algorithm [3]) we see that the
perfect matching consisting of all horizontal edges is
chosen with probability ©(1) (i.e. huge probability) and
we still can bound variance by a small constant. Taking
this fact into account we modify the above theorem to
make it more widely applicable.

THEOREM 3.2. Let d be the number of children of & =
(1,...,2K). If the probabilities Pr[Z, j| satisfy

cost(T((x1, ..., 2k, 2xr1(5)))
cost(T'(x1,. .., k)

for all j, and some constant o > 1, then the variance of
C as computed by Knuth’s algorithm is at most

< aPr(#,]

(a" — 1)cost(T)2

Proof. The idea is similar to that of Knuth. We use
T; to denote T'((x1, ..., xk, xr+1(2)) and Pr[j] to denote

Figure 2: Chain of Hexagons

Pr[¥, j]. We note that

>

1<i<j<d

_ cost(Ty)*
- 2 Prlj]

1<j<d

Pr[i] P[] (CO;?EZ]Z-) _

cost(T}) 2
Pr(j])

2

Z cost(T})

1<j<d

From our assumption on probabilities we get
2

Z cost(T})

1<j<d

Z cost(T)? “u

Sz, Bl T

Now let C denote the random variable at node
(x1,...,2x) and let C; denote the random variable at
(z1,...,25(7)). From Knuth we know that the variance
of the estimator C is

1O = Var|[C}]
Vel = 2. o
_ . (cost(T;) cost(Ty) 2
1<;<dPr[z]Pr[J]< Prli] Prj])
Var[Cj]

+ (a = 1)cost(T)?

<y

552, Frlil
By using induction we complete the proof. O

The cost function corresponds to M (G) in our case. One
way to assign probabilities is to bias the sampling in
favor of low degree during the picking of a neighbor k.
We also pick as ¢, the vertex with lowest degree. We call
this estimator GREEDY (Figure 3). The optimal choice
of the probabilities is proportional to the unknown
number of perfect matchings containing the selected
partial matching. In a random bipartite graph, the
expected number of such perfect matchings is indirectly
proportional to the number of additional neighbors of
the matched vertex k. This motivates our choices of
probabilities. There is no reason to believe that the
above choice of probabilities couldn’t be beneficial for
general graphs. However with all this intelligence, the
worst case of GREEDY turned out to be difficult to
analyze, so we turned to experimental simulation to test

its performance (Section 5). Those results helped us to
come up with the following conjecture.

CONJECTURE 3.1. GREEDY has a good worst case
performance i.e, the critical ratio is small even though
not polynomial.

Another enhancement would be handling vertices with
degree 2 in a special way. For vertices with degree 2,
one could condense the graph as shown in Figure 5 and
recurse over the remaining graph. All such algorithms
are unbiased estimators. We show that for some general
scheme GEN(Figure 4).

THEOREM 3.3. Let G = (V, E) be a graph, and let X¢
be the estimator as given by GEN. Then

E(Xg) = M(G)

Proof. 1t is sufficient to show that every fixed perfect
matching has an expected contribution of 1 towards X¢.
This implies, the expected value of X is the number
of perfect matchings. The proof is by induction on the
number of recursive calls. The case n = 0 is trivial.
Each induction step involves two parts:

Part 1: Assume we alter the graph G in Step 1 to
get G’. By induction hypothesis we know that every
perfect matching has an expected contribution of 1
towards X¢g/. Since the number of perfect matchings
doesn’t change from G’ to G (Xg = X¢v), the same
contribution is also assigned to G.

Part 2: Let G denote the graph with ¢ as the vertex
chosen in Step 2. Assume that W = {k : ({,k) €
E} # 0. For all k € W, we know by induction
hypothesis that every perfect matching in Gy has an
expected contribution of 1 to X¢,,. Let Pr[¢, k] denote
the probability that edge (¢,k) is chosen. Now, the
definition of X is

Vk e W, Xg = Xg,./ Pr[¢, k] with probability Pr[¢, k]

Thus, every edge (¢, k) contributes a factor of 1/ Pr[¢, k]
with probability Pr[¢, k] to X¢. Hence, any fixed perfect
matching in G which contains the edge (¢, k) also has
an expected contribution of 1 to X¢. O

A closer look at random graphs tells us that this
estimator often makes most of its mistakes towards the

GREEDY (Greedy Random Approximator for Counting Perfect Matchings)

Input: Graph G = (V, E) with some fixed vertex ordering, |V| =n = 2h
Output: Estimate X¢ for the number of Perfect Matchings

if n =0 then Xg =1
else

eliminate edges not contributing towards any perfect matching
choose vertex ¢ (a vertex with the lowest degree)
W={j: ()€ E}
if W =0 then X¢ =0
else
choose k from W with probability p(k) inversely proportional to deg(k) — 1
1

compute Xg,; and use it to compute X¢ = 75 (Xa,,)

Figure 3: GREEDY Estimator

GEN (Generalized Random Approximator for Counting Perfect Matchings)

Input: Graph G = (V, E) with some fixed vertex ordering
Output: Estimate X¢ for the number of Perfect Matchings

1.
2.
. Select a probability distribution on the neighbors of £ such that each neighbor

[9Y)

YN

Use any function to alter G without changing the number of perfect matchings.
Select any vertex ¢ from the graph deterministically (any criterion).

k of £ has a positive probability p(k).

. Choose a neighbor k of ¢ with probability p(k).

. Remove both the vertices and all edges incident on them to get Grx.
. Recursively compute the estimator for remaining graph Gyy.

. Output the estimator X¢ = Xa,, /p(k)

Figure 4: Generalized Estimator for counting M (G)

Transformation

Figure 5: Transformation for Vertex with Degree 2

if h=0then Xg =1
else

W={j:((j) €L}
if W =0then Xg =0
else

else K =1
for i=1to K do

compute XGZk(i)

REP (Repeated Random Approximator for Counting Perfect Matchings)

Input: Graph G = (V, E) with some fixed vertex ordering, |V| =n = 2h
Output: Estimate X¢ for the number of Perfect Matchings

choose vertex ¢ (lowest numbered vertex remaining)

if h is a branching point then K = branching factor

choose k(i) u.a.r. from W

Xa = |W|(% Zfil XGZk(i))

Figure 6: REP Estimator

end when the graph becomes small. This motivates
us to increase the precision as the size of the graph
decreases. At every level designated as branching point,
we do multiple recursive calls (branching factor) on
the subgraph. For simplicity we assume that both
branching points and branching factor are precomputed
before the algorithm starts. We call this estimator
REP (Figure 6). The resulting computation has a tree
structure. We use computation trees with branching
points at heights h = 27(j > 1) and a branching factor
of 3 as shown in Figure 7. Also it can easily be verified
that such an estimator is unbiased. The idea is similar
to one used by Karger and Stein [15] to obtain a faster
Min-Cut algorithm. Also, the same idea has already
been analyzed for the bipartite case by the authors [5].

4 Performance Bounds

In this section we look into the performance of the REP
estimator. We bound its worst case performance and
analyze its behavior on random graphs. We show that
this estimator performs well on random graphs, and
improves the previous bound of O(nM(n)w), where
M(n) is the time required to perform n x n matrix
multiplications and w = w(n) is any function satisfying
w(n) — oo as n — oo. Even though we conjecture that
adding some intelligent vertex selection mechanism as
in GREEDY may actually result in better performance
of REP in the worst case, it also makes the problem
difficult to analyze.

4.1 Worst Case Performance of SIMPLE/REP
Let (n)!! (called semi-factorial [6]) denote n(n —2)(n —
4)...1=(2m)!l/(2™)m! when n = 2m — 1 is odd.

THEOREM 4.1. Let G = (V, E) be a graph with |V| =
n = 2h, and let Xg be the estimator defined by REP.
Then

E[XZ] < M(G)(n — 1)1
Proof. Assume that W = {j : ((,j) € E} # 0. Let

Xg(i) (for i = 1,...,K) be the auxiliary estimator
defined by the ith branch, and let X¢ = X (1).

EIX3] = El(% > Xa(i))?

1 K . K K o o
= ﬁ(; E[X&(0)] + ; _Z#E[Xg(z)]E[XG(j)])
= %(KE[XZ;] + K(K - 1)E[X¢]?)
= L ST BIRZIK) =) Prlk(1) =] + (1 - 1/K)M(G)?
jeEW
< K+ 0 IOV -1
< %J%M(sznwun—s)m<1—1/K)M(G)(n_1)”

< M(G)(n—1)

where the last step follows from the fact that |[W| <
(2n—1) and 3,y M(Gyj) = M(G). O

Thus, the bound on the critical ratio is

E[XZ]
E[Xg]?

(n—1)1
M(G)

<

Algorithm E[XZ] E[Xc]? Critical ratio
Chien [2] 6(2™/%) 4+ (2™2) | (2% +1)* | Exponential (9(2™/°))
SIMPLE + Useless Edge Removal | 3 + (3/2)2"/? (2% +1)? | Constant (< 3/2)

Table 1: Performance of SIMPLE on Figure 2

The analysis shows a devastatingly bad worst case
bound on the performance of the REP(or SIMPLE)
estimator, but one might expect that combining these
estimators with one or more of the previous ideas
could lead to a better critical ratio. To illustrate
this possibility, let us consider the performance of
the estimators on the graph from Figure 2. Table 1
summarizes the result.

4.2 Random Graphs The two most frequently used
models of random graphs are G(n, p) and G(n, m) (see [1]
for an extensive treatment). We use G(n) to represent
the set of all graphs with vertices {1,...,n} and G(n, m)
to represent the subset of those graphs G(n) with exactly
m edges, both with uniform distribution. We use E, to
represent the mean over the coin-tosses of the estimator,
Eg to represent the mean over G(n), and Eg(,) to
represent the mean over G(n,m). As the output (i.e.,
the random variable X) depends on both, the input
graph and the coin tosses of the algorithm, we can use
expressions like Eg[E,[X]]. Here, E,[X] is a random
variable defined on the set of graphs. We investigate
the performance of the REP estimator for the most
commonly used model G(n) = G(n,1/2).

Our idea of REP is the following. As we work with
smaller matrices the time decreases drastically. Without
increasing the asymptotic complexity, we can branch at
powers of s by any number less than s2. It turns out that
for s = 2, branching by 3 is actually just sufficient to
keep the critical ratio bounded. The situation becomes
simple, if we investigate

B[R, [X7]
Eg [EU [XH2

which we might call the “critical ratio of averages.”
It is closely related to the critical ratio of almost all
matrices. For random bipartite graphs, in a single
run, the “critical ratio of averages” doubles when the
dimension is increased from n to 2n. Doing K parallel
runs decreases the variance of X by a factor of K. Thus,
the “critical ratio of averages” changes from R(X) to
(R(X)—1)/K + 1. Therefore, with branching by 3 at
powers of 2 the “critical ratio of averages” grows from
< 2 to < 4 and is reduced again to < 2 (also in the
non-bipartite case).

R(X)

THEOREM 4.2. The running time of the algorithm REP

with branching factor of 8 and branching points of 2* for
(i > 1) is O(n?).

Proof. Let 2071 < n < 2¢. Then the running time:
Between top and 1°¢ branching level is < n? < 2%,
Between 1°¢ and 2"¢ branching level is < 3(2¢71)2.
Between 2"? and 3"¢ branching level is < 9(2¢72)2. As
this forms a geometric series, the total running time is

0(n?). O

Our result rests on the following weak version of a result
of Janson [7], which we state here.

THEOREM 4.3. (Janson [7], Chien [2]) Let G €
G(n,m) where :’Z—: —00. Let p=m/(}), then
1—-p n3
= (n—1p™/2 - & o
BIM(G)] = (n - D1ty e (-2 0 (-0 2
and
BM(G)?] _ n’
epre - TO\me

LEMMA 4.1. Let w = w(n) be any function satisfying
w — 00 as n — oco. Then for almost all graphs G, with
X¢ being any unbiased estimator of M(G),

Bo[X2) _ BglEo[X2]
B, [Xal? = “BglE,[Xa)?

Proof. This proof for the case when the graph is bi-
partite has already been done by Rasmussen [13] and
is based on a result from Frieze and Jerrum [4]. The
proof directly follow from these results along with the
previous theorem. O

Let REP be an auxiliary random Approximator. Its
only difference from REP is that K=1 at the start, i.e.,
there is no branching in the root of the computation tree
even if n = 2h = 2j/.£he random variables X, and X,
are the outputs of REP and REP respectively when the
input Gay, is a random graph from G(2h). To model the

quality of REP and REP, we introduce two terms R(h)

and R(h). R(h) models the “critical ratio of averages”

of the auxiliary approximator ITEE’, while R(h) models
the “critical ratio of averages” of REP until height h.

_ Eg[E.[X7]]
and R(h) = gt T e

offoRe N foRe
0b0d bb0d 5D e

Figure 7: Run of the REP

The proofs are organized as follows: We establish
the recursive relationship between R(h) and R(h) in
Theorems 4.4 and 4.5. With Theorems 4.6 and 4.7,
we establish the claimed performance bounds. The
following theorem shows how R(h) varies as a function
of R(2U's("=11) i e. R at the previous branching point.

THEOREM 4.4. Let Gop, denote a random graph from
G(2h), and let R(h) and R(h) be the functions defined
above. Then

2 forh=1

2h lg(h—1
—2ng(h—1>J+1+1R(2Lg(Yy for h>1

R(h) <

Proof. Let M; denote a binomial variable with param-
eters ¢ and p = % Let M be the degree of the first
selected vertex ¢. Thus M = Moy _1.

Eq[E,[X7]]
2h—1
S~ gl [X7]| M = m] Pr[M =m)
m=0

2h—1
Y Eglm®E[(X-1)*]] Pr[M = m]

m=0
Eg[Eo[(Xn-1)*]| E(M3, ;)
E[M3, 1|E[M3), 3] ... Eg[Eq[(Xousm-1))?]]

The denominator is

2 h
g [E, [X4])? = (M) = LB

2h

E[M3,] E[M, ;]
E[Map_1]? E[Ma—3]?

(2h—1)(2h) /4 (2h—3)(2h—2) /4

Eg[Eq[(Xauen-11)?]]
Eg [Ea [XQ_lg(h,—l)J]]2

Eg [Eg’ [(XQng(h—l)J)2]]

(2h—1)2/4 2h—-3)%/4 """ Fo By [Xyuoro 2
2h Eg[Eq[(Xousn-11)?]]
2Us(=DI+1 4+ 1 Eg[E, [Xpus0-)]2

2h
- [lg(h—1)]
2llg(h—1)]+1 +1 R(2)

Before venturing into showing the dependence of
R(h) on R(h) we establish a few important technical
lemmas. The following lemma shows a bound of a higher
moment of a binomial distribution. A lot of similar
results have appeared in literature (see [11] for more
details).

LEMMA 4.2. For n > 0 we have

(3) ,m 2 n
() =o (=) =)

Proof. The term ((;’;)) 7™ has its maximum value around

Jj=0

7= (5)/2+ n. The idea is to split the summation into
three parts, from 0 to (%), from $(5) + 1 to 3(5) +n,
and from %(g) +n+1to (g)

Each of these three parts can be upper bounded by

a constant multiple of
TLQ —nNn " n
2(2)

We now prove that the number of perfect matchings
in a random graph is fairly tightly clustered. A similar
result in the case of bipartite random graphs has been
shown for G(n,m) [4] and has later been extended to
the G(n,p) model [5].

d

LEMMA 4.3. Let G, be a random graph from G(n).
Then for some constant ¢ independent of n

E[(M(Ga))) _
MG

Proof. Conditioning the numerator on the number of
edges m.

BI(M(G.)))
e
prfmz 2 (5)] & 007 im= 1 (3)]

By Chernoff’s bound, we have

e lm <1 (5)] <o (-55(3))

So for the numerator we have

i)
. [%(2)]

(3)
:2ZE

=55

)*[m = j] Pr[m = j]

Substituting for the probability of having j 1’s and
using Theorem 4.3 for the values of E[(M(G,))?] and
E[M(G,))?. Let p; denote j/(5) = 2j/(n* — n), we
obtain

E[M(Gn)]?
wr1 () n
((HQ_';)”)Q .:ﬁ((n— 1)'!)2 (n22in>
exp 2(pip;1) o(<1‘$g)"3) ((;5))2—(7;)
o
22ntlexp(c’) (%) ¢
< o 2 (%)
However from Lemma 4.2, we know that
Z](i)o ((;;))j" = O((@T*")nﬂg)) Substituting

this result we finish the proof of the lemma.

We are now prepared to establish the dependence
of R(h) on R(h). As mentioned earlier R(h) and R(h)
differ only at the branching points.

THEOREM 4.5. Let R(h) and R(h) be the functions

defined above with ¢ an upper bound on %ﬁg;]ﬂ Then

R(h) < % + @ if h = branching point
| R otherwise

Proof. At all levels other than the branching levels, we
have K = 1 implying R(h)=R(h). However, at the

branching levels we have:
Eg[Es [X7]]
Eg[Eq[Xn]]?
Eg [Eo[(F Sois, Xn(9)2]]
EgE a[? Zi:l Xh(l)]P

Furthermore since the outcomes of the successive trials
X (i) are independent and identically distributed

R(h) =

Ea[(1)EU[Xh]2

K oo B
e 2Kl = PR

Using this for the numerator and noting that the
denominator is just Eg[E,[X]]? we get

R(h) _ EQ[EU[XiQL]] (K - 1)EQ[E0[Xh]2]
KEg[Eq[X3])2 KEg[Eq[X3])2
R(h) | (K —1)Eg[M(Gh)?]
K KEg[M(Gp)]?

d

In the following theorem we show that both R(h)
and R(h) are bound by a constant implying that the
critical ratio is O(w) from Lemma 4.1.

THEOREM 4.6. Let R(h) and R(h) be the functions
defined above. Then for REP with a branching factor
of 8 and branching points at powers of 2, there exists a
¢ >1 such that

R(1)<2c, R(h) < ch

= 9la(h-D]+1 1 | for h > 1

and

2¢ if h is a branching point or h =1
dch

2[1g(h—1)]+1 +1

R(h) <

otherwise

Proof. We use induction on h. We know that ¢ > 1. For
h =1, R(l) =2 < 2cand R(1) = 2 < 2¢. Assuming
the statement is true for h, we prove it for h + 1. From
Theorem 4.4 we get

2h + 2
- 2lghl+l 41

4e(h+1)

R(Qtlg hJ)
(where R(2l'8"]) < 2¢ is by induction hypothesis). For
R(h + 1), there are two cases:

Case 1: h+ 1 is a branching point. From Theorem 4.5,
we get R(h+1) < 2c.

Case 2: h + 1 is not a branching point. From Theorem
4.5 we get R(h+1) = R(h + 1). O

THEOREM 4.7. Let w = w(n) be any function satisfying
w — o0 as n — oo. Then for almost all graphs G, we
have,

Eo[XE]

B, [Xo]? < O(w)

Proof. The factor of W}M < 2. Hence, both

R(h) and R(h) are O(1) (Theorem 4.6). Using Lemma
4.1 we bound the critical factor by O(w). O

Each call to REP with a branching factor of 3
and branching points at powers of 2 can be performed
using O(n?) operations. Furthermore, to obtain an
fpras for random graphs, it is sufficient to repeat REP
Q(w) times. Thus, we obtain a total running time of
O(n?w) for almost all graphs. This is the fastest known
algorithm for approximating M (G) for random graphs.
To do better than O(n?), one could think of an estimator
that inspects only a fraction of edges for a given vertex.
However, on the flip side, such a sublinear estimator
would have a much higher variance.

We can also use REP to deal with the more general
random graph model G(n,p). We branch by a factor of
2 (i.e, K = 2) and investigate the choice of Branching
points according to principles established at the start of
the section. These parameters for REP are summarized
in Table 2.

5 Experimental Analysis for GREEDY

We investigate the performance of GREEDY against
Chien’s estimator on some instances of commonly used
graphs where counting the number of perfect matchings
is interesting, and also on some random graphs. We
restricted our test cases to inputs (mostly bipartite)
where it is possible to accurately count the number of
perfect matchings. Not surprisingly, GREEDY not only
runs faster, but also produces more accurate results
every time. Random graphs were generated as in the
DIMACS implementation challenge. The final test case
was a complete graph with a perfect matching removed
(i.e., deranged matchings of n people with partners
(of either sex) other than their spouse [14]). The
results (in scientific notation) are summarized in Table
3 and Figure 8. They are based on 1000 runs of both
Estimators.

6 Concluding Remarks

Table 4 summarizes the main properties of our algo-
rithms for non-bipartite matchings. The worst case per-
formance of GREEDY is an open problem. We conjec-
ture that GREEDY is always good and provide exper-
imental results to support our claim. We have shown

that REP provides the fastest estimator for counting
perfect matchings in random graphs and also envisage
such a scheme to be part of a general framework which
can be used to solve similar combinatorial problems.

References

[1] B. Bollobds, Random graphs, Academic Press, London,
England, 1985.

[2] Steve Chien, A determinant-based algorithm for count-
ing perfect matchings in a general graph, Proceedings of
the fifteenth annual ACM-SIAM Symposium On Dis-
crete Algorithms (2004), 728-735.

[3] J. Edmonds, Paths, trees, and flowers, Canadian Jour-
nal of Mathematics 17 (1965), 449-467.

[4] A.Frieze and M. Jerrum, An analysis of a Monte-Carlo
algorithm for approrimating the permanent, Combina-
torica (1995), 67-83.

[5] Martin Fiirer and Shiva Prasad Kasiviswanathan, An
almost linear time approrimation algorithm for per-
manent of a random (0-1) matriz, In Proceedings of
FSTTCS 2004, Spriger Verlag, LNCS, vol 3328, 2004,
263-275.

[6] S.Janson, T. Luczak, and A. Ruciriski, Random graphs,
Wiley Interscience, 2000.

[7] Svante Janson, The numbers of spanning trees, Hamil-
ton cycles and perfect matchings in a random graph,
Combinatorics, Probability and Computing (2001), 97—
126.

[8] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial
time approximation algorithm for the permanent of a
matrix with non-negative entries, Journal of the ACM
51 (2004), no. 4.

[9] M. Jerrum, L. G. Valiant, and V. V. Vazirani, Random

generation of combinatorial structures from a uniform

distribution, Theoretical Computer Science 43 (1986),

169-188.

Donald E. Knuth, Estimating the efficiency of back-

track programs, Mathematics of Computation 29

(1974), 121-136.

Victor De la Pena and Evarist Giné, Decoupling, from

dependence to independence, Springer Verlag, New

York, 1999.

Paul W. Purdom, Tree size by partial backtracking,

SIAM Journal on Computing 7 (1978), no. 4, 481-491.

L. Rasmussen, Approzimating the permanent:A sim-

ple approach, Random Structures and Algorithms 5

(1994), 349-361.

[14] N. J. A Sloane, The on-line

integer sequences, published

http://www.research.att.com/njas/sequences/,

2004.

Clifford Stein and David R. Karger, A new approach

to the minimum cut problem, Journal of the ACM 43

(1996), no. 4, 601-640.

L. G. Valiant, The complezity of computing the perma-

nent, Theoretical Computer Science 8 (1979), 189-201.

(12]
(13]

encyclopedia of
electronically at

1996-

(15]

(16]

Probability | B.P. Selector s Single Run | Critical Ratio Total Running Time
p > 1 | Va<s<2oim | om?) O(w(n)) O(nw(n))

P =3 V2 O(nlgn) | O(lg(n)w(n)) O(n®1g*(n)w(n))

p <1 |20 <s<vZ|OmE) | OmF T Erw(n) | O(nF lw(n)

Table 2: Performance of REP for diffferent probabilities

Graph Type Correct Result | Estimate of GREEDY | Estimate of Chien’s
6 x 6 Square Grid Graph 6.728e+-03 6.533e+03 7.310e+03
8 x 8 Square Grid Graph 1.298e+07 1.270e+07 1.738e+07
10 x 10 Square Grid Graph 2.586e+11 2.659e+11 1.009e+11
20 x 3 Rectangular Grid Graph 4.134e+-05 4.136e+-05 4.222e+-05
5D-Hypercube 5.891e+05 5.845e+05 6.659e+05
20+20 Random Bipartite Graph with 100 Edges 6.95e+05 7.191e+05 6.557e+05
20+20 Random Bipartite Graph with 200 Edges 1.871e+12 1.862e+12 1.606e+12
20+20 Random Bipartite Graph with 300 Edges 5.967e+15 5.736e+15 7.693e+15
Complete graph(n=100) with 1 Matching Removed | 1.644e+478 1.644e+78 1.530e+78

Table 3: Performance of GREEDY on various graphs

8000

7000

6000

5000

4000

Qutput of the Algorthms

3000

2000

1000 —

|

j—
I
|

T -
I
I
I
I
I
I
I
I
I
I
I

[
b
L
I
b
L
I
b
| i

| ||

— l:l Actual # of Perfect Matchings

| Estimate of GREEDY

- Estimate of Chien's

il

e+00 e+04a e+08

e
|
|
|
|
|
|
|
|
|
|
|
|

e+02 e+02 e+02 e+09 e+12

Graph Type(Same order as in Table)

e+75

— Scaling Factor

Figure 8: Performance of the Estimators

Algorithm | Positive Points Negative Points
SIMPLE Can’t be easier High worst case bound
GREEDY | Looks good on many graphs Difficult to analyze
REP Fastest Estimator for random graphs | High worst case bound

Table 4: Properties of different estimators presented

